Step | Hyp | Ref
| Expression |
1 | | eleq1 2229 |
. . . . . . . . 9
⊢ (𝑛 = (1st ‘(𝐽‘𝑚)) → (𝑛 ∈ 𝑆 ↔ (1st ‘(𝐽‘𝑚)) ∈ 𝑆)) |
2 | 1 | dcbid 828 |
. . . . . . . 8
⊢ (𝑛 = (1st ‘(𝐽‘𝑚)) → (DECID 𝑛 ∈ 𝑆 ↔ DECID (1st
‘(𝐽‘𝑚)) ∈ 𝑆)) |
3 | | ctiunct.sdc |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑛 ∈ ω DECID 𝑛 ∈ 𝑆) |
4 | 3 | adantr 274 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑚 ∈ ω) → ∀𝑛 ∈ ω
DECID 𝑛
∈ 𝑆) |
5 | | ctiunct.j |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐽:ω–1-1-onto→(ω × ω)) |
6 | 5 | adantr 274 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑚 ∈ ω) → 𝐽:ω–1-1-onto→(ω × ω)) |
7 | | f1of 5432 |
. . . . . . . . . . 11
⊢ (𝐽:ω–1-1-onto→(ω × ω) → 𝐽:ω⟶(ω ×
ω)) |
8 | 6, 7 | syl 14 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑚 ∈ ω) → 𝐽:ω⟶(ω ×
ω)) |
9 | | simpr 109 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑚 ∈ ω) → 𝑚 ∈ ω) |
10 | 8, 9 | ffvelrnd 5621 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑚 ∈ ω) → (𝐽‘𝑚) ∈ (ω ×
ω)) |
11 | | xp1st 6133 |
. . . . . . . . 9
⊢ ((𝐽‘𝑚) ∈ (ω × ω) →
(1st ‘(𝐽‘𝑚)) ∈ ω) |
12 | 10, 11 | syl 14 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑚 ∈ ω) → (1st
‘(𝐽‘𝑚)) ∈
ω) |
13 | 2, 4, 12 | rspcdva 2835 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑚 ∈ ω) → DECID
(1st ‘(𝐽‘𝑚)) ∈ 𝑆) |
14 | 13 | adantr 274 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑚 ∈ ω) ∧ (1st
‘(𝐽‘𝑚)) ∈ 𝑆) → DECID
(1st ‘(𝐽‘𝑚)) ∈ 𝑆) |
15 | | eleq1 2229 |
. . . . . . . 8
⊢ (𝑛 = (2nd ‘(𝐽‘𝑚)) → (𝑛 ∈ ⦋(𝐹‘(1st ‘(𝐽‘𝑚))) / 𝑥⦌𝑇 ↔ (2nd ‘(𝐽‘𝑚)) ∈ ⦋(𝐹‘(1st ‘(𝐽‘𝑚))) / 𝑥⦌𝑇)) |
16 | 15 | dcbid 828 |
. . . . . . 7
⊢ (𝑛 = (2nd ‘(𝐽‘𝑚)) → (DECID 𝑛 ∈ ⦋(𝐹‘(1st
‘(𝐽‘𝑚))) / 𝑥⦌𝑇 ↔ DECID (2nd
‘(𝐽‘𝑚)) ∈ ⦋(𝐹‘(1st
‘(𝐽‘𝑚))) / 𝑥⦌𝑇)) |
17 | | ctiunct.f |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐹:𝑆–onto→𝐴) |
18 | | fof 5410 |
. . . . . . . . . . 11
⊢ (𝐹:𝑆–onto→𝐴 → 𝐹:𝑆⟶𝐴) |
19 | 17, 18 | syl 14 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐹:𝑆⟶𝐴) |
20 | 19 | ad2antrr 480 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑚 ∈ ω) ∧ (1st
‘(𝐽‘𝑚)) ∈ 𝑆) → 𝐹:𝑆⟶𝐴) |
21 | | simpr 109 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑚 ∈ ω) ∧ (1st
‘(𝐽‘𝑚)) ∈ 𝑆) → (1st ‘(𝐽‘𝑚)) ∈ 𝑆) |
22 | 20, 21 | ffvelrnd 5621 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑚 ∈ ω) ∧ (1st
‘(𝐽‘𝑚)) ∈ 𝑆) → (𝐹‘(1st ‘(𝐽‘𝑚))) ∈ 𝐴) |
23 | | ctiunct.tdc |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∀𝑛 ∈ ω DECID 𝑛 ∈ 𝑇) |
24 | 23 | ralrimiva 2539 |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑛 ∈ ω DECID 𝑛 ∈ 𝑇) |
25 | 24 | ad2antrr 480 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑚 ∈ ω) ∧ (1st
‘(𝐽‘𝑚)) ∈ 𝑆) → ∀𝑥 ∈ 𝐴 ∀𝑛 ∈ ω DECID 𝑛 ∈ 𝑇) |
26 | | nfcv 2308 |
. . . . . . . . . 10
⊢
Ⅎ𝑥ω |
27 | | nfcsb1v 3078 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑥⦋(𝐹‘(1st ‘(𝐽‘𝑚))) / 𝑥⦌𝑇 |
28 | 27 | nfcri 2302 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥 𝑛 ∈ ⦋(𝐹‘(1st
‘(𝐽‘𝑚))) / 𝑥⦌𝑇 |
29 | 28 | nfdc 1647 |
. . . . . . . . . 10
⊢
Ⅎ𝑥DECID 𝑛 ∈ ⦋(𝐹‘(1st ‘(𝐽‘𝑚))) / 𝑥⦌𝑇 |
30 | 26, 29 | nfralya 2506 |
. . . . . . . . 9
⊢
Ⅎ𝑥∀𝑛 ∈ ω DECID 𝑛 ∈ ⦋(𝐹‘(1st
‘(𝐽‘𝑚))) / 𝑥⦌𝑇 |
31 | | csbeq1a 3054 |
. . . . . . . . . . . 12
⊢ (𝑥 = (𝐹‘(1st ‘(𝐽‘𝑚))) → 𝑇 = ⦋(𝐹‘(1st ‘(𝐽‘𝑚))) / 𝑥⦌𝑇) |
32 | 31 | eleq2d 2236 |
. . . . . . . . . . 11
⊢ (𝑥 = (𝐹‘(1st ‘(𝐽‘𝑚))) → (𝑛 ∈ 𝑇 ↔ 𝑛 ∈ ⦋(𝐹‘(1st ‘(𝐽‘𝑚))) / 𝑥⦌𝑇)) |
33 | 32 | dcbid 828 |
. . . . . . . . . 10
⊢ (𝑥 = (𝐹‘(1st ‘(𝐽‘𝑚))) → (DECID 𝑛 ∈ 𝑇 ↔ DECID 𝑛 ∈ ⦋(𝐹‘(1st
‘(𝐽‘𝑚))) / 𝑥⦌𝑇)) |
34 | 33 | ralbidv 2466 |
. . . . . . . . 9
⊢ (𝑥 = (𝐹‘(1st ‘(𝐽‘𝑚))) → (∀𝑛 ∈ ω DECID 𝑛 ∈ 𝑇 ↔ ∀𝑛 ∈ ω DECID 𝑛 ∈ ⦋(𝐹‘(1st
‘(𝐽‘𝑚))) / 𝑥⦌𝑇)) |
35 | 30, 34 | rspc 2824 |
. . . . . . . 8
⊢ ((𝐹‘(1st
‘(𝐽‘𝑚))) ∈ 𝐴 → (∀𝑥 ∈ 𝐴 ∀𝑛 ∈ ω DECID 𝑛 ∈ 𝑇 → ∀𝑛 ∈ ω DECID 𝑛 ∈ ⦋(𝐹‘(1st
‘(𝐽‘𝑚))) / 𝑥⦌𝑇)) |
36 | 22, 25, 35 | sylc 62 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑚 ∈ ω) ∧ (1st
‘(𝐽‘𝑚)) ∈ 𝑆) → ∀𝑛 ∈ ω DECID 𝑛 ∈ ⦋(𝐹‘(1st
‘(𝐽‘𝑚))) / 𝑥⦌𝑇) |
37 | 10 | adantr 274 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑚 ∈ ω) ∧ (1st
‘(𝐽‘𝑚)) ∈ 𝑆) → (𝐽‘𝑚) ∈ (ω ×
ω)) |
38 | | xp2nd 6134 |
. . . . . . . 8
⊢ ((𝐽‘𝑚) ∈ (ω × ω) →
(2nd ‘(𝐽‘𝑚)) ∈ ω) |
39 | 37, 38 | syl 14 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑚 ∈ ω) ∧ (1st
‘(𝐽‘𝑚)) ∈ 𝑆) → (2nd ‘(𝐽‘𝑚)) ∈ ω) |
40 | 16, 36, 39 | rspcdva 2835 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑚 ∈ ω) ∧ (1st
‘(𝐽‘𝑚)) ∈ 𝑆) → DECID
(2nd ‘(𝐽‘𝑚)) ∈ ⦋(𝐹‘(1st ‘(𝐽‘𝑚))) / 𝑥⦌𝑇) |
41 | | dcan2 924 |
. . . . . 6
⊢
(DECID (1st ‘(𝐽‘𝑚)) ∈ 𝑆 → (DECID
(2nd ‘(𝐽‘𝑚)) ∈ ⦋(𝐹‘(1st ‘(𝐽‘𝑚))) / 𝑥⦌𝑇 → DECID
((1st ‘(𝐽‘𝑚)) ∈ 𝑆 ∧ (2nd ‘(𝐽‘𝑚)) ∈ ⦋(𝐹‘(1st ‘(𝐽‘𝑚))) / 𝑥⦌𝑇))) |
42 | 14, 40, 41 | sylc 62 |
. . . . 5
⊢ (((𝜑 ∧ 𝑚 ∈ ω) ∧ (1st
‘(𝐽‘𝑚)) ∈ 𝑆) → DECID
((1st ‘(𝐽‘𝑚)) ∈ 𝑆 ∧ (2nd ‘(𝐽‘𝑚)) ∈ ⦋(𝐹‘(1st ‘(𝐽‘𝑚))) / 𝑥⦌𝑇)) |
43 | | simpr 109 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑚 ∈ ω) ∧ ¬ (1st
‘(𝐽‘𝑚)) ∈ 𝑆) → ¬ (1st ‘(𝐽‘𝑚)) ∈ 𝑆) |
44 | 43 | intnanrd 922 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑚 ∈ ω) ∧ ¬ (1st
‘(𝐽‘𝑚)) ∈ 𝑆) → ¬ ((1st
‘(𝐽‘𝑚)) ∈ 𝑆 ∧ (2nd ‘(𝐽‘𝑚)) ∈ ⦋(𝐹‘(1st ‘(𝐽‘𝑚))) / 𝑥⦌𝑇)) |
45 | 44 | olcd 724 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑚 ∈ ω) ∧ ¬ (1st
‘(𝐽‘𝑚)) ∈ 𝑆) → (((1st ‘(𝐽‘𝑚)) ∈ 𝑆 ∧ (2nd ‘(𝐽‘𝑚)) ∈ ⦋(𝐹‘(1st ‘(𝐽‘𝑚))) / 𝑥⦌𝑇) ∨ ¬ ((1st ‘(𝐽‘𝑚)) ∈ 𝑆 ∧ (2nd ‘(𝐽‘𝑚)) ∈ ⦋(𝐹‘(1st ‘(𝐽‘𝑚))) / 𝑥⦌𝑇))) |
46 | | df-dc 825 |
. . . . . 6
⊢
(DECID ((1st ‘(𝐽‘𝑚)) ∈ 𝑆 ∧ (2nd ‘(𝐽‘𝑚)) ∈ ⦋(𝐹‘(1st ‘(𝐽‘𝑚))) / 𝑥⦌𝑇) ↔ (((1st ‘(𝐽‘𝑚)) ∈ 𝑆 ∧ (2nd ‘(𝐽‘𝑚)) ∈ ⦋(𝐹‘(1st ‘(𝐽‘𝑚))) / 𝑥⦌𝑇) ∨ ¬ ((1st ‘(𝐽‘𝑚)) ∈ 𝑆 ∧ (2nd ‘(𝐽‘𝑚)) ∈ ⦋(𝐹‘(1st ‘(𝐽‘𝑚))) / 𝑥⦌𝑇))) |
47 | 45, 46 | sylibr 133 |
. . . . 5
⊢ (((𝜑 ∧ 𝑚 ∈ ω) ∧ ¬ (1st
‘(𝐽‘𝑚)) ∈ 𝑆) → DECID
((1st ‘(𝐽‘𝑚)) ∈ 𝑆 ∧ (2nd ‘(𝐽‘𝑚)) ∈ ⦋(𝐹‘(1st ‘(𝐽‘𝑚))) / 𝑥⦌𝑇)) |
48 | | exmiddc 826 |
. . . . . 6
⊢
(DECID (1st ‘(𝐽‘𝑚)) ∈ 𝑆 → ((1st ‘(𝐽‘𝑚)) ∈ 𝑆 ∨ ¬ (1st ‘(𝐽‘𝑚)) ∈ 𝑆)) |
49 | 13, 48 | syl 14 |
. . . . 5
⊢ ((𝜑 ∧ 𝑚 ∈ ω) → ((1st
‘(𝐽‘𝑚)) ∈ 𝑆 ∨ ¬ (1st ‘(𝐽‘𝑚)) ∈ 𝑆)) |
50 | 42, 47, 49 | mpjaodan 788 |
. . . 4
⊢ ((𝜑 ∧ 𝑚 ∈ ω) → DECID
((1st ‘(𝐽‘𝑚)) ∈ 𝑆 ∧ (2nd ‘(𝐽‘𝑚)) ∈ ⦋(𝐹‘(1st ‘(𝐽‘𝑚))) / 𝑥⦌𝑇)) |
51 | | 2fveq3 5491 |
. . . . . . . . 9
⊢ (𝑧 = 𝑚 → (1st ‘(𝐽‘𝑧)) = (1st ‘(𝐽‘𝑚))) |
52 | 51 | eleq1d 2235 |
. . . . . . . 8
⊢ (𝑧 = 𝑚 → ((1st ‘(𝐽‘𝑧)) ∈ 𝑆 ↔ (1st ‘(𝐽‘𝑚)) ∈ 𝑆)) |
53 | | 2fveq3 5491 |
. . . . . . . . 9
⊢ (𝑧 = 𝑚 → (2nd ‘(𝐽‘𝑧)) = (2nd ‘(𝐽‘𝑚))) |
54 | 51 | fveq2d 5490 |
. . . . . . . . . 10
⊢ (𝑧 = 𝑚 → (𝐹‘(1st ‘(𝐽‘𝑧))) = (𝐹‘(1st ‘(𝐽‘𝑚)))) |
55 | 54 | csbeq1d 3052 |
. . . . . . . . 9
⊢ (𝑧 = 𝑚 → ⦋(𝐹‘(1st ‘(𝐽‘𝑧))) / 𝑥⦌𝑇 = ⦋(𝐹‘(1st ‘(𝐽‘𝑚))) / 𝑥⦌𝑇) |
56 | 53, 55 | eleq12d 2237 |
. . . . . . . 8
⊢ (𝑧 = 𝑚 → ((2nd ‘(𝐽‘𝑧)) ∈ ⦋(𝐹‘(1st ‘(𝐽‘𝑧))) / 𝑥⦌𝑇 ↔ (2nd ‘(𝐽‘𝑚)) ∈ ⦋(𝐹‘(1st ‘(𝐽‘𝑚))) / 𝑥⦌𝑇)) |
57 | 52, 56 | anbi12d 465 |
. . . . . . 7
⊢ (𝑧 = 𝑚 → (((1st ‘(𝐽‘𝑧)) ∈ 𝑆 ∧ (2nd ‘(𝐽‘𝑧)) ∈ ⦋(𝐹‘(1st ‘(𝐽‘𝑧))) / 𝑥⦌𝑇) ↔ ((1st ‘(𝐽‘𝑚)) ∈ 𝑆 ∧ (2nd ‘(𝐽‘𝑚)) ∈ ⦋(𝐹‘(1st ‘(𝐽‘𝑚))) / 𝑥⦌𝑇))) |
58 | | ctiunct.u |
. . . . . . 7
⊢ 𝑈 = {𝑧 ∈ ω ∣ ((1st
‘(𝐽‘𝑧)) ∈ 𝑆 ∧ (2nd ‘(𝐽‘𝑧)) ∈ ⦋(𝐹‘(1st ‘(𝐽‘𝑧))) / 𝑥⦌𝑇)} |
59 | 57, 58 | elrab2 2885 |
. . . . . 6
⊢ (𝑚 ∈ 𝑈 ↔ (𝑚 ∈ ω ∧ ((1st
‘(𝐽‘𝑚)) ∈ 𝑆 ∧ (2nd ‘(𝐽‘𝑚)) ∈ ⦋(𝐹‘(1st ‘(𝐽‘𝑚))) / 𝑥⦌𝑇))) |
60 | | ibar 299 |
. . . . . . 7
⊢ (𝑚 ∈ ω →
(((1st ‘(𝐽‘𝑚)) ∈ 𝑆 ∧ (2nd ‘(𝐽‘𝑚)) ∈ ⦋(𝐹‘(1st ‘(𝐽‘𝑚))) / 𝑥⦌𝑇) ↔ (𝑚 ∈ ω ∧ ((1st
‘(𝐽‘𝑚)) ∈ 𝑆 ∧ (2nd ‘(𝐽‘𝑚)) ∈ ⦋(𝐹‘(1st ‘(𝐽‘𝑚))) / 𝑥⦌𝑇)))) |
61 | 60 | adantl 275 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑚 ∈ ω) → (((1st
‘(𝐽‘𝑚)) ∈ 𝑆 ∧ (2nd ‘(𝐽‘𝑚)) ∈ ⦋(𝐹‘(1st ‘(𝐽‘𝑚))) / 𝑥⦌𝑇) ↔ (𝑚 ∈ ω ∧ ((1st
‘(𝐽‘𝑚)) ∈ 𝑆 ∧ (2nd ‘(𝐽‘𝑚)) ∈ ⦋(𝐹‘(1st ‘(𝐽‘𝑚))) / 𝑥⦌𝑇)))) |
62 | 59, 61 | bitr4id 198 |
. . . . 5
⊢ ((𝜑 ∧ 𝑚 ∈ ω) → (𝑚 ∈ 𝑈 ↔ ((1st ‘(𝐽‘𝑚)) ∈ 𝑆 ∧ (2nd ‘(𝐽‘𝑚)) ∈ ⦋(𝐹‘(1st ‘(𝐽‘𝑚))) / 𝑥⦌𝑇))) |
63 | 62 | dcbid 828 |
. . . 4
⊢ ((𝜑 ∧ 𝑚 ∈ ω) → (DECID
𝑚 ∈ 𝑈 ↔ DECID
((1st ‘(𝐽‘𝑚)) ∈ 𝑆 ∧ (2nd ‘(𝐽‘𝑚)) ∈ ⦋(𝐹‘(1st ‘(𝐽‘𝑚))) / 𝑥⦌𝑇))) |
64 | 50, 63 | mpbird 166 |
. . 3
⊢ ((𝜑 ∧ 𝑚 ∈ ω) → DECID
𝑚 ∈ 𝑈) |
65 | 64 | ralrimiva 2539 |
. 2
⊢ (𝜑 → ∀𝑚 ∈ ω DECID 𝑚 ∈ 𝑈) |
66 | | eleq1 2229 |
. . . 4
⊢ (𝑚 = 𝑛 → (𝑚 ∈ 𝑈 ↔ 𝑛 ∈ 𝑈)) |
67 | 66 | dcbid 828 |
. . 3
⊢ (𝑚 = 𝑛 → (DECID 𝑚 ∈ 𝑈 ↔ DECID 𝑛 ∈ 𝑈)) |
68 | 67 | cbvralv 2692 |
. 2
⊢
(∀𝑚 ∈
ω DECID 𝑚 ∈ 𝑈 ↔ ∀𝑛 ∈ ω DECID 𝑛 ∈ 𝑈) |
69 | 65, 68 | sylib 121 |
1
⊢ (𝜑 → ∀𝑛 ∈ ω DECID 𝑛 ∈ 𝑈) |