Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzpreddisj GIF version

Theorem fzpreddisj 9902
 Description: A finite set of sequential integers is disjoint with its predecessor. (Contributed by AV, 24-Aug-2019.)
Assertion
Ref Expression
fzpreddisj (𝑁 ∈ (ℤ𝑀) → ({𝑀} ∩ ((𝑀 + 1)...𝑁)) = ∅)

Proof of Theorem fzpreddisj
StepHypRef Expression
1 incom 3274 . 2 (((𝑀 + 1)...𝑁) ∩ {𝑀}) = ({𝑀} ∩ ((𝑀 + 1)...𝑁))
2 0lt1 7933 . . . . . . . 8 0 < 1
3 0z 9109 . . . . . . . . 9 0 ∈ ℤ
4 1z 9124 . . . . . . . . 9 1 ∈ ℤ
5 zltnle 9144 . . . . . . . . 9 ((0 ∈ ℤ ∧ 1 ∈ ℤ) → (0 < 1 ↔ ¬ 1 ≤ 0))
63, 4, 5mp2an 423 . . . . . . . 8 (0 < 1 ↔ ¬ 1 ≤ 0)
72, 6mpbi 144 . . . . . . 7 ¬ 1 ≤ 0
8 eluzel2 9375 . . . . . . . . 9 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
98zred 9217 . . . . . . . 8 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℝ)
10 1re 7809 . . . . . . . 8 1 ∈ ℝ
11 leaddle0 8283 . . . . . . . 8 ((𝑀 ∈ ℝ ∧ 1 ∈ ℝ) → ((𝑀 + 1) ≤ 𝑀 ↔ 1 ≤ 0))
129, 10, 11sylancl 410 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → ((𝑀 + 1) ≤ 𝑀 ↔ 1 ≤ 0))
137, 12mtbiri 665 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → ¬ (𝑀 + 1) ≤ 𝑀)
1413intnanrd 918 . . . . 5 (𝑁 ∈ (ℤ𝑀) → ¬ ((𝑀 + 1) ≤ 𝑀𝑀𝑁))
1514intnand 917 . . . 4 (𝑁 ∈ (ℤ𝑀) → ¬ (((𝑀 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ ((𝑀 + 1) ≤ 𝑀𝑀𝑁)))
16 elfz2 9848 . . . 4 (𝑀 ∈ ((𝑀 + 1)...𝑁) ↔ (((𝑀 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ ((𝑀 + 1) ≤ 𝑀𝑀𝑁)))
1715, 16sylnibr 667 . . 3 (𝑁 ∈ (ℤ𝑀) → ¬ 𝑀 ∈ ((𝑀 + 1)...𝑁))
18 disjsn 3594 . . 3 ((((𝑀 + 1)...𝑁) ∩ {𝑀}) = ∅ ↔ ¬ 𝑀 ∈ ((𝑀 + 1)...𝑁))
1917, 18sylibr 133 . 2 (𝑁 ∈ (ℤ𝑀) → (((𝑀 + 1)...𝑁) ∩ {𝑀}) = ∅)
201, 19syl5eqr 2187 1 (𝑁 ∈ (ℤ𝑀) → ({𝑀} ∩ ((𝑀 + 1)...𝑁)) = ∅)
 Colors of variables: wff set class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 103   ↔ wb 104   ∧ w3a 963   = wceq 1332   ∈ wcel 1481   ∩ cin 3076  ∅c0 3369  {csn 3533   class class class wbr 3938  ‘cfv 5132  (class class class)co 5783  ℝcr 7663  0cc0 7664  1c1 7665   + caddc 7667   < clt 7844   ≤ cle 7845  ℤcz 9098  ℤ≥cuz 9370  ...cfz 9841 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4055  ax-pow 4107  ax-pr 4140  ax-un 4364  ax-setind 4461  ax-cnex 7755  ax-resscn 7756  ax-1cn 7757  ax-1re 7758  ax-icn 7759  ax-addcl 7760  ax-addrcl 7761  ax-mulcl 7762  ax-addcom 7764  ax-addass 7766  ax-distr 7768  ax-i2m1 7769  ax-0lt1 7770  ax-0id 7772  ax-rnegex 7773  ax-cnre 7775  ax-pre-ltirr 7776  ax-pre-ltwlin 7777  ax-pre-lttrn 7778  ax-pre-ltadd 7780 This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2692  df-sbc 2915  df-dif 3079  df-un 3081  df-in 3083  df-ss 3090  df-nul 3370  df-pw 3518  df-sn 3539  df-pr 3540  df-op 3542  df-uni 3746  df-int 3781  df-br 3939  df-opab 3999  df-mpt 4000  df-id 4224  df-xp 4554  df-rel 4555  df-cnv 4556  df-co 4557  df-dm 4558  df-rn 4559  df-res 4560  df-ima 4561  df-iota 5097  df-fun 5134  df-fn 5135  df-f 5136  df-fv 5140  df-riota 5739  df-ov 5786  df-oprab 5787  df-mpo 5788  df-pnf 7846  df-mnf 7847  df-xr 7848  df-ltxr 7849  df-le 7850  df-sub 7979  df-neg 7980  df-inn 8765  df-n0 9022  df-z 9099  df-uz 9371  df-fz 9842 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator