ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzpreddisj GIF version

Theorem fzpreddisj 9851
Description: A finite set of sequential integers is disjoint with its predecessor. (Contributed by AV, 24-Aug-2019.)
Assertion
Ref Expression
fzpreddisj (𝑁 ∈ (ℤ𝑀) → ({𝑀} ∩ ((𝑀 + 1)...𝑁)) = ∅)

Proof of Theorem fzpreddisj
StepHypRef Expression
1 incom 3268 . 2 (((𝑀 + 1)...𝑁) ∩ {𝑀}) = ({𝑀} ∩ ((𝑀 + 1)...𝑁))
2 0lt1 7889 . . . . . . . 8 0 < 1
3 0z 9065 . . . . . . . . 9 0 ∈ ℤ
4 1z 9080 . . . . . . . . 9 1 ∈ ℤ
5 zltnle 9100 . . . . . . . . 9 ((0 ∈ ℤ ∧ 1 ∈ ℤ) → (0 < 1 ↔ ¬ 1 ≤ 0))
63, 4, 5mp2an 422 . . . . . . . 8 (0 < 1 ↔ ¬ 1 ≤ 0)
72, 6mpbi 144 . . . . . . 7 ¬ 1 ≤ 0
8 eluzel2 9331 . . . . . . . . 9 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
98zred 9173 . . . . . . . 8 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℝ)
10 1re 7765 . . . . . . . 8 1 ∈ ℝ
11 leaddle0 8239 . . . . . . . 8 ((𝑀 ∈ ℝ ∧ 1 ∈ ℝ) → ((𝑀 + 1) ≤ 𝑀 ↔ 1 ≤ 0))
129, 10, 11sylancl 409 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → ((𝑀 + 1) ≤ 𝑀 ↔ 1 ≤ 0))
137, 12mtbiri 664 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → ¬ (𝑀 + 1) ≤ 𝑀)
1413intnanrd 917 . . . . 5 (𝑁 ∈ (ℤ𝑀) → ¬ ((𝑀 + 1) ≤ 𝑀𝑀𝑁))
1514intnand 916 . . . 4 (𝑁 ∈ (ℤ𝑀) → ¬ (((𝑀 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ ((𝑀 + 1) ≤ 𝑀𝑀𝑁)))
16 elfz2 9797 . . . 4 (𝑀 ∈ ((𝑀 + 1)...𝑁) ↔ (((𝑀 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ ((𝑀 + 1) ≤ 𝑀𝑀𝑁)))
1715, 16sylnibr 666 . . 3 (𝑁 ∈ (ℤ𝑀) → ¬ 𝑀 ∈ ((𝑀 + 1)...𝑁))
18 disjsn 3585 . . 3 ((((𝑀 + 1)...𝑁) ∩ {𝑀}) = ∅ ↔ ¬ 𝑀 ∈ ((𝑀 + 1)...𝑁))
1917, 18sylibr 133 . 2 (𝑁 ∈ (ℤ𝑀) → (((𝑀 + 1)...𝑁) ∩ {𝑀}) = ∅)
201, 19syl5eqr 2186 1 (𝑁 ∈ (ℤ𝑀) → ({𝑀} ∩ ((𝑀 + 1)...𝑁)) = ∅)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  w3a 962   = wceq 1331  wcel 1480  cin 3070  c0 3363  {csn 3527   class class class wbr 3929  cfv 5123  (class class class)co 5774  cr 7619  0cc0 7620  1c1 7621   + caddc 7623   < clt 7800  cle 7801  cz 9054  cuz 9326  ...cfz 9790
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-addcom 7720  ax-addass 7722  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-0id 7728  ax-rnegex 7729  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-ltadd 7736
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-inn 8721  df-n0 8978  df-z 9055  df-uz 9327  df-fz 9791
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator