ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sqgcd GIF version

Theorem sqgcd 12545
Description: Square distributes over gcd. (Contributed by Scott Fenton, 18-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
sqgcd ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑀 gcd 𝑁)↑2) = ((𝑀↑2) gcd (𝑁↑2)))

Proof of Theorem sqgcd
StepHypRef Expression
1 gcdnncl 12483 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 gcd 𝑁) ∈ ℕ)
21nnsqcld 10911 . . . 4 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑀 gcd 𝑁)↑2) ∈ ℕ)
32nncnd 9120 . . 3 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑀 gcd 𝑁)↑2) ∈ ℂ)
43mulridd 8159 . 2 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (((𝑀 gcd 𝑁)↑2) · 1) = ((𝑀 gcd 𝑁)↑2))
5 nnsqcl 10826 . . . . . . 7 (𝑀 ∈ ℕ → (𝑀↑2) ∈ ℕ)
65nnzd 9564 . . . . . 6 (𝑀 ∈ ℕ → (𝑀↑2) ∈ ℤ)
76adantr 276 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀↑2) ∈ ℤ)
8 nnsqcl 10826 . . . . . . 7 (𝑁 ∈ ℕ → (𝑁↑2) ∈ ℕ)
98nnzd 9564 . . . . . 6 (𝑁 ∈ ℕ → (𝑁↑2) ∈ ℤ)
109adantl 277 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑁↑2) ∈ ℤ)
11 nnz 9461 . . . . . . . 8 (𝑀 ∈ ℕ → 𝑀 ∈ ℤ)
12 nnz 9461 . . . . . . . 8 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
13 gcddvds 12479 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ 𝑁))
1411, 12, 13syl2an 289 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ 𝑁))
1514simpld 112 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 gcd 𝑁) ∥ 𝑀)
161nnzd 9564 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 gcd 𝑁) ∈ ℤ)
1711adantr 276 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝑀 ∈ ℤ)
18 dvdssqim 12540 . . . . . . 7 (((𝑀 gcd 𝑁) ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((𝑀 gcd 𝑁) ∥ 𝑀 → ((𝑀 gcd 𝑁)↑2) ∥ (𝑀↑2)))
1916, 17, 18syl2anc 411 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑀 gcd 𝑁) ∥ 𝑀 → ((𝑀 gcd 𝑁)↑2) ∥ (𝑀↑2)))
2015, 19mpd 13 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑀 gcd 𝑁)↑2) ∥ (𝑀↑2))
2114simprd 114 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 gcd 𝑁) ∥ 𝑁)
2212adantl 277 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℤ)
23 dvdssqim 12540 . . . . . . 7 (((𝑀 gcd 𝑁) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 gcd 𝑁) ∥ 𝑁 → ((𝑀 gcd 𝑁)↑2) ∥ (𝑁↑2)))
2416, 22, 23syl2anc 411 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑀 gcd 𝑁) ∥ 𝑁 → ((𝑀 gcd 𝑁)↑2) ∥ (𝑁↑2)))
2521, 24mpd 13 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑀 gcd 𝑁)↑2) ∥ (𝑁↑2))
26 gcddiv 12535 . . . . 5 ((((𝑀↑2) ∈ ℤ ∧ (𝑁↑2) ∈ ℤ ∧ ((𝑀 gcd 𝑁)↑2) ∈ ℕ) ∧ (((𝑀 gcd 𝑁)↑2) ∥ (𝑀↑2) ∧ ((𝑀 gcd 𝑁)↑2) ∥ (𝑁↑2))) → (((𝑀↑2) gcd (𝑁↑2)) / ((𝑀 gcd 𝑁)↑2)) = (((𝑀↑2) / ((𝑀 gcd 𝑁)↑2)) gcd ((𝑁↑2) / ((𝑀 gcd 𝑁)↑2))))
277, 10, 2, 20, 25, 26syl32anc 1279 . . . 4 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (((𝑀↑2) gcd (𝑁↑2)) / ((𝑀 gcd 𝑁)↑2)) = (((𝑀↑2) / ((𝑀 gcd 𝑁)↑2)) gcd ((𝑁↑2) / ((𝑀 gcd 𝑁)↑2))))
28 nncn 9114 . . . . . . 7 (𝑀 ∈ ℕ → 𝑀 ∈ ℂ)
2928adantr 276 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝑀 ∈ ℂ)
301nncnd 9120 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 gcd 𝑁) ∈ ℂ)
311nnap0d 9152 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 gcd 𝑁) # 0)
3229, 30, 31sqdivapd 10903 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑀 / (𝑀 gcd 𝑁))↑2) = ((𝑀↑2) / ((𝑀 gcd 𝑁)↑2)))
33 nncn 9114 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
3433adantl 277 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℂ)
3534, 30, 31sqdivapd 10903 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑁 / (𝑀 gcd 𝑁))↑2) = ((𝑁↑2) / ((𝑀 gcd 𝑁)↑2)))
3632, 35oveq12d 6018 . . . 4 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (((𝑀 / (𝑀 gcd 𝑁))↑2) gcd ((𝑁 / (𝑀 gcd 𝑁))↑2)) = (((𝑀↑2) / ((𝑀 gcd 𝑁)↑2)) gcd ((𝑁↑2) / ((𝑀 gcd 𝑁)↑2))))
37 gcddiv 12535 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝑀 gcd 𝑁) ∈ ℕ) ∧ ((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ 𝑁)) → ((𝑀 gcd 𝑁) / (𝑀 gcd 𝑁)) = ((𝑀 / (𝑀 gcd 𝑁)) gcd (𝑁 / (𝑀 gcd 𝑁))))
3817, 22, 1, 14, 37syl31anc 1274 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑀 gcd 𝑁) / (𝑀 gcd 𝑁)) = ((𝑀 / (𝑀 gcd 𝑁)) gcd (𝑁 / (𝑀 gcd 𝑁))))
3930, 31dividapd 8929 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑀 gcd 𝑁) / (𝑀 gcd 𝑁)) = 1)
4038, 39eqtr3d 2264 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑀 / (𝑀 gcd 𝑁)) gcd (𝑁 / (𝑀 gcd 𝑁))) = 1)
411nnne0d 9151 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 gcd 𝑁) ≠ 0)
42 dvdsval2 12296 . . . . . . . . 9 (((𝑀 gcd 𝑁) ∈ ℤ ∧ (𝑀 gcd 𝑁) ≠ 0 ∧ 𝑀 ∈ ℤ) → ((𝑀 gcd 𝑁) ∥ 𝑀 ↔ (𝑀 / (𝑀 gcd 𝑁)) ∈ ℤ))
4316, 41, 17, 42syl3anc 1271 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑀 gcd 𝑁) ∥ 𝑀 ↔ (𝑀 / (𝑀 gcd 𝑁)) ∈ ℤ))
4415, 43mpbid 147 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 / (𝑀 gcd 𝑁)) ∈ ℤ)
45 nnre 9113 . . . . . . . . 9 (𝑀 ∈ ℕ → 𝑀 ∈ ℝ)
4645adantr 276 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝑀 ∈ ℝ)
471nnred 9119 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 gcd 𝑁) ∈ ℝ)
48 nngt0 9131 . . . . . . . . 9 (𝑀 ∈ ℕ → 0 < 𝑀)
4948adantr 276 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 0 < 𝑀)
501nngt0d 9150 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 0 < (𝑀 gcd 𝑁))
5146, 47, 49, 50divgt0d 9078 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 0 < (𝑀 / (𝑀 gcd 𝑁)))
52 elnnz 9452 . . . . . . 7 ((𝑀 / (𝑀 gcd 𝑁)) ∈ ℕ ↔ ((𝑀 / (𝑀 gcd 𝑁)) ∈ ℤ ∧ 0 < (𝑀 / (𝑀 gcd 𝑁))))
5344, 51, 52sylanbrc 417 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 / (𝑀 gcd 𝑁)) ∈ ℕ)
54 dvdsval2 12296 . . . . . . . . 9 (((𝑀 gcd 𝑁) ∈ ℤ ∧ (𝑀 gcd 𝑁) ≠ 0 ∧ 𝑁 ∈ ℤ) → ((𝑀 gcd 𝑁) ∥ 𝑁 ↔ (𝑁 / (𝑀 gcd 𝑁)) ∈ ℤ))
5516, 41, 22, 54syl3anc 1271 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑀 gcd 𝑁) ∥ 𝑁 ↔ (𝑁 / (𝑀 gcd 𝑁)) ∈ ℤ))
5621, 55mpbid 147 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑁 / (𝑀 gcd 𝑁)) ∈ ℤ)
57 nnre 9113 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
5857adantl 277 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℝ)
59 nngt0 9131 . . . . . . . . 9 (𝑁 ∈ ℕ → 0 < 𝑁)
6059adantl 277 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 0 < 𝑁)
6158, 47, 60, 50divgt0d 9078 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 0 < (𝑁 / (𝑀 gcd 𝑁)))
62 elnnz 9452 . . . . . . 7 ((𝑁 / (𝑀 gcd 𝑁)) ∈ ℕ ↔ ((𝑁 / (𝑀 gcd 𝑁)) ∈ ℤ ∧ 0 < (𝑁 / (𝑀 gcd 𝑁))))
6356, 61, 62sylanbrc 417 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑁 / (𝑀 gcd 𝑁)) ∈ ℕ)
64 2nn 9268 . . . . . . 7 2 ∈ ℕ
65 rppwr 12544 . . . . . . 7 (((𝑀 / (𝑀 gcd 𝑁)) ∈ ℕ ∧ (𝑁 / (𝑀 gcd 𝑁)) ∈ ℕ ∧ 2 ∈ ℕ) → (((𝑀 / (𝑀 gcd 𝑁)) gcd (𝑁 / (𝑀 gcd 𝑁))) = 1 → (((𝑀 / (𝑀 gcd 𝑁))↑2) gcd ((𝑁 / (𝑀 gcd 𝑁))↑2)) = 1))
6664, 65mp3an3 1360 . . . . . 6 (((𝑀 / (𝑀 gcd 𝑁)) ∈ ℕ ∧ (𝑁 / (𝑀 gcd 𝑁)) ∈ ℕ) → (((𝑀 / (𝑀 gcd 𝑁)) gcd (𝑁 / (𝑀 gcd 𝑁))) = 1 → (((𝑀 / (𝑀 gcd 𝑁))↑2) gcd ((𝑁 / (𝑀 gcd 𝑁))↑2)) = 1))
6753, 63, 66syl2anc 411 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (((𝑀 / (𝑀 gcd 𝑁)) gcd (𝑁 / (𝑀 gcd 𝑁))) = 1 → (((𝑀 / (𝑀 gcd 𝑁))↑2) gcd ((𝑁 / (𝑀 gcd 𝑁))↑2)) = 1))
6840, 67mpd 13 . . . 4 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (((𝑀 / (𝑀 gcd 𝑁))↑2) gcd ((𝑁 / (𝑀 gcd 𝑁))↑2)) = 1)
6927, 36, 683eqtr2d 2268 . . 3 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (((𝑀↑2) gcd (𝑁↑2)) / ((𝑀 gcd 𝑁)↑2)) = 1)
706, 9anim12i 338 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑀↑2) ∈ ℤ ∧ (𝑁↑2) ∈ ℤ))
715nnne0d 9151 . . . . . . . . 9 (𝑀 ∈ ℕ → (𝑀↑2) ≠ 0)
7271neneqd 2421 . . . . . . . 8 (𝑀 ∈ ℕ → ¬ (𝑀↑2) = 0)
7372intnanrd 937 . . . . . . 7 (𝑀 ∈ ℕ → ¬ ((𝑀↑2) = 0 ∧ (𝑁↑2) = 0))
7473adantr 276 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ¬ ((𝑀↑2) = 0 ∧ (𝑁↑2) = 0))
75 gcdn0cl 12478 . . . . . 6 ((((𝑀↑2) ∈ ℤ ∧ (𝑁↑2) ∈ ℤ) ∧ ¬ ((𝑀↑2) = 0 ∧ (𝑁↑2) = 0)) → ((𝑀↑2) gcd (𝑁↑2)) ∈ ℕ)
7670, 74, 75syl2anc 411 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑀↑2) gcd (𝑁↑2)) ∈ ℕ)
7776nncnd 9120 . . . 4 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑀↑2) gcd (𝑁↑2)) ∈ ℂ)
782nnap0d 9152 . . . 4 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑀 gcd 𝑁)↑2) # 0)
79 ax-1cn 8088 . . . . 5 1 ∈ ℂ
80 divmulap 8818 . . . . 5 ((((𝑀↑2) gcd (𝑁↑2)) ∈ ℂ ∧ 1 ∈ ℂ ∧ (((𝑀 gcd 𝑁)↑2) ∈ ℂ ∧ ((𝑀 gcd 𝑁)↑2) # 0)) → ((((𝑀↑2) gcd (𝑁↑2)) / ((𝑀 gcd 𝑁)↑2)) = 1 ↔ (((𝑀 gcd 𝑁)↑2) · 1) = ((𝑀↑2) gcd (𝑁↑2))))
8179, 80mp3an2 1359 . . . 4 ((((𝑀↑2) gcd (𝑁↑2)) ∈ ℂ ∧ (((𝑀 gcd 𝑁)↑2) ∈ ℂ ∧ ((𝑀 gcd 𝑁)↑2) # 0)) → ((((𝑀↑2) gcd (𝑁↑2)) / ((𝑀 gcd 𝑁)↑2)) = 1 ↔ (((𝑀 gcd 𝑁)↑2) · 1) = ((𝑀↑2) gcd (𝑁↑2))))
8277, 3, 78, 81syl12anc 1269 . . 3 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((((𝑀↑2) gcd (𝑁↑2)) / ((𝑀 gcd 𝑁)↑2)) = 1 ↔ (((𝑀 gcd 𝑁)↑2) · 1) = ((𝑀↑2) gcd (𝑁↑2))))
8369, 82mpbid 147 . 2 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (((𝑀 gcd 𝑁)↑2) · 1) = ((𝑀↑2) gcd (𝑁↑2)))
844, 83eqtr3d 2264 1 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑀 gcd 𝑁)↑2) = ((𝑀↑2) gcd (𝑁↑2)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105   = wceq 1395  wcel 2200  wne 2400   class class class wbr 4082  (class class class)co 6000  cc 7993  cr 7994  0cc0 7995  1c1 7996   · cmul 8000   < clt 8177   # cap 8724   / cdiv 8815  cn 9106  2c2 9157  cz 9442  cexp 10755  cdvds 12293   gcd cgcd 12469
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-mulrcl 8094  ax-addcom 8095  ax-mulcom 8096  ax-addass 8097  ax-mulass 8098  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-1rid 8102  ax-0id 8103  ax-rnegex 8104  ax-precex 8105  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111  ax-pre-mulgt0 8112  ax-pre-mulext 8113  ax-arch 8114  ax-caucvg 8115
This theorem depends on definitions:  df-bi 117  df-stab 836  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-po 4386  df-iso 4387  df-iord 4456  df-on 4458  df-ilim 4459  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-frec 6535  df-sup 7147  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-reap 8718  df-ap 8725  df-div 8816  df-inn 9107  df-2 9165  df-3 9166  df-4 9167  df-n0 9366  df-z 9443  df-uz 9719  df-q 9811  df-rp 9846  df-fz 10201  df-fzo 10335  df-fl 10485  df-mod 10540  df-seqfrec 10665  df-exp 10756  df-cj 11348  df-re 11349  df-im 11350  df-rsqrt 11504  df-abs 11505  df-dvds 12294  df-gcd 12470
This theorem is referenced by:  dvdssqlem  12546  nn0gcdsq  12717  pythagtriplem3  12785
  Copyright terms: Public domain W3C validator