ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ctiunctlemudc GIF version

Theorem ctiunctlemudc 11986
Description: Lemma for ctiunct 11989. (Contributed by Jim Kingdon, 28-Oct-2023.)
Hypotheses
Ref Expression
ctiunct.som (𝜑𝑆 ⊆ ω)
ctiunct.sdc (𝜑 → ∀𝑛 ∈ ω DECID 𝑛𝑆)
ctiunct.f (𝜑𝐹:𝑆onto𝐴)
ctiunct.tom ((𝜑𝑥𝐴) → 𝑇 ⊆ ω)
ctiunct.tdc ((𝜑𝑥𝐴) → ∀𝑛 ∈ ω DECID 𝑛𝑇)
ctiunct.g ((𝜑𝑥𝐴) → 𝐺:𝑇onto𝐵)
ctiunct.j (𝜑𝐽:ω–1-1-onto→(ω × ω))
ctiunct.u 𝑈 = {𝑧 ∈ ω ∣ ((1st ‘(𝐽𝑧)) ∈ 𝑆 ∧ (2nd ‘(𝐽𝑧)) ∈ (𝐹‘(1st ‘(𝐽𝑧))) / 𝑥𝑇)}
Assertion
Ref Expression
ctiunctlemudc (𝜑 → ∀𝑛 ∈ ω DECID 𝑛𝑈)
Distinct variable groups:   𝑥,𝐴   𝑛,𝐹,𝑥   𝑧,𝐹,𝑥   𝑛,𝐽,𝑥   𝑧,𝐽   𝑆,𝑛   𝑧,𝑆   𝑇,𝑛   𝑧,𝑇   𝑈,𝑛   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑧,𝑛)   𝐴(𝑧,𝑛)   𝐵(𝑥,𝑧,𝑛)   𝑆(𝑥)   𝑇(𝑥)   𝑈(𝑥,𝑧)   𝐺(𝑥,𝑧,𝑛)

Proof of Theorem ctiunctlemudc
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 eleq1 2203 . . . . . . . . 9 (𝑛 = (1st ‘(𝐽𝑚)) → (𝑛𝑆 ↔ (1st ‘(𝐽𝑚)) ∈ 𝑆))
21dcbid 824 . . . . . . . 8 (𝑛 = (1st ‘(𝐽𝑚)) → (DECID 𝑛𝑆DECID (1st ‘(𝐽𝑚)) ∈ 𝑆))
3 ctiunct.sdc . . . . . . . . 9 (𝜑 → ∀𝑛 ∈ ω DECID 𝑛𝑆)
43adantr 274 . . . . . . . 8 ((𝜑𝑚 ∈ ω) → ∀𝑛 ∈ ω DECID 𝑛𝑆)
5 ctiunct.j . . . . . . . . . . . 12 (𝜑𝐽:ω–1-1-onto→(ω × ω))
65adantr 274 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ω) → 𝐽:ω–1-1-onto→(ω × ω))
7 f1of 5375 . . . . . . . . . . 11 (𝐽:ω–1-1-onto→(ω × ω) → 𝐽:ω⟶(ω × ω))
86, 7syl 14 . . . . . . . . . 10 ((𝜑𝑚 ∈ ω) → 𝐽:ω⟶(ω × ω))
9 simpr 109 . . . . . . . . . 10 ((𝜑𝑚 ∈ ω) → 𝑚 ∈ ω)
108, 9ffvelrnd 5564 . . . . . . . . 9 ((𝜑𝑚 ∈ ω) → (𝐽𝑚) ∈ (ω × ω))
11 xp1st 6071 . . . . . . . . 9 ((𝐽𝑚) ∈ (ω × ω) → (1st ‘(𝐽𝑚)) ∈ ω)
1210, 11syl 14 . . . . . . . 8 ((𝜑𝑚 ∈ ω) → (1st ‘(𝐽𝑚)) ∈ ω)
132, 4, 12rspcdva 2798 . . . . . . 7 ((𝜑𝑚 ∈ ω) → DECID (1st ‘(𝐽𝑚)) ∈ 𝑆)
1413adantr 274 . . . . . 6 (((𝜑𝑚 ∈ ω) ∧ (1st ‘(𝐽𝑚)) ∈ 𝑆) → DECID (1st ‘(𝐽𝑚)) ∈ 𝑆)
15 eleq1 2203 . . . . . . . 8 (𝑛 = (2nd ‘(𝐽𝑚)) → (𝑛(𝐹‘(1st ‘(𝐽𝑚))) / 𝑥𝑇 ↔ (2nd ‘(𝐽𝑚)) ∈ (𝐹‘(1st ‘(𝐽𝑚))) / 𝑥𝑇))
1615dcbid 824 . . . . . . 7 (𝑛 = (2nd ‘(𝐽𝑚)) → (DECID 𝑛(𝐹‘(1st ‘(𝐽𝑚))) / 𝑥𝑇DECID (2nd ‘(𝐽𝑚)) ∈ (𝐹‘(1st ‘(𝐽𝑚))) / 𝑥𝑇))
17 ctiunct.f . . . . . . . . . . 11 (𝜑𝐹:𝑆onto𝐴)
18 fof 5353 . . . . . . . . . . 11 (𝐹:𝑆onto𝐴𝐹:𝑆𝐴)
1917, 18syl 14 . . . . . . . . . 10 (𝜑𝐹:𝑆𝐴)
2019ad2antrr 480 . . . . . . . . 9 (((𝜑𝑚 ∈ ω) ∧ (1st ‘(𝐽𝑚)) ∈ 𝑆) → 𝐹:𝑆𝐴)
21 simpr 109 . . . . . . . . 9 (((𝜑𝑚 ∈ ω) ∧ (1st ‘(𝐽𝑚)) ∈ 𝑆) → (1st ‘(𝐽𝑚)) ∈ 𝑆)
2220, 21ffvelrnd 5564 . . . . . . . 8 (((𝜑𝑚 ∈ ω) ∧ (1st ‘(𝐽𝑚)) ∈ 𝑆) → (𝐹‘(1st ‘(𝐽𝑚))) ∈ 𝐴)
23 ctiunct.tdc . . . . . . . . . 10 ((𝜑𝑥𝐴) → ∀𝑛 ∈ ω DECID 𝑛𝑇)
2423ralrimiva 2508 . . . . . . . . 9 (𝜑 → ∀𝑥𝐴𝑛 ∈ ω DECID 𝑛𝑇)
2524ad2antrr 480 . . . . . . . 8 (((𝜑𝑚 ∈ ω) ∧ (1st ‘(𝐽𝑚)) ∈ 𝑆) → ∀𝑥𝐴𝑛 ∈ ω DECID 𝑛𝑇)
26 nfcv 2282 . . . . . . . . . 10 𝑥ω
27 nfcsb1v 3040 . . . . . . . . . . . 12 𝑥(𝐹‘(1st ‘(𝐽𝑚))) / 𝑥𝑇
2827nfcri 2276 . . . . . . . . . . 11 𝑥 𝑛(𝐹‘(1st ‘(𝐽𝑚))) / 𝑥𝑇
2928nfdc 1638 . . . . . . . . . 10 𝑥DECID 𝑛(𝐹‘(1st ‘(𝐽𝑚))) / 𝑥𝑇
3026, 29nfralya 2476 . . . . . . . . 9 𝑥𝑛 ∈ ω DECID 𝑛(𝐹‘(1st ‘(𝐽𝑚))) / 𝑥𝑇
31 csbeq1a 3016 . . . . . . . . . . . 12 (𝑥 = (𝐹‘(1st ‘(𝐽𝑚))) → 𝑇 = (𝐹‘(1st ‘(𝐽𝑚))) / 𝑥𝑇)
3231eleq2d 2210 . . . . . . . . . . 11 (𝑥 = (𝐹‘(1st ‘(𝐽𝑚))) → (𝑛𝑇𝑛(𝐹‘(1st ‘(𝐽𝑚))) / 𝑥𝑇))
3332dcbid 824 . . . . . . . . . 10 (𝑥 = (𝐹‘(1st ‘(𝐽𝑚))) → (DECID 𝑛𝑇DECID 𝑛(𝐹‘(1st ‘(𝐽𝑚))) / 𝑥𝑇))
3433ralbidv 2438 . . . . . . . . 9 (𝑥 = (𝐹‘(1st ‘(𝐽𝑚))) → (∀𝑛 ∈ ω DECID 𝑛𝑇 ↔ ∀𝑛 ∈ ω DECID 𝑛(𝐹‘(1st ‘(𝐽𝑚))) / 𝑥𝑇))
3530, 34rspc 2787 . . . . . . . 8 ((𝐹‘(1st ‘(𝐽𝑚))) ∈ 𝐴 → (∀𝑥𝐴𝑛 ∈ ω DECID 𝑛𝑇 → ∀𝑛 ∈ ω DECID 𝑛(𝐹‘(1st ‘(𝐽𝑚))) / 𝑥𝑇))
3622, 25, 35sylc 62 . . . . . . 7 (((𝜑𝑚 ∈ ω) ∧ (1st ‘(𝐽𝑚)) ∈ 𝑆) → ∀𝑛 ∈ ω DECID 𝑛(𝐹‘(1st ‘(𝐽𝑚))) / 𝑥𝑇)
3710adantr 274 . . . . . . . 8 (((𝜑𝑚 ∈ ω) ∧ (1st ‘(𝐽𝑚)) ∈ 𝑆) → (𝐽𝑚) ∈ (ω × ω))
38 xp2nd 6072 . . . . . . . 8 ((𝐽𝑚) ∈ (ω × ω) → (2nd ‘(𝐽𝑚)) ∈ ω)
3937, 38syl 14 . . . . . . 7 (((𝜑𝑚 ∈ ω) ∧ (1st ‘(𝐽𝑚)) ∈ 𝑆) → (2nd ‘(𝐽𝑚)) ∈ ω)
4016, 36, 39rspcdva 2798 . . . . . 6 (((𝜑𝑚 ∈ ω) ∧ (1st ‘(𝐽𝑚)) ∈ 𝑆) → DECID (2nd ‘(𝐽𝑚)) ∈ (𝐹‘(1st ‘(𝐽𝑚))) / 𝑥𝑇)
41 dcan 919 . . . . . 6 (DECID (1st ‘(𝐽𝑚)) ∈ 𝑆 → (DECID (2nd ‘(𝐽𝑚)) ∈ (𝐹‘(1st ‘(𝐽𝑚))) / 𝑥𝑇DECID ((1st ‘(𝐽𝑚)) ∈ 𝑆 ∧ (2nd ‘(𝐽𝑚)) ∈ (𝐹‘(1st ‘(𝐽𝑚))) / 𝑥𝑇)))
4214, 40, 41sylc 62 . . . . 5 (((𝜑𝑚 ∈ ω) ∧ (1st ‘(𝐽𝑚)) ∈ 𝑆) → DECID ((1st ‘(𝐽𝑚)) ∈ 𝑆 ∧ (2nd ‘(𝐽𝑚)) ∈ (𝐹‘(1st ‘(𝐽𝑚))) / 𝑥𝑇))
43 simpr 109 . . . . . . . 8 (((𝜑𝑚 ∈ ω) ∧ ¬ (1st ‘(𝐽𝑚)) ∈ 𝑆) → ¬ (1st ‘(𝐽𝑚)) ∈ 𝑆)
4443intnanrd 918 . . . . . . 7 (((𝜑𝑚 ∈ ω) ∧ ¬ (1st ‘(𝐽𝑚)) ∈ 𝑆) → ¬ ((1st ‘(𝐽𝑚)) ∈ 𝑆 ∧ (2nd ‘(𝐽𝑚)) ∈ (𝐹‘(1st ‘(𝐽𝑚))) / 𝑥𝑇))
4544olcd 724 . . . . . 6 (((𝜑𝑚 ∈ ω) ∧ ¬ (1st ‘(𝐽𝑚)) ∈ 𝑆) → (((1st ‘(𝐽𝑚)) ∈ 𝑆 ∧ (2nd ‘(𝐽𝑚)) ∈ (𝐹‘(1st ‘(𝐽𝑚))) / 𝑥𝑇) ∨ ¬ ((1st ‘(𝐽𝑚)) ∈ 𝑆 ∧ (2nd ‘(𝐽𝑚)) ∈ (𝐹‘(1st ‘(𝐽𝑚))) / 𝑥𝑇)))
46 df-dc 821 . . . . . 6 (DECID ((1st ‘(𝐽𝑚)) ∈ 𝑆 ∧ (2nd ‘(𝐽𝑚)) ∈ (𝐹‘(1st ‘(𝐽𝑚))) / 𝑥𝑇) ↔ (((1st ‘(𝐽𝑚)) ∈ 𝑆 ∧ (2nd ‘(𝐽𝑚)) ∈ (𝐹‘(1st ‘(𝐽𝑚))) / 𝑥𝑇) ∨ ¬ ((1st ‘(𝐽𝑚)) ∈ 𝑆 ∧ (2nd ‘(𝐽𝑚)) ∈ (𝐹‘(1st ‘(𝐽𝑚))) / 𝑥𝑇)))
4745, 46sylibr 133 . . . . 5 (((𝜑𝑚 ∈ ω) ∧ ¬ (1st ‘(𝐽𝑚)) ∈ 𝑆) → DECID ((1st ‘(𝐽𝑚)) ∈ 𝑆 ∧ (2nd ‘(𝐽𝑚)) ∈ (𝐹‘(1st ‘(𝐽𝑚))) / 𝑥𝑇))
48 exmiddc 822 . . . . . 6 (DECID (1st ‘(𝐽𝑚)) ∈ 𝑆 → ((1st ‘(𝐽𝑚)) ∈ 𝑆 ∨ ¬ (1st ‘(𝐽𝑚)) ∈ 𝑆))
4913, 48syl 14 . . . . 5 ((𝜑𝑚 ∈ ω) → ((1st ‘(𝐽𝑚)) ∈ 𝑆 ∨ ¬ (1st ‘(𝐽𝑚)) ∈ 𝑆))
5042, 47, 49mpjaodan 788 . . . 4 ((𝜑𝑚 ∈ ω) → DECID ((1st ‘(𝐽𝑚)) ∈ 𝑆 ∧ (2nd ‘(𝐽𝑚)) ∈ (𝐹‘(1st ‘(𝐽𝑚))) / 𝑥𝑇))
51 2fveq3 5434 . . . . . . . . 9 (𝑧 = 𝑚 → (1st ‘(𝐽𝑧)) = (1st ‘(𝐽𝑚)))
5251eleq1d 2209 . . . . . . . 8 (𝑧 = 𝑚 → ((1st ‘(𝐽𝑧)) ∈ 𝑆 ↔ (1st ‘(𝐽𝑚)) ∈ 𝑆))
53 2fveq3 5434 . . . . . . . . 9 (𝑧 = 𝑚 → (2nd ‘(𝐽𝑧)) = (2nd ‘(𝐽𝑚)))
5451fveq2d 5433 . . . . . . . . . 10 (𝑧 = 𝑚 → (𝐹‘(1st ‘(𝐽𝑧))) = (𝐹‘(1st ‘(𝐽𝑚))))
5554csbeq1d 3014 . . . . . . . . 9 (𝑧 = 𝑚(𝐹‘(1st ‘(𝐽𝑧))) / 𝑥𝑇 = (𝐹‘(1st ‘(𝐽𝑚))) / 𝑥𝑇)
5653, 55eleq12d 2211 . . . . . . . 8 (𝑧 = 𝑚 → ((2nd ‘(𝐽𝑧)) ∈ (𝐹‘(1st ‘(𝐽𝑧))) / 𝑥𝑇 ↔ (2nd ‘(𝐽𝑚)) ∈ (𝐹‘(1st ‘(𝐽𝑚))) / 𝑥𝑇))
5752, 56anbi12d 465 . . . . . . 7 (𝑧 = 𝑚 → (((1st ‘(𝐽𝑧)) ∈ 𝑆 ∧ (2nd ‘(𝐽𝑧)) ∈ (𝐹‘(1st ‘(𝐽𝑧))) / 𝑥𝑇) ↔ ((1st ‘(𝐽𝑚)) ∈ 𝑆 ∧ (2nd ‘(𝐽𝑚)) ∈ (𝐹‘(1st ‘(𝐽𝑚))) / 𝑥𝑇)))
58 ctiunct.u . . . . . . 7 𝑈 = {𝑧 ∈ ω ∣ ((1st ‘(𝐽𝑧)) ∈ 𝑆 ∧ (2nd ‘(𝐽𝑧)) ∈ (𝐹‘(1st ‘(𝐽𝑧))) / 𝑥𝑇)}
5957, 58elrab2 2847 . . . . . 6 (𝑚𝑈 ↔ (𝑚 ∈ ω ∧ ((1st ‘(𝐽𝑚)) ∈ 𝑆 ∧ (2nd ‘(𝐽𝑚)) ∈ (𝐹‘(1st ‘(𝐽𝑚))) / 𝑥𝑇)))
60 ibar 299 . . . . . . 7 (𝑚 ∈ ω → (((1st ‘(𝐽𝑚)) ∈ 𝑆 ∧ (2nd ‘(𝐽𝑚)) ∈ (𝐹‘(1st ‘(𝐽𝑚))) / 𝑥𝑇) ↔ (𝑚 ∈ ω ∧ ((1st ‘(𝐽𝑚)) ∈ 𝑆 ∧ (2nd ‘(𝐽𝑚)) ∈ (𝐹‘(1st ‘(𝐽𝑚))) / 𝑥𝑇))))
6160adantl 275 . . . . . 6 ((𝜑𝑚 ∈ ω) → (((1st ‘(𝐽𝑚)) ∈ 𝑆 ∧ (2nd ‘(𝐽𝑚)) ∈ (𝐹‘(1st ‘(𝐽𝑚))) / 𝑥𝑇) ↔ (𝑚 ∈ ω ∧ ((1st ‘(𝐽𝑚)) ∈ 𝑆 ∧ (2nd ‘(𝐽𝑚)) ∈ (𝐹‘(1st ‘(𝐽𝑚))) / 𝑥𝑇))))
6259, 61bitr4id 198 . . . . 5 ((𝜑𝑚 ∈ ω) → (𝑚𝑈 ↔ ((1st ‘(𝐽𝑚)) ∈ 𝑆 ∧ (2nd ‘(𝐽𝑚)) ∈ (𝐹‘(1st ‘(𝐽𝑚))) / 𝑥𝑇)))
6362dcbid 824 . . . 4 ((𝜑𝑚 ∈ ω) → (DECID 𝑚𝑈DECID ((1st ‘(𝐽𝑚)) ∈ 𝑆 ∧ (2nd ‘(𝐽𝑚)) ∈ (𝐹‘(1st ‘(𝐽𝑚))) / 𝑥𝑇)))
6450, 63mpbird 166 . . 3 ((𝜑𝑚 ∈ ω) → DECID 𝑚𝑈)
6564ralrimiva 2508 . 2 (𝜑 → ∀𝑚 ∈ ω DECID 𝑚𝑈)
66 eleq1 2203 . . . 4 (𝑚 = 𝑛 → (𝑚𝑈𝑛𝑈))
6766dcbid 824 . . 3 (𝑚 = 𝑛 → (DECID 𝑚𝑈DECID 𝑛𝑈))
6867cbvralv 2657 . 2 (∀𝑚 ∈ ω DECID 𝑚𝑈 ↔ ∀𝑛 ∈ ω DECID 𝑛𝑈)
6965, 68sylib 121 1 (𝜑 → ∀𝑛 ∈ ω DECID 𝑛𝑈)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 698  DECID wdc 820   = wceq 1332  wcel 1481  wral 2417  {crab 2421  csb 3007  wss 3076  ωcom 4512   × cxp 4545  wf 5127  ontowfo 5129  1-1-ontowf1o 5130  cfv 5131  1st c1st 6044  2nd c2nd 6045
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-br 3938  df-opab 3998  df-mpt 3999  df-id 4223  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-1st 6046  df-2nd 6047
This theorem is referenced by:  ctiunct  11989
  Copyright terms: Public domain W3C validator