ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sqgcd GIF version

Theorem sqgcd 10924
Description: Square distributes over GCD. (Contributed by Scott Fenton, 18-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
sqgcd ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑀 gcd 𝑁)↑2) = ((𝑀↑2) gcd (𝑁↑2)))

Proof of Theorem sqgcd
StepHypRef Expression
1 gcdnncl 10865 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 gcd 𝑁) ∈ ℕ)
21nnsqcld 10007 . . . 4 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑀 gcd 𝑁)↑2) ∈ ℕ)
32nncnd 8374 . . 3 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑀 gcd 𝑁)↑2) ∈ ℂ)
43mulid1d 7452 . 2 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (((𝑀 gcd 𝑁)↑2) · 1) = ((𝑀 gcd 𝑁)↑2))
5 nnsqcl 9926 . . . . . . 7 (𝑀 ∈ ℕ → (𝑀↑2) ∈ ℕ)
65nnzd 8803 . . . . . 6 (𝑀 ∈ ℕ → (𝑀↑2) ∈ ℤ)
76adantr 270 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀↑2) ∈ ℤ)
8 nnsqcl 9926 . . . . . . 7 (𝑁 ∈ ℕ → (𝑁↑2) ∈ ℕ)
98nnzd 8803 . . . . . 6 (𝑁 ∈ ℕ → (𝑁↑2) ∈ ℤ)
109adantl 271 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑁↑2) ∈ ℤ)
11 nnz 8705 . . . . . . . 8 (𝑀 ∈ ℕ → 𝑀 ∈ ℤ)
12 nnz 8705 . . . . . . . 8 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
13 gcddvds 10861 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ 𝑁))
1411, 12, 13syl2an 283 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ 𝑁))
1514simpld 110 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 gcd 𝑁) ∥ 𝑀)
161nnzd 8803 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 gcd 𝑁) ∈ ℤ)
1711adantr 270 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝑀 ∈ ℤ)
18 dvdssqim 10919 . . . . . . 7 (((𝑀 gcd 𝑁) ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((𝑀 gcd 𝑁) ∥ 𝑀 → ((𝑀 gcd 𝑁)↑2) ∥ (𝑀↑2)))
1916, 17, 18syl2anc 403 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑀 gcd 𝑁) ∥ 𝑀 → ((𝑀 gcd 𝑁)↑2) ∥ (𝑀↑2)))
2015, 19mpd 13 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑀 gcd 𝑁)↑2) ∥ (𝑀↑2))
2114simprd 112 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 gcd 𝑁) ∥ 𝑁)
2212adantl 271 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℤ)
23 dvdssqim 10919 . . . . . . 7 (((𝑀 gcd 𝑁) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 gcd 𝑁) ∥ 𝑁 → ((𝑀 gcd 𝑁)↑2) ∥ (𝑁↑2)))
2416, 22, 23syl2anc 403 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑀 gcd 𝑁) ∥ 𝑁 → ((𝑀 gcd 𝑁)↑2) ∥ (𝑁↑2)))
2521, 24mpd 13 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑀 gcd 𝑁)↑2) ∥ (𝑁↑2))
26 gcddiv 10914 . . . . 5 ((((𝑀↑2) ∈ ℤ ∧ (𝑁↑2) ∈ ℤ ∧ ((𝑀 gcd 𝑁)↑2) ∈ ℕ) ∧ (((𝑀 gcd 𝑁)↑2) ∥ (𝑀↑2) ∧ ((𝑀 gcd 𝑁)↑2) ∥ (𝑁↑2))) → (((𝑀↑2) gcd (𝑁↑2)) / ((𝑀 gcd 𝑁)↑2)) = (((𝑀↑2) / ((𝑀 gcd 𝑁)↑2)) gcd ((𝑁↑2) / ((𝑀 gcd 𝑁)↑2))))
277, 10, 2, 20, 25, 26syl32anc 1180 . . . 4 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (((𝑀↑2) gcd (𝑁↑2)) / ((𝑀 gcd 𝑁)↑2)) = (((𝑀↑2) / ((𝑀 gcd 𝑁)↑2)) gcd ((𝑁↑2) / ((𝑀 gcd 𝑁)↑2))))
28 nncn 8368 . . . . . . 7 (𝑀 ∈ ℕ → 𝑀 ∈ ℂ)
2928adantr 270 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝑀 ∈ ℂ)
301nncnd 8374 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 gcd 𝑁) ∈ ℂ)
311nnap0d 8405 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 gcd 𝑁) # 0)
3229, 30, 31sqdivapd 9999 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑀 / (𝑀 gcd 𝑁))↑2) = ((𝑀↑2) / ((𝑀 gcd 𝑁)↑2)))
33 nncn 8368 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
3433adantl 271 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℂ)
3534, 30, 31sqdivapd 9999 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑁 / (𝑀 gcd 𝑁))↑2) = ((𝑁↑2) / ((𝑀 gcd 𝑁)↑2)))
3632, 35oveq12d 5633 . . . 4 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (((𝑀 / (𝑀 gcd 𝑁))↑2) gcd ((𝑁 / (𝑀 gcd 𝑁))↑2)) = (((𝑀↑2) / ((𝑀 gcd 𝑁)↑2)) gcd ((𝑁↑2) / ((𝑀 gcd 𝑁)↑2))))
37 gcddiv 10914 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝑀 gcd 𝑁) ∈ ℕ) ∧ ((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ 𝑁)) → ((𝑀 gcd 𝑁) / (𝑀 gcd 𝑁)) = ((𝑀 / (𝑀 gcd 𝑁)) gcd (𝑁 / (𝑀 gcd 𝑁))))
3817, 22, 1, 14, 37syl31anc 1175 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑀 gcd 𝑁) / (𝑀 gcd 𝑁)) = ((𝑀 / (𝑀 gcd 𝑁)) gcd (𝑁 / (𝑀 gcd 𝑁))))
3930, 31dividapd 8195 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑀 gcd 𝑁) / (𝑀 gcd 𝑁)) = 1)
4038, 39eqtr3d 2119 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑀 / (𝑀 gcd 𝑁)) gcd (𝑁 / (𝑀 gcd 𝑁))) = 1)
411nnne0d 8404 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 gcd 𝑁) ≠ 0)
42 dvdsval2 10705 . . . . . . . . 9 (((𝑀 gcd 𝑁) ∈ ℤ ∧ (𝑀 gcd 𝑁) ≠ 0 ∧ 𝑀 ∈ ℤ) → ((𝑀 gcd 𝑁) ∥ 𝑀 ↔ (𝑀 / (𝑀 gcd 𝑁)) ∈ ℤ))
4316, 41, 17, 42syl3anc 1172 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑀 gcd 𝑁) ∥ 𝑀 ↔ (𝑀 / (𝑀 gcd 𝑁)) ∈ ℤ))
4415, 43mpbid 145 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 / (𝑀 gcd 𝑁)) ∈ ℤ)
45 nnre 8367 . . . . . . . . 9 (𝑀 ∈ ℕ → 𝑀 ∈ ℝ)
4645adantr 270 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝑀 ∈ ℝ)
471nnred 8373 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 gcd 𝑁) ∈ ℝ)
48 nngt0 8385 . . . . . . . . 9 (𝑀 ∈ ℕ → 0 < 𝑀)
4948adantr 270 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 0 < 𝑀)
501nngt0d 8403 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 0 < (𝑀 gcd 𝑁))
5146, 47, 49, 50divgt0d 8334 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 0 < (𝑀 / (𝑀 gcd 𝑁)))
52 elnnz 8696 . . . . . . 7 ((𝑀 / (𝑀 gcd 𝑁)) ∈ ℕ ↔ ((𝑀 / (𝑀 gcd 𝑁)) ∈ ℤ ∧ 0 < (𝑀 / (𝑀 gcd 𝑁))))
5344, 51, 52sylanbrc 408 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 / (𝑀 gcd 𝑁)) ∈ ℕ)
54 dvdsval2 10705 . . . . . . . . 9 (((𝑀 gcd 𝑁) ∈ ℤ ∧ (𝑀 gcd 𝑁) ≠ 0 ∧ 𝑁 ∈ ℤ) → ((𝑀 gcd 𝑁) ∥ 𝑁 ↔ (𝑁 / (𝑀 gcd 𝑁)) ∈ ℤ))
5516, 41, 22, 54syl3anc 1172 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑀 gcd 𝑁) ∥ 𝑁 ↔ (𝑁 / (𝑀 gcd 𝑁)) ∈ ℤ))
5621, 55mpbid 145 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑁 / (𝑀 gcd 𝑁)) ∈ ℤ)
57 nnre 8367 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
5857adantl 271 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℝ)
59 nngt0 8385 . . . . . . . . 9 (𝑁 ∈ ℕ → 0 < 𝑁)
6059adantl 271 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 0 < 𝑁)
6158, 47, 60, 50divgt0d 8334 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 0 < (𝑁 / (𝑀 gcd 𝑁)))
62 elnnz 8696 . . . . . . 7 ((𝑁 / (𝑀 gcd 𝑁)) ∈ ℕ ↔ ((𝑁 / (𝑀 gcd 𝑁)) ∈ ℤ ∧ 0 < (𝑁 / (𝑀 gcd 𝑁))))
6356, 61, 62sylanbrc 408 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑁 / (𝑀 gcd 𝑁)) ∈ ℕ)
64 2nn 8514 . . . . . . 7 2 ∈ ℕ
65 rppwr 10923 . . . . . . 7 (((𝑀 / (𝑀 gcd 𝑁)) ∈ ℕ ∧ (𝑁 / (𝑀 gcd 𝑁)) ∈ ℕ ∧ 2 ∈ ℕ) → (((𝑀 / (𝑀 gcd 𝑁)) gcd (𝑁 / (𝑀 gcd 𝑁))) = 1 → (((𝑀 / (𝑀 gcd 𝑁))↑2) gcd ((𝑁 / (𝑀 gcd 𝑁))↑2)) = 1))
6664, 65mp3an3 1260 . . . . . 6 (((𝑀 / (𝑀 gcd 𝑁)) ∈ ℕ ∧ (𝑁 / (𝑀 gcd 𝑁)) ∈ ℕ) → (((𝑀 / (𝑀 gcd 𝑁)) gcd (𝑁 / (𝑀 gcd 𝑁))) = 1 → (((𝑀 / (𝑀 gcd 𝑁))↑2) gcd ((𝑁 / (𝑀 gcd 𝑁))↑2)) = 1))
6753, 63, 66syl2anc 403 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (((𝑀 / (𝑀 gcd 𝑁)) gcd (𝑁 / (𝑀 gcd 𝑁))) = 1 → (((𝑀 / (𝑀 gcd 𝑁))↑2) gcd ((𝑁 / (𝑀 gcd 𝑁))↑2)) = 1))
6840, 67mpd 13 . . . 4 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (((𝑀 / (𝑀 gcd 𝑁))↑2) gcd ((𝑁 / (𝑀 gcd 𝑁))↑2)) = 1)
6927, 36, 683eqtr2d 2123 . . 3 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (((𝑀↑2) gcd (𝑁↑2)) / ((𝑀 gcd 𝑁)↑2)) = 1)
706, 9anim12i 331 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑀↑2) ∈ ℤ ∧ (𝑁↑2) ∈ ℤ))
715nnne0d 8404 . . . . . . . . 9 (𝑀 ∈ ℕ → (𝑀↑2) ≠ 0)
7271neneqd 2272 . . . . . . . 8 (𝑀 ∈ ℕ → ¬ (𝑀↑2) = 0)
7372intnanrd 877 . . . . . . 7 (𝑀 ∈ ℕ → ¬ ((𝑀↑2) = 0 ∧ (𝑁↑2) = 0))
7473adantr 270 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ¬ ((𝑀↑2) = 0 ∧ (𝑁↑2) = 0))
75 gcdn0cl 10860 . . . . . 6 ((((𝑀↑2) ∈ ℤ ∧ (𝑁↑2) ∈ ℤ) ∧ ¬ ((𝑀↑2) = 0 ∧ (𝑁↑2) = 0)) → ((𝑀↑2) gcd (𝑁↑2)) ∈ ℕ)
7670, 74, 75syl2anc 403 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑀↑2) gcd (𝑁↑2)) ∈ ℕ)
7776nncnd 8374 . . . 4 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑀↑2) gcd (𝑁↑2)) ∈ ℂ)
782nnap0d 8405 . . . 4 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑀 gcd 𝑁)↑2) # 0)
79 ax-1cn 7385 . . . . 5 1 ∈ ℂ
80 divmulap 8084 . . . . 5 ((((𝑀↑2) gcd (𝑁↑2)) ∈ ℂ ∧ 1 ∈ ℂ ∧ (((𝑀 gcd 𝑁)↑2) ∈ ℂ ∧ ((𝑀 gcd 𝑁)↑2) # 0)) → ((((𝑀↑2) gcd (𝑁↑2)) / ((𝑀 gcd 𝑁)↑2)) = 1 ↔ (((𝑀 gcd 𝑁)↑2) · 1) = ((𝑀↑2) gcd (𝑁↑2))))
8179, 80mp3an2 1259 . . . 4 ((((𝑀↑2) gcd (𝑁↑2)) ∈ ℂ ∧ (((𝑀 gcd 𝑁)↑2) ∈ ℂ ∧ ((𝑀 gcd 𝑁)↑2) # 0)) → ((((𝑀↑2) gcd (𝑁↑2)) / ((𝑀 gcd 𝑁)↑2)) = 1 ↔ (((𝑀 gcd 𝑁)↑2) · 1) = ((𝑀↑2) gcd (𝑁↑2))))
8277, 3, 78, 81syl12anc 1170 . . 3 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((((𝑀↑2) gcd (𝑁↑2)) / ((𝑀 gcd 𝑁)↑2)) = 1 ↔ (((𝑀 gcd 𝑁)↑2) · 1) = ((𝑀↑2) gcd (𝑁↑2))))
8369, 82mpbid 145 . 2 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (((𝑀 gcd 𝑁)↑2) · 1) = ((𝑀↑2) gcd (𝑁↑2)))
844, 83eqtr3d 2119 1 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑀 gcd 𝑁)↑2) = ((𝑀↑2) gcd (𝑁↑2)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 102  wb 103   = wceq 1287  wcel 1436  wne 2251   class class class wbr 3822  (class class class)co 5615  cc 7295  cr 7296  0cc0 7297  1c1 7298   · cmul 7302   < clt 7469   # cap 8002   / cdiv 8081  cn 8360  2c2 8410  cz 8686  cexp 9856  cdvds 10702   gcd cgcd 10844
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1379  ax-7 1380  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-10 1439  ax-11 1440  ax-i12 1441  ax-bndl 1442  ax-4 1443  ax-13 1447  ax-14 1448  ax-17 1462  ax-i9 1466  ax-ial 1470  ax-i5r 1471  ax-ext 2067  ax-coll 3931  ax-sep 3934  ax-nul 3942  ax-pow 3986  ax-pr 4012  ax-un 4236  ax-setind 4328  ax-iinf 4378  ax-cnex 7383  ax-resscn 7384  ax-1cn 7385  ax-1re 7386  ax-icn 7387  ax-addcl 7388  ax-addrcl 7389  ax-mulcl 7390  ax-mulrcl 7391  ax-addcom 7392  ax-mulcom 7393  ax-addass 7394  ax-mulass 7395  ax-distr 7396  ax-i2m1 7397  ax-0lt1 7398  ax-1rid 7399  ax-0id 7400  ax-rnegex 7401  ax-precex 7402  ax-cnre 7403  ax-pre-ltirr 7404  ax-pre-ltwlin 7405  ax-pre-lttrn 7406  ax-pre-apti 7407  ax-pre-ltadd 7408  ax-pre-mulgt0 7409  ax-pre-mulext 7410  ax-arch 7411  ax-caucvg 7412
This theorem depends on definitions:  df-bi 115  df-dc 779  df-3or 923  df-3an 924  df-tru 1290  df-fal 1293  df-nf 1393  df-sb 1690  df-eu 1948  df-mo 1949  df-clab 2072  df-cleq 2078  df-clel 2081  df-nfc 2214  df-ne 2252  df-nel 2347  df-ral 2360  df-rex 2361  df-reu 2362  df-rmo 2363  df-rab 2364  df-v 2617  df-sbc 2830  df-csb 2923  df-dif 2990  df-un 2992  df-in 2994  df-ss 3001  df-nul 3276  df-if 3380  df-pw 3417  df-sn 3437  df-pr 3438  df-op 3440  df-uni 3639  df-int 3674  df-iun 3717  df-br 3823  df-opab 3877  df-mpt 3878  df-tr 3914  df-id 4096  df-po 4099  df-iso 4100  df-iord 4169  df-on 4171  df-ilim 4172  df-suc 4174  df-iom 4381  df-xp 4419  df-rel 4420  df-cnv 4421  df-co 4422  df-dm 4423  df-rn 4424  df-res 4425  df-ima 4426  df-iota 4948  df-fun 4985  df-fn 4986  df-f 4987  df-f1 4988  df-fo 4989  df-f1o 4990  df-fv 4991  df-riota 5571  df-ov 5618  df-oprab 5619  df-mpt2 5620  df-1st 5870  df-2nd 5871  df-recs 6026  df-frec 6112  df-sup 6626  df-pnf 7471  df-mnf 7472  df-xr 7473  df-ltxr 7474  df-le 7475  df-sub 7602  df-neg 7603  df-reap 7996  df-ap 8003  df-div 8082  df-inn 8361  df-2 8419  df-3 8420  df-4 8421  df-n0 8610  df-z 8687  df-uz 8955  df-q 9040  df-rp 9070  df-fz 9360  df-fzo 9485  df-fl 9608  df-mod 9661  df-iseq 9783  df-iexp 9857  df-cj 10175  df-re 10176  df-im 10177  df-rsqrt 10330  df-abs 10331  df-dvds 10703  df-gcd 10845
This theorem is referenced by:  dvdssqlem  10925  nn0gcdsq  11084
  Copyright terms: Public domain W3C validator