| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fzpreddisj | GIF version | ||
| Description: A finite set of sequential integers is disjoint with its predecessor. (Contributed by AV, 24-Aug-2019.) |
| Ref | Expression |
|---|---|
| fzpreddisj | ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → ({𝑀} ∩ ((𝑀 + 1)...𝑁)) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | incom 3364 | . 2 ⊢ (((𝑀 + 1)...𝑁) ∩ {𝑀}) = ({𝑀} ∩ ((𝑀 + 1)...𝑁)) | |
| 2 | 0lt1 8198 | . . . . . . . 8 ⊢ 0 < 1 | |
| 3 | 0z 9382 | . . . . . . . . 9 ⊢ 0 ∈ ℤ | |
| 4 | 1z 9397 | . . . . . . . . 9 ⊢ 1 ∈ ℤ | |
| 5 | zltnle 9417 | . . . . . . . . 9 ⊢ ((0 ∈ ℤ ∧ 1 ∈ ℤ) → (0 < 1 ↔ ¬ 1 ≤ 0)) | |
| 6 | 3, 4, 5 | mp2an 426 | . . . . . . . 8 ⊢ (0 < 1 ↔ ¬ 1 ≤ 0) |
| 7 | 2, 6 | mpbi 145 | . . . . . . 7 ⊢ ¬ 1 ≤ 0 |
| 8 | eluzel2 9652 | . . . . . . . . 9 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℤ) | |
| 9 | 8 | zred 9494 | . . . . . . . 8 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℝ) |
| 10 | 1re 8070 | . . . . . . . 8 ⊢ 1 ∈ ℝ | |
| 11 | leaddle0 8549 | . . . . . . . 8 ⊢ ((𝑀 ∈ ℝ ∧ 1 ∈ ℝ) → ((𝑀 + 1) ≤ 𝑀 ↔ 1 ≤ 0)) | |
| 12 | 9, 10, 11 | sylancl 413 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → ((𝑀 + 1) ≤ 𝑀 ↔ 1 ≤ 0)) |
| 13 | 7, 12 | mtbiri 676 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → ¬ (𝑀 + 1) ≤ 𝑀) |
| 14 | 13 | intnanrd 933 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → ¬ ((𝑀 + 1) ≤ 𝑀 ∧ 𝑀 ≤ 𝑁)) |
| 15 | 14 | intnand 932 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → ¬ (((𝑀 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ ((𝑀 + 1) ≤ 𝑀 ∧ 𝑀 ≤ 𝑁))) |
| 16 | elfz2 10136 | . . . 4 ⊢ (𝑀 ∈ ((𝑀 + 1)...𝑁) ↔ (((𝑀 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ ((𝑀 + 1) ≤ 𝑀 ∧ 𝑀 ≤ 𝑁))) | |
| 17 | 15, 16 | sylnibr 678 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → ¬ 𝑀 ∈ ((𝑀 + 1)...𝑁)) |
| 18 | disjsn 3694 | . . 3 ⊢ ((((𝑀 + 1)...𝑁) ∩ {𝑀}) = ∅ ↔ ¬ 𝑀 ∈ ((𝑀 + 1)...𝑁)) | |
| 19 | 17, 18 | sylibr 134 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (((𝑀 + 1)...𝑁) ∩ {𝑀}) = ∅) |
| 20 | 1, 19 | eqtr3id 2251 | 1 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → ({𝑀} ∩ ((𝑀 + 1)...𝑁)) = ∅) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 980 = wceq 1372 ∈ wcel 2175 ∩ cin 3164 ∅c0 3459 {csn 3632 class class class wbr 4043 ‘cfv 5270 (class class class)co 5943 ℝcr 7923 0cc0 7924 1c1 7925 + caddc 7927 < clt 8106 ≤ cle 8107 ℤcz 9371 ℤ≥cuz 9647 ...cfz 10129 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-cnex 8015 ax-resscn 8016 ax-1cn 8017 ax-1re 8018 ax-icn 8019 ax-addcl 8020 ax-addrcl 8021 ax-mulcl 8022 ax-addcom 8024 ax-addass 8026 ax-distr 8028 ax-i2m1 8029 ax-0lt1 8030 ax-0id 8032 ax-rnegex 8033 ax-cnre 8035 ax-pre-ltirr 8036 ax-pre-ltwlin 8037 ax-pre-lttrn 8038 ax-pre-ltadd 8040 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rab 2492 df-v 2773 df-sbc 2998 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-fv 5278 df-riota 5898 df-ov 5946 df-oprab 5947 df-mpo 5948 df-pnf 8108 df-mnf 8109 df-xr 8110 df-ltxr 8111 df-le 8112 df-sub 8244 df-neg 8245 df-inn 9036 df-n0 9295 df-z 9372 df-uz 9648 df-fz 10130 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |