ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzpreddisj GIF version

Theorem fzpreddisj 9744
Description: A finite set of sequential integers is disjoint with its predecessor. (Contributed by AV, 24-Aug-2019.)
Assertion
Ref Expression
fzpreddisj (𝑁 ∈ (ℤ𝑀) → ({𝑀} ∩ ((𝑀 + 1)...𝑁)) = ∅)

Proof of Theorem fzpreddisj
StepHypRef Expression
1 incom 3234 . 2 (((𝑀 + 1)...𝑁) ∩ {𝑀}) = ({𝑀} ∩ ((𝑀 + 1)...𝑁))
2 0lt1 7812 . . . . . . . 8 0 < 1
3 0z 8969 . . . . . . . . 9 0 ∈ ℤ
4 1z 8984 . . . . . . . . 9 1 ∈ ℤ
5 zltnle 9004 . . . . . . . . 9 ((0 ∈ ℤ ∧ 1 ∈ ℤ) → (0 < 1 ↔ ¬ 1 ≤ 0))
63, 4, 5mp2an 420 . . . . . . . 8 (0 < 1 ↔ ¬ 1 ≤ 0)
72, 6mpbi 144 . . . . . . 7 ¬ 1 ≤ 0
8 eluzel2 9233 . . . . . . . . 9 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
98zred 9077 . . . . . . . 8 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℝ)
10 1re 7689 . . . . . . . 8 1 ∈ ℝ
11 leaddle0 8158 . . . . . . . 8 ((𝑀 ∈ ℝ ∧ 1 ∈ ℝ) → ((𝑀 + 1) ≤ 𝑀 ↔ 1 ≤ 0))
129, 10, 11sylancl 407 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → ((𝑀 + 1) ≤ 𝑀 ↔ 1 ≤ 0))
137, 12mtbiri 647 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → ¬ (𝑀 + 1) ≤ 𝑀)
1413intnanrd 900 . . . . 5 (𝑁 ∈ (ℤ𝑀) → ¬ ((𝑀 + 1) ≤ 𝑀𝑀𝑁))
1514intnand 899 . . . 4 (𝑁 ∈ (ℤ𝑀) → ¬ (((𝑀 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ ((𝑀 + 1) ≤ 𝑀𝑀𝑁)))
16 elfz2 9690 . . . 4 (𝑀 ∈ ((𝑀 + 1)...𝑁) ↔ (((𝑀 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ ((𝑀 + 1) ≤ 𝑀𝑀𝑁)))
1715, 16sylnibr 649 . . 3 (𝑁 ∈ (ℤ𝑀) → ¬ 𝑀 ∈ ((𝑀 + 1)...𝑁))
18 disjsn 3551 . . 3 ((((𝑀 + 1)...𝑁) ∩ {𝑀}) = ∅ ↔ ¬ 𝑀 ∈ ((𝑀 + 1)...𝑁))
1917, 18sylibr 133 . 2 (𝑁 ∈ (ℤ𝑀) → (((𝑀 + 1)...𝑁) ∩ {𝑀}) = ∅)
201, 19syl5eqr 2161 1 (𝑁 ∈ (ℤ𝑀) → ({𝑀} ∩ ((𝑀 + 1)...𝑁)) = ∅)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  w3a 945   = wceq 1314  wcel 1463  cin 3036  c0 3329  {csn 3493   class class class wbr 3895  cfv 5081  (class class class)co 5728  cr 7546  0cc0 7547  1c1 7548   + caddc 7550   < clt 7724  cle 7725  cz 8958  cuz 9228  ...cfz 9683
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4006  ax-pow 4058  ax-pr 4091  ax-un 4315  ax-setind 4412  ax-cnex 7636  ax-resscn 7637  ax-1cn 7638  ax-1re 7639  ax-icn 7640  ax-addcl 7641  ax-addrcl 7642  ax-mulcl 7643  ax-addcom 7645  ax-addass 7647  ax-distr 7649  ax-i2m1 7650  ax-0lt1 7651  ax-0id 7653  ax-rnegex 7654  ax-cnre 7656  ax-pre-ltirr 7657  ax-pre-ltwlin 7658  ax-pre-lttrn 7659  ax-pre-ltadd 7661
This theorem depends on definitions:  df-bi 116  df-3or 946  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-ne 2283  df-nel 2378  df-ral 2395  df-rex 2396  df-reu 2397  df-rab 2399  df-v 2659  df-sbc 2879  df-dif 3039  df-un 3041  df-in 3043  df-ss 3050  df-nul 3330  df-pw 3478  df-sn 3499  df-pr 3500  df-op 3502  df-uni 3703  df-int 3738  df-br 3896  df-opab 3950  df-mpt 3951  df-id 4175  df-xp 4505  df-rel 4506  df-cnv 4507  df-co 4508  df-dm 4509  df-rn 4510  df-res 4511  df-ima 4512  df-iota 5046  df-fun 5083  df-fn 5084  df-f 5085  df-fv 5089  df-riota 5684  df-ov 5731  df-oprab 5732  df-mpo 5733  df-pnf 7726  df-mnf 7727  df-xr 7728  df-ltxr 7729  df-le 7730  df-sub 7858  df-neg 7859  df-inn 8631  df-n0 8882  df-z 8959  df-uz 9229  df-fz 9684
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator