Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fzpreddisj | GIF version |
Description: A finite set of sequential integers is disjoint with its predecessor. (Contributed by AV, 24-Aug-2019.) |
Ref | Expression |
---|---|
fzpreddisj | ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → ({𝑀} ∩ ((𝑀 + 1)...𝑁)) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | incom 3314 | . 2 ⊢ (((𝑀 + 1)...𝑁) ∩ {𝑀}) = ({𝑀} ∩ ((𝑀 + 1)...𝑁)) | |
2 | 0lt1 8025 | . . . . . . . 8 ⊢ 0 < 1 | |
3 | 0z 9202 | . . . . . . . . 9 ⊢ 0 ∈ ℤ | |
4 | 1z 9217 | . . . . . . . . 9 ⊢ 1 ∈ ℤ | |
5 | zltnle 9237 | . . . . . . . . 9 ⊢ ((0 ∈ ℤ ∧ 1 ∈ ℤ) → (0 < 1 ↔ ¬ 1 ≤ 0)) | |
6 | 3, 4, 5 | mp2an 423 | . . . . . . . 8 ⊢ (0 < 1 ↔ ¬ 1 ≤ 0) |
7 | 2, 6 | mpbi 144 | . . . . . . 7 ⊢ ¬ 1 ≤ 0 |
8 | eluzel2 9471 | . . . . . . . . 9 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℤ) | |
9 | 8 | zred 9313 | . . . . . . . 8 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℝ) |
10 | 1re 7898 | . . . . . . . 8 ⊢ 1 ∈ ℝ | |
11 | leaddle0 8375 | . . . . . . . 8 ⊢ ((𝑀 ∈ ℝ ∧ 1 ∈ ℝ) → ((𝑀 + 1) ≤ 𝑀 ↔ 1 ≤ 0)) | |
12 | 9, 10, 11 | sylancl 410 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → ((𝑀 + 1) ≤ 𝑀 ↔ 1 ≤ 0)) |
13 | 7, 12 | mtbiri 665 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → ¬ (𝑀 + 1) ≤ 𝑀) |
14 | 13 | intnanrd 922 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → ¬ ((𝑀 + 1) ≤ 𝑀 ∧ 𝑀 ≤ 𝑁)) |
15 | 14 | intnand 921 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → ¬ (((𝑀 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ ((𝑀 + 1) ≤ 𝑀 ∧ 𝑀 ≤ 𝑁))) |
16 | elfz2 9951 | . . . 4 ⊢ (𝑀 ∈ ((𝑀 + 1)...𝑁) ↔ (((𝑀 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ ((𝑀 + 1) ≤ 𝑀 ∧ 𝑀 ≤ 𝑁))) | |
17 | 15, 16 | sylnibr 667 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → ¬ 𝑀 ∈ ((𝑀 + 1)...𝑁)) |
18 | disjsn 3638 | . . 3 ⊢ ((((𝑀 + 1)...𝑁) ∩ {𝑀}) = ∅ ↔ ¬ 𝑀 ∈ ((𝑀 + 1)...𝑁)) | |
19 | 17, 18 | sylibr 133 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (((𝑀 + 1)...𝑁) ∩ {𝑀}) = ∅) |
20 | 1, 19 | eqtr3id 2213 | 1 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → ({𝑀} ∩ ((𝑀 + 1)...𝑁)) = ∅) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ↔ wb 104 ∧ w3a 968 = wceq 1343 ∈ wcel 2136 ∩ cin 3115 ∅c0 3409 {csn 3576 class class class wbr 3982 ‘cfv 5188 (class class class)co 5842 ℝcr 7752 0cc0 7753 1c1 7754 + caddc 7756 < clt 7933 ≤ cle 7934 ℤcz 9191 ℤ≥cuz 9466 ...cfz 9944 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-addcom 7853 ax-addass 7855 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-0id 7861 ax-rnegex 7862 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-ltadd 7869 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-inn 8858 df-n0 9115 df-z 9192 df-uz 9467 df-fz 9945 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |