ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ctiunctlemudc GIF version

Theorem ctiunctlemudc 12370
Description: Lemma for ctiunct 12373. (Contributed by Jim Kingdon, 28-Oct-2023.)
Hypotheses
Ref Expression
ctiunct.som (𝜑𝑆 ⊆ ω)
ctiunct.sdc (𝜑 → ∀𝑛 ∈ ω DECID 𝑛𝑆)
ctiunct.f (𝜑𝐹:𝑆onto𝐴)
ctiunct.tom ((𝜑𝑥𝐴) → 𝑇 ⊆ ω)
ctiunct.tdc ((𝜑𝑥𝐴) → ∀𝑛 ∈ ω DECID 𝑛𝑇)
ctiunct.g ((𝜑𝑥𝐴) → 𝐺:𝑇onto𝐵)
ctiunct.j (𝜑𝐽:ω–1-1-onto→(ω × ω))
ctiunct.u 𝑈 = {𝑧 ∈ ω ∣ ((1st ‘(𝐽𝑧)) ∈ 𝑆 ∧ (2nd ‘(𝐽𝑧)) ∈ (𝐹‘(1st ‘(𝐽𝑧))) / 𝑥𝑇)}
Assertion
Ref Expression
ctiunctlemudc (𝜑 → ∀𝑛 ∈ ω DECID 𝑛𝑈)
Distinct variable groups:   𝑥,𝐴   𝑛,𝐹,𝑥   𝑧,𝐹,𝑥   𝑛,𝐽,𝑥   𝑧,𝐽   𝑆,𝑛   𝑧,𝑆   𝑇,𝑛   𝑧,𝑇   𝑈,𝑛   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑧,𝑛)   𝐴(𝑧,𝑛)   𝐵(𝑥,𝑧,𝑛)   𝑆(𝑥)   𝑇(𝑥)   𝑈(𝑥,𝑧)   𝐺(𝑥,𝑧,𝑛)

Proof of Theorem ctiunctlemudc
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 eleq1 2229 . . . . . . . . 9 (𝑛 = (1st ‘(𝐽𝑚)) → (𝑛𝑆 ↔ (1st ‘(𝐽𝑚)) ∈ 𝑆))
21dcbid 828 . . . . . . . 8 (𝑛 = (1st ‘(𝐽𝑚)) → (DECID 𝑛𝑆DECID (1st ‘(𝐽𝑚)) ∈ 𝑆))
3 ctiunct.sdc . . . . . . . . 9 (𝜑 → ∀𝑛 ∈ ω DECID 𝑛𝑆)
43adantr 274 . . . . . . . 8 ((𝜑𝑚 ∈ ω) → ∀𝑛 ∈ ω DECID 𝑛𝑆)
5 ctiunct.j . . . . . . . . . . . 12 (𝜑𝐽:ω–1-1-onto→(ω × ω))
65adantr 274 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ω) → 𝐽:ω–1-1-onto→(ω × ω))
7 f1of 5432 . . . . . . . . . . 11 (𝐽:ω–1-1-onto→(ω × ω) → 𝐽:ω⟶(ω × ω))
86, 7syl 14 . . . . . . . . . 10 ((𝜑𝑚 ∈ ω) → 𝐽:ω⟶(ω × ω))
9 simpr 109 . . . . . . . . . 10 ((𝜑𝑚 ∈ ω) → 𝑚 ∈ ω)
108, 9ffvelrnd 5621 . . . . . . . . 9 ((𝜑𝑚 ∈ ω) → (𝐽𝑚) ∈ (ω × ω))
11 xp1st 6133 . . . . . . . . 9 ((𝐽𝑚) ∈ (ω × ω) → (1st ‘(𝐽𝑚)) ∈ ω)
1210, 11syl 14 . . . . . . . 8 ((𝜑𝑚 ∈ ω) → (1st ‘(𝐽𝑚)) ∈ ω)
132, 4, 12rspcdva 2835 . . . . . . 7 ((𝜑𝑚 ∈ ω) → DECID (1st ‘(𝐽𝑚)) ∈ 𝑆)
1413adantr 274 . . . . . 6 (((𝜑𝑚 ∈ ω) ∧ (1st ‘(𝐽𝑚)) ∈ 𝑆) → DECID (1st ‘(𝐽𝑚)) ∈ 𝑆)
15 eleq1 2229 . . . . . . . 8 (𝑛 = (2nd ‘(𝐽𝑚)) → (𝑛(𝐹‘(1st ‘(𝐽𝑚))) / 𝑥𝑇 ↔ (2nd ‘(𝐽𝑚)) ∈ (𝐹‘(1st ‘(𝐽𝑚))) / 𝑥𝑇))
1615dcbid 828 . . . . . . 7 (𝑛 = (2nd ‘(𝐽𝑚)) → (DECID 𝑛(𝐹‘(1st ‘(𝐽𝑚))) / 𝑥𝑇DECID (2nd ‘(𝐽𝑚)) ∈ (𝐹‘(1st ‘(𝐽𝑚))) / 𝑥𝑇))
17 ctiunct.f . . . . . . . . . . 11 (𝜑𝐹:𝑆onto𝐴)
18 fof 5410 . . . . . . . . . . 11 (𝐹:𝑆onto𝐴𝐹:𝑆𝐴)
1917, 18syl 14 . . . . . . . . . 10 (𝜑𝐹:𝑆𝐴)
2019ad2antrr 480 . . . . . . . . 9 (((𝜑𝑚 ∈ ω) ∧ (1st ‘(𝐽𝑚)) ∈ 𝑆) → 𝐹:𝑆𝐴)
21 simpr 109 . . . . . . . . 9 (((𝜑𝑚 ∈ ω) ∧ (1st ‘(𝐽𝑚)) ∈ 𝑆) → (1st ‘(𝐽𝑚)) ∈ 𝑆)
2220, 21ffvelrnd 5621 . . . . . . . 8 (((𝜑𝑚 ∈ ω) ∧ (1st ‘(𝐽𝑚)) ∈ 𝑆) → (𝐹‘(1st ‘(𝐽𝑚))) ∈ 𝐴)
23 ctiunct.tdc . . . . . . . . . 10 ((𝜑𝑥𝐴) → ∀𝑛 ∈ ω DECID 𝑛𝑇)
2423ralrimiva 2539 . . . . . . . . 9 (𝜑 → ∀𝑥𝐴𝑛 ∈ ω DECID 𝑛𝑇)
2524ad2antrr 480 . . . . . . . 8 (((𝜑𝑚 ∈ ω) ∧ (1st ‘(𝐽𝑚)) ∈ 𝑆) → ∀𝑥𝐴𝑛 ∈ ω DECID 𝑛𝑇)
26 nfcv 2308 . . . . . . . . . 10 𝑥ω
27 nfcsb1v 3078 . . . . . . . . . . . 12 𝑥(𝐹‘(1st ‘(𝐽𝑚))) / 𝑥𝑇
2827nfcri 2302 . . . . . . . . . . 11 𝑥 𝑛(𝐹‘(1st ‘(𝐽𝑚))) / 𝑥𝑇
2928nfdc 1647 . . . . . . . . . 10 𝑥DECID 𝑛(𝐹‘(1st ‘(𝐽𝑚))) / 𝑥𝑇
3026, 29nfralya 2506 . . . . . . . . 9 𝑥𝑛 ∈ ω DECID 𝑛(𝐹‘(1st ‘(𝐽𝑚))) / 𝑥𝑇
31 csbeq1a 3054 . . . . . . . . . . . 12 (𝑥 = (𝐹‘(1st ‘(𝐽𝑚))) → 𝑇 = (𝐹‘(1st ‘(𝐽𝑚))) / 𝑥𝑇)
3231eleq2d 2236 . . . . . . . . . . 11 (𝑥 = (𝐹‘(1st ‘(𝐽𝑚))) → (𝑛𝑇𝑛(𝐹‘(1st ‘(𝐽𝑚))) / 𝑥𝑇))
3332dcbid 828 . . . . . . . . . 10 (𝑥 = (𝐹‘(1st ‘(𝐽𝑚))) → (DECID 𝑛𝑇DECID 𝑛(𝐹‘(1st ‘(𝐽𝑚))) / 𝑥𝑇))
3433ralbidv 2466 . . . . . . . . 9 (𝑥 = (𝐹‘(1st ‘(𝐽𝑚))) → (∀𝑛 ∈ ω DECID 𝑛𝑇 ↔ ∀𝑛 ∈ ω DECID 𝑛(𝐹‘(1st ‘(𝐽𝑚))) / 𝑥𝑇))
3530, 34rspc 2824 . . . . . . . 8 ((𝐹‘(1st ‘(𝐽𝑚))) ∈ 𝐴 → (∀𝑥𝐴𝑛 ∈ ω DECID 𝑛𝑇 → ∀𝑛 ∈ ω DECID 𝑛(𝐹‘(1st ‘(𝐽𝑚))) / 𝑥𝑇))
3622, 25, 35sylc 62 . . . . . . 7 (((𝜑𝑚 ∈ ω) ∧ (1st ‘(𝐽𝑚)) ∈ 𝑆) → ∀𝑛 ∈ ω DECID 𝑛(𝐹‘(1st ‘(𝐽𝑚))) / 𝑥𝑇)
3710adantr 274 . . . . . . . 8 (((𝜑𝑚 ∈ ω) ∧ (1st ‘(𝐽𝑚)) ∈ 𝑆) → (𝐽𝑚) ∈ (ω × ω))
38 xp2nd 6134 . . . . . . . 8 ((𝐽𝑚) ∈ (ω × ω) → (2nd ‘(𝐽𝑚)) ∈ ω)
3937, 38syl 14 . . . . . . 7 (((𝜑𝑚 ∈ ω) ∧ (1st ‘(𝐽𝑚)) ∈ 𝑆) → (2nd ‘(𝐽𝑚)) ∈ ω)
4016, 36, 39rspcdva 2835 . . . . . 6 (((𝜑𝑚 ∈ ω) ∧ (1st ‘(𝐽𝑚)) ∈ 𝑆) → DECID (2nd ‘(𝐽𝑚)) ∈ (𝐹‘(1st ‘(𝐽𝑚))) / 𝑥𝑇)
41 dcan2 924 . . . . . 6 (DECID (1st ‘(𝐽𝑚)) ∈ 𝑆 → (DECID (2nd ‘(𝐽𝑚)) ∈ (𝐹‘(1st ‘(𝐽𝑚))) / 𝑥𝑇DECID ((1st ‘(𝐽𝑚)) ∈ 𝑆 ∧ (2nd ‘(𝐽𝑚)) ∈ (𝐹‘(1st ‘(𝐽𝑚))) / 𝑥𝑇)))
4214, 40, 41sylc 62 . . . . 5 (((𝜑𝑚 ∈ ω) ∧ (1st ‘(𝐽𝑚)) ∈ 𝑆) → DECID ((1st ‘(𝐽𝑚)) ∈ 𝑆 ∧ (2nd ‘(𝐽𝑚)) ∈ (𝐹‘(1st ‘(𝐽𝑚))) / 𝑥𝑇))
43 simpr 109 . . . . . . . 8 (((𝜑𝑚 ∈ ω) ∧ ¬ (1st ‘(𝐽𝑚)) ∈ 𝑆) → ¬ (1st ‘(𝐽𝑚)) ∈ 𝑆)
4443intnanrd 922 . . . . . . 7 (((𝜑𝑚 ∈ ω) ∧ ¬ (1st ‘(𝐽𝑚)) ∈ 𝑆) → ¬ ((1st ‘(𝐽𝑚)) ∈ 𝑆 ∧ (2nd ‘(𝐽𝑚)) ∈ (𝐹‘(1st ‘(𝐽𝑚))) / 𝑥𝑇))
4544olcd 724 . . . . . 6 (((𝜑𝑚 ∈ ω) ∧ ¬ (1st ‘(𝐽𝑚)) ∈ 𝑆) → (((1st ‘(𝐽𝑚)) ∈ 𝑆 ∧ (2nd ‘(𝐽𝑚)) ∈ (𝐹‘(1st ‘(𝐽𝑚))) / 𝑥𝑇) ∨ ¬ ((1st ‘(𝐽𝑚)) ∈ 𝑆 ∧ (2nd ‘(𝐽𝑚)) ∈ (𝐹‘(1st ‘(𝐽𝑚))) / 𝑥𝑇)))
46 df-dc 825 . . . . . 6 (DECID ((1st ‘(𝐽𝑚)) ∈ 𝑆 ∧ (2nd ‘(𝐽𝑚)) ∈ (𝐹‘(1st ‘(𝐽𝑚))) / 𝑥𝑇) ↔ (((1st ‘(𝐽𝑚)) ∈ 𝑆 ∧ (2nd ‘(𝐽𝑚)) ∈ (𝐹‘(1st ‘(𝐽𝑚))) / 𝑥𝑇) ∨ ¬ ((1st ‘(𝐽𝑚)) ∈ 𝑆 ∧ (2nd ‘(𝐽𝑚)) ∈ (𝐹‘(1st ‘(𝐽𝑚))) / 𝑥𝑇)))
4745, 46sylibr 133 . . . . 5 (((𝜑𝑚 ∈ ω) ∧ ¬ (1st ‘(𝐽𝑚)) ∈ 𝑆) → DECID ((1st ‘(𝐽𝑚)) ∈ 𝑆 ∧ (2nd ‘(𝐽𝑚)) ∈ (𝐹‘(1st ‘(𝐽𝑚))) / 𝑥𝑇))
48 exmiddc 826 . . . . . 6 (DECID (1st ‘(𝐽𝑚)) ∈ 𝑆 → ((1st ‘(𝐽𝑚)) ∈ 𝑆 ∨ ¬ (1st ‘(𝐽𝑚)) ∈ 𝑆))
4913, 48syl 14 . . . . 5 ((𝜑𝑚 ∈ ω) → ((1st ‘(𝐽𝑚)) ∈ 𝑆 ∨ ¬ (1st ‘(𝐽𝑚)) ∈ 𝑆))
5042, 47, 49mpjaodan 788 . . . 4 ((𝜑𝑚 ∈ ω) → DECID ((1st ‘(𝐽𝑚)) ∈ 𝑆 ∧ (2nd ‘(𝐽𝑚)) ∈ (𝐹‘(1st ‘(𝐽𝑚))) / 𝑥𝑇))
51 2fveq3 5491 . . . . . . . . 9 (𝑧 = 𝑚 → (1st ‘(𝐽𝑧)) = (1st ‘(𝐽𝑚)))
5251eleq1d 2235 . . . . . . . 8 (𝑧 = 𝑚 → ((1st ‘(𝐽𝑧)) ∈ 𝑆 ↔ (1st ‘(𝐽𝑚)) ∈ 𝑆))
53 2fveq3 5491 . . . . . . . . 9 (𝑧 = 𝑚 → (2nd ‘(𝐽𝑧)) = (2nd ‘(𝐽𝑚)))
5451fveq2d 5490 . . . . . . . . . 10 (𝑧 = 𝑚 → (𝐹‘(1st ‘(𝐽𝑧))) = (𝐹‘(1st ‘(𝐽𝑚))))
5554csbeq1d 3052 . . . . . . . . 9 (𝑧 = 𝑚(𝐹‘(1st ‘(𝐽𝑧))) / 𝑥𝑇 = (𝐹‘(1st ‘(𝐽𝑚))) / 𝑥𝑇)
5653, 55eleq12d 2237 . . . . . . . 8 (𝑧 = 𝑚 → ((2nd ‘(𝐽𝑧)) ∈ (𝐹‘(1st ‘(𝐽𝑧))) / 𝑥𝑇 ↔ (2nd ‘(𝐽𝑚)) ∈ (𝐹‘(1st ‘(𝐽𝑚))) / 𝑥𝑇))
5752, 56anbi12d 465 . . . . . . 7 (𝑧 = 𝑚 → (((1st ‘(𝐽𝑧)) ∈ 𝑆 ∧ (2nd ‘(𝐽𝑧)) ∈ (𝐹‘(1st ‘(𝐽𝑧))) / 𝑥𝑇) ↔ ((1st ‘(𝐽𝑚)) ∈ 𝑆 ∧ (2nd ‘(𝐽𝑚)) ∈ (𝐹‘(1st ‘(𝐽𝑚))) / 𝑥𝑇)))
58 ctiunct.u . . . . . . 7 𝑈 = {𝑧 ∈ ω ∣ ((1st ‘(𝐽𝑧)) ∈ 𝑆 ∧ (2nd ‘(𝐽𝑧)) ∈ (𝐹‘(1st ‘(𝐽𝑧))) / 𝑥𝑇)}
5957, 58elrab2 2885 . . . . . 6 (𝑚𝑈 ↔ (𝑚 ∈ ω ∧ ((1st ‘(𝐽𝑚)) ∈ 𝑆 ∧ (2nd ‘(𝐽𝑚)) ∈ (𝐹‘(1st ‘(𝐽𝑚))) / 𝑥𝑇)))
60 ibar 299 . . . . . . 7 (𝑚 ∈ ω → (((1st ‘(𝐽𝑚)) ∈ 𝑆 ∧ (2nd ‘(𝐽𝑚)) ∈ (𝐹‘(1st ‘(𝐽𝑚))) / 𝑥𝑇) ↔ (𝑚 ∈ ω ∧ ((1st ‘(𝐽𝑚)) ∈ 𝑆 ∧ (2nd ‘(𝐽𝑚)) ∈ (𝐹‘(1st ‘(𝐽𝑚))) / 𝑥𝑇))))
6160adantl 275 . . . . . 6 ((𝜑𝑚 ∈ ω) → (((1st ‘(𝐽𝑚)) ∈ 𝑆 ∧ (2nd ‘(𝐽𝑚)) ∈ (𝐹‘(1st ‘(𝐽𝑚))) / 𝑥𝑇) ↔ (𝑚 ∈ ω ∧ ((1st ‘(𝐽𝑚)) ∈ 𝑆 ∧ (2nd ‘(𝐽𝑚)) ∈ (𝐹‘(1st ‘(𝐽𝑚))) / 𝑥𝑇))))
6259, 61bitr4id 198 . . . . 5 ((𝜑𝑚 ∈ ω) → (𝑚𝑈 ↔ ((1st ‘(𝐽𝑚)) ∈ 𝑆 ∧ (2nd ‘(𝐽𝑚)) ∈ (𝐹‘(1st ‘(𝐽𝑚))) / 𝑥𝑇)))
6362dcbid 828 . . . 4 ((𝜑𝑚 ∈ ω) → (DECID 𝑚𝑈DECID ((1st ‘(𝐽𝑚)) ∈ 𝑆 ∧ (2nd ‘(𝐽𝑚)) ∈ (𝐹‘(1st ‘(𝐽𝑚))) / 𝑥𝑇)))
6450, 63mpbird 166 . . 3 ((𝜑𝑚 ∈ ω) → DECID 𝑚𝑈)
6564ralrimiva 2539 . 2 (𝜑 → ∀𝑚 ∈ ω DECID 𝑚𝑈)
66 eleq1 2229 . . . 4 (𝑚 = 𝑛 → (𝑚𝑈𝑛𝑈))
6766dcbid 828 . . 3 (𝑚 = 𝑛 → (DECID 𝑚𝑈DECID 𝑛𝑈))
6867cbvralv 2692 . 2 (∀𝑚 ∈ ω DECID 𝑚𝑈 ↔ ∀𝑛 ∈ ω DECID 𝑛𝑈)
6965, 68sylib 121 1 (𝜑 → ∀𝑛 ∈ ω DECID 𝑛𝑈)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 698  DECID wdc 824   = wceq 1343  wcel 2136  wral 2444  {crab 2448  csb 3045  wss 3116  ωcom 4567   × cxp 4602  wf 5184  ontowfo 5186  1-1-ontowf1o 5187  cfv 5188  1st c1st 6106  2nd c2nd 6107
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-1st 6108  df-2nd 6109
This theorem is referenced by:  ctiunct  12373
  Copyright terms: Public domain W3C validator