Step | Hyp | Ref
| Expression |
1 | | prmex 12067 |
. . . . . 6
⊢ ℙ
∈ V |
2 | 1 | mptex 5722 |
. . . . 5
⊢ (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)) ∈ V |
3 | | 1arith.1 |
. . . . 5
⊢ 𝑀 = (𝑛 ∈ ℕ ↦ (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛))) |
4 | 2, 3 | fnmpti 5326 |
. . . 4
⊢ 𝑀 Fn ℕ |
5 | 3 | 1arithlem3 12317 |
. . . . . . 7
⊢ (𝑥 ∈ ℕ → (𝑀‘𝑥):ℙ⟶ℕ0) |
6 | | nn0ex 9141 |
. . . . . . . 8
⊢
ℕ0 ∈ V |
7 | 6, 1 | elmap 6655 |
. . . . . . 7
⊢ ((𝑀‘𝑥) ∈ (ℕ0
↑𝑚 ℙ) ↔ (𝑀‘𝑥):ℙ⟶ℕ0) |
8 | 5, 7 | sylibr 133 |
. . . . . 6
⊢ (𝑥 ∈ ℕ → (𝑀‘𝑥) ∈ (ℕ0
↑𝑚 ℙ)) |
9 | | 1zzd 9239 |
. . . . . . . 8
⊢ (𝑥 ∈ ℕ → 1 ∈
ℤ) |
10 | | nnz 9231 |
. . . . . . . 8
⊢ (𝑥 ∈ ℕ → 𝑥 ∈
ℤ) |
11 | 9, 10 | fzfigd 10387 |
. . . . . . 7
⊢ (𝑥 ∈ ℕ →
(1...𝑥) ∈
Fin) |
12 | | ffn 5347 |
. . . . . . . . . 10
⊢ ((𝑀‘𝑥):ℙ⟶ℕ0 →
(𝑀‘𝑥) Fn ℙ) |
13 | | elpreima 5615 |
. . . . . . . . . 10
⊢ ((𝑀‘𝑥) Fn ℙ → (𝑞 ∈ (◡(𝑀‘𝑥) “ ℕ) ↔ (𝑞 ∈ ℙ ∧ ((𝑀‘𝑥)‘𝑞) ∈ ℕ))) |
14 | 5, 12, 13 | 3syl 17 |
. . . . . . . . 9
⊢ (𝑥 ∈ ℕ → (𝑞 ∈ (◡(𝑀‘𝑥) “ ℕ) ↔ (𝑞 ∈ ℙ ∧ ((𝑀‘𝑥)‘𝑞) ∈ ℕ))) |
15 | 3 | 1arithlem2 12316 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ ℕ ∧ 𝑞 ∈ ℙ) → ((𝑀‘𝑥)‘𝑞) = (𝑞 pCnt 𝑥)) |
16 | 15 | eleq1d 2239 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℕ ∧ 𝑞 ∈ ℙ) → (((𝑀‘𝑥)‘𝑞) ∈ ℕ ↔ (𝑞 pCnt 𝑥) ∈ ℕ)) |
17 | | prmz 12065 |
. . . . . . . . . . . . 13
⊢ (𝑞 ∈ ℙ → 𝑞 ∈
ℤ) |
18 | | id 19 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ ℕ → 𝑥 ∈
ℕ) |
19 | | dvdsle 11804 |
. . . . . . . . . . . . 13
⊢ ((𝑞 ∈ ℤ ∧ 𝑥 ∈ ℕ) → (𝑞 ∥ 𝑥 → 𝑞 ≤ 𝑥)) |
20 | 17, 18, 19 | syl2anr 288 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ ℕ ∧ 𝑞 ∈ ℙ) → (𝑞 ∥ 𝑥 → 𝑞 ≤ 𝑥)) |
21 | | pcelnn 12274 |
. . . . . . . . . . . . 13
⊢ ((𝑞 ∈ ℙ ∧ 𝑥 ∈ ℕ) → ((𝑞 pCnt 𝑥) ∈ ℕ ↔ 𝑞 ∥ 𝑥)) |
22 | 21 | ancoms 266 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ ℕ ∧ 𝑞 ∈ ℙ) → ((𝑞 pCnt 𝑥) ∈ ℕ ↔ 𝑞 ∥ 𝑥)) |
23 | | prmnn 12064 |
. . . . . . . . . . . . . 14
⊢ (𝑞 ∈ ℙ → 𝑞 ∈
ℕ) |
24 | | nnuz 9522 |
. . . . . . . . . . . . . 14
⊢ ℕ =
(ℤ≥‘1) |
25 | 23, 24 | eleqtrdi 2263 |
. . . . . . . . . . . . 13
⊢ (𝑞 ∈ ℙ → 𝑞 ∈
(ℤ≥‘1)) |
26 | | elfz5 9973 |
. . . . . . . . . . . . 13
⊢ ((𝑞 ∈
(ℤ≥‘1) ∧ 𝑥 ∈ ℤ) → (𝑞 ∈ (1...𝑥) ↔ 𝑞 ≤ 𝑥)) |
27 | 25, 10, 26 | syl2anr 288 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ ℕ ∧ 𝑞 ∈ ℙ) → (𝑞 ∈ (1...𝑥) ↔ 𝑞 ≤ 𝑥)) |
28 | 20, 22, 27 | 3imtr4d 202 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℕ ∧ 𝑞 ∈ ℙ) → ((𝑞 pCnt 𝑥) ∈ ℕ → 𝑞 ∈ (1...𝑥))) |
29 | 16, 28 | sylbid 149 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ℕ ∧ 𝑞 ∈ ℙ) → (((𝑀‘𝑥)‘𝑞) ∈ ℕ → 𝑞 ∈ (1...𝑥))) |
30 | 29 | expimpd 361 |
. . . . . . . . 9
⊢ (𝑥 ∈ ℕ → ((𝑞 ∈ ℙ ∧ ((𝑀‘𝑥)‘𝑞) ∈ ℕ) → 𝑞 ∈ (1...𝑥))) |
31 | 14, 30 | sylbid 149 |
. . . . . . . 8
⊢ (𝑥 ∈ ℕ → (𝑞 ∈ (◡(𝑀‘𝑥) “ ℕ) → 𝑞 ∈ (1...𝑥))) |
32 | 31 | ssrdv 3153 |
. . . . . . 7
⊢ (𝑥 ∈ ℕ → (◡(𝑀‘𝑥) “ ℕ) ⊆ (1...𝑥)) |
33 | | elfznn 10010 |
. . . . . . . . . . . . . 14
⊢ (𝑗 ∈ (1...𝑥) → 𝑗 ∈ ℕ) |
34 | 33 | adantl 275 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ ℕ ∧ 𝑗 ∈ (1...𝑥)) → 𝑗 ∈ ℕ) |
35 | | prmdc 12084 |
. . . . . . . . . . . . 13
⊢ (𝑗 ∈ ℕ →
DECID 𝑗
∈ ℙ) |
36 | 34, 35 | syl 14 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ ℕ ∧ 𝑗 ∈ (1...𝑥)) → DECID 𝑗 ∈
ℙ) |
37 | 36 | adantr 274 |
. . . . . . . . . . 11
⊢ (((𝑥 ∈ ℕ ∧ 𝑗 ∈ (1...𝑥)) ∧ 𝑗 ∈ ℙ) → DECID
𝑗 ∈
ℙ) |
38 | 5 | ad2antrr 485 |
. . . . . . . . . . . . . 14
⊢ (((𝑥 ∈ ℕ ∧ 𝑗 ∈ (1...𝑥)) ∧ 𝑗 ∈ ℙ) → (𝑀‘𝑥):ℙ⟶ℕ0) |
39 | | simpr 109 |
. . . . . . . . . . . . . 14
⊢ (((𝑥 ∈ ℕ ∧ 𝑗 ∈ (1...𝑥)) ∧ 𝑗 ∈ ℙ) → 𝑗 ∈ ℙ) |
40 | 38, 39 | ffvelrnd 5632 |
. . . . . . . . . . . . 13
⊢ (((𝑥 ∈ ℕ ∧ 𝑗 ∈ (1...𝑥)) ∧ 𝑗 ∈ ℙ) → ((𝑀‘𝑥)‘𝑗) ∈
ℕ0) |
41 | 40 | nn0zd 9332 |
. . . . . . . . . . . 12
⊢ (((𝑥 ∈ ℕ ∧ 𝑗 ∈ (1...𝑥)) ∧ 𝑗 ∈ ℙ) → ((𝑀‘𝑥)‘𝑗) ∈ ℤ) |
42 | | elnndc 9571 |
. . . . . . . . . . . 12
⊢ (((𝑀‘𝑥)‘𝑗) ∈ ℤ → DECID
((𝑀‘𝑥)‘𝑗) ∈ ℕ) |
43 | 41, 42 | syl 14 |
. . . . . . . . . . 11
⊢ (((𝑥 ∈ ℕ ∧ 𝑗 ∈ (1...𝑥)) ∧ 𝑗 ∈ ℙ) → DECID
((𝑀‘𝑥)‘𝑗) ∈ ℕ) |
44 | | dcan2 929 |
. . . . . . . . . . 11
⊢
(DECID 𝑗 ∈ ℙ → (DECID
((𝑀‘𝑥)‘𝑗) ∈ ℕ → DECID
(𝑗 ∈ ℙ ∧
((𝑀‘𝑥)‘𝑗) ∈ ℕ))) |
45 | 37, 43, 44 | sylc 62 |
. . . . . . . . . 10
⊢ (((𝑥 ∈ ℕ ∧ 𝑗 ∈ (1...𝑥)) ∧ 𝑗 ∈ ℙ) → DECID
(𝑗 ∈ ℙ ∧
((𝑀‘𝑥)‘𝑗) ∈ ℕ)) |
46 | | simpr 109 |
. . . . . . . . . . . . 13
⊢ (((𝑥 ∈ ℕ ∧ 𝑗 ∈ (1...𝑥)) ∧ ¬ 𝑗 ∈ ℙ) → ¬ 𝑗 ∈
ℙ) |
47 | 46 | intnanrd 927 |
. . . . . . . . . . . 12
⊢ (((𝑥 ∈ ℕ ∧ 𝑗 ∈ (1...𝑥)) ∧ ¬ 𝑗 ∈ ℙ) → ¬ (𝑗 ∈ ℙ ∧ ((𝑀‘𝑥)‘𝑗) ∈ ℕ)) |
48 | 47 | olcd 729 |
. . . . . . . . . . 11
⊢ (((𝑥 ∈ ℕ ∧ 𝑗 ∈ (1...𝑥)) ∧ ¬ 𝑗 ∈ ℙ) → ((𝑗 ∈ ℙ ∧ ((𝑀‘𝑥)‘𝑗) ∈ ℕ) ∨ ¬ (𝑗 ∈ ℙ ∧ ((𝑀‘𝑥)‘𝑗) ∈ ℕ))) |
49 | | df-dc 830 |
. . . . . . . . . . 11
⊢
(DECID (𝑗 ∈ ℙ ∧ ((𝑀‘𝑥)‘𝑗) ∈ ℕ) ↔ ((𝑗 ∈ ℙ ∧ ((𝑀‘𝑥)‘𝑗) ∈ ℕ) ∨ ¬ (𝑗 ∈ ℙ ∧ ((𝑀‘𝑥)‘𝑗) ∈ ℕ))) |
50 | 48, 49 | sylibr 133 |
. . . . . . . . . 10
⊢ (((𝑥 ∈ ℕ ∧ 𝑗 ∈ (1...𝑥)) ∧ ¬ 𝑗 ∈ ℙ) → DECID
(𝑗 ∈ ℙ ∧
((𝑀‘𝑥)‘𝑗) ∈ ℕ)) |
51 | | exmiddc 831 |
. . . . . . . . . . 11
⊢
(DECID 𝑗 ∈ ℙ → (𝑗 ∈ ℙ ∨ ¬ 𝑗 ∈ ℙ)) |
52 | 36, 51 | syl 14 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ℕ ∧ 𝑗 ∈ (1...𝑥)) → (𝑗 ∈ ℙ ∨ ¬ 𝑗 ∈ ℙ)) |
53 | 45, 50, 52 | mpjaodan 793 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ℕ ∧ 𝑗 ∈ (1...𝑥)) → DECID (𝑗 ∈ ℙ ∧ ((𝑀‘𝑥)‘𝑗) ∈ ℕ)) |
54 | | elpreima 5615 |
. . . . . . . . . . . 12
⊢ ((𝑀‘𝑥) Fn ℙ → (𝑗 ∈ (◡(𝑀‘𝑥) “ ℕ) ↔ (𝑗 ∈ ℙ ∧ ((𝑀‘𝑥)‘𝑗) ∈ ℕ))) |
55 | 5, 12, 54 | 3syl 17 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ ℕ → (𝑗 ∈ (◡(𝑀‘𝑥) “ ℕ) ↔ (𝑗 ∈ ℙ ∧ ((𝑀‘𝑥)‘𝑗) ∈ ℕ))) |
56 | 55 | dcbid 833 |
. . . . . . . . . 10
⊢ (𝑥 ∈ ℕ →
(DECID 𝑗
∈ (◡(𝑀‘𝑥) “ ℕ) ↔
DECID (𝑗
∈ ℙ ∧ ((𝑀‘𝑥)‘𝑗) ∈ ℕ))) |
57 | 56 | adantr 274 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ℕ ∧ 𝑗 ∈ (1...𝑥)) → (DECID 𝑗 ∈ (◡(𝑀‘𝑥) “ ℕ) ↔
DECID (𝑗
∈ ℙ ∧ ((𝑀‘𝑥)‘𝑗) ∈ ℕ))) |
58 | 53, 57 | mpbird 166 |
. . . . . . . 8
⊢ ((𝑥 ∈ ℕ ∧ 𝑗 ∈ (1...𝑥)) → DECID 𝑗 ∈ (◡(𝑀‘𝑥) “ ℕ)) |
59 | 58 | ralrimiva 2543 |
. . . . . . 7
⊢ (𝑥 ∈ ℕ →
∀𝑗 ∈ (1...𝑥)DECID 𝑗 ∈ (◡(𝑀‘𝑥) “ ℕ)) |
60 | | ssfidc 6912 |
. . . . . . 7
⊢
(((1...𝑥) ∈ Fin
∧ (◡(𝑀‘𝑥) “ ℕ) ⊆ (1...𝑥) ∧ ∀𝑗 ∈ (1...𝑥)DECID 𝑗 ∈ (◡(𝑀‘𝑥) “ ℕ)) → (◡(𝑀‘𝑥) “ ℕ) ∈
Fin) |
61 | 11, 32, 59, 60 | syl3anc 1233 |
. . . . . 6
⊢ (𝑥 ∈ ℕ → (◡(𝑀‘𝑥) “ ℕ) ∈
Fin) |
62 | | cnveq 4785 |
. . . . . . . . 9
⊢ (𝑒 = (𝑀‘𝑥) → ◡𝑒 = ◡(𝑀‘𝑥)) |
63 | 62 | imaeq1d 4952 |
. . . . . . . 8
⊢ (𝑒 = (𝑀‘𝑥) → (◡𝑒 “ ℕ) = (◡(𝑀‘𝑥) “ ℕ)) |
64 | 63 | eleq1d 2239 |
. . . . . . 7
⊢ (𝑒 = (𝑀‘𝑥) → ((◡𝑒 “ ℕ) ∈ Fin ↔ (◡(𝑀‘𝑥) “ ℕ) ∈
Fin)) |
65 | | 1arith.2 |
. . . . . . 7
⊢ 𝑅 = {𝑒 ∈ (ℕ0
↑𝑚 ℙ) ∣ (◡𝑒 “ ℕ) ∈
Fin} |
66 | 64, 65 | elrab2 2889 |
. . . . . 6
⊢ ((𝑀‘𝑥) ∈ 𝑅 ↔ ((𝑀‘𝑥) ∈ (ℕ0
↑𝑚 ℙ) ∧ (◡(𝑀‘𝑥) “ ℕ) ∈
Fin)) |
67 | 8, 61, 66 | sylanbrc 415 |
. . . . 5
⊢ (𝑥 ∈ ℕ → (𝑀‘𝑥) ∈ 𝑅) |
68 | 67 | rgen 2523 |
. . . 4
⊢
∀𝑥 ∈
ℕ (𝑀‘𝑥) ∈ 𝑅 |
69 | | ffnfv 5654 |
. . . 4
⊢ (𝑀:ℕ⟶𝑅 ↔ (𝑀 Fn ℕ ∧ ∀𝑥 ∈ ℕ (𝑀‘𝑥) ∈ 𝑅)) |
70 | 4, 68, 69 | mpbir2an 937 |
. . 3
⊢ 𝑀:ℕ⟶𝑅 |
71 | 15 | adantlr 474 |
. . . . . . . 8
⊢ (((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑞 ∈ ℙ) → ((𝑀‘𝑥)‘𝑞) = (𝑞 pCnt 𝑥)) |
72 | 3 | 1arithlem2 12316 |
. . . . . . . . 9
⊢ ((𝑦 ∈ ℕ ∧ 𝑞 ∈ ℙ) → ((𝑀‘𝑦)‘𝑞) = (𝑞 pCnt 𝑦)) |
73 | 72 | adantll 473 |
. . . . . . . 8
⊢ (((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑞 ∈ ℙ) → ((𝑀‘𝑦)‘𝑞) = (𝑞 pCnt 𝑦)) |
74 | 71, 73 | eqeq12d 2185 |
. . . . . . 7
⊢ (((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑞 ∈ ℙ) → (((𝑀‘𝑥)‘𝑞) = ((𝑀‘𝑦)‘𝑞) ↔ (𝑞 pCnt 𝑥) = (𝑞 pCnt 𝑦))) |
75 | 74 | ralbidva 2466 |
. . . . . 6
⊢ ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) →
(∀𝑞 ∈ ℙ
((𝑀‘𝑥)‘𝑞) = ((𝑀‘𝑦)‘𝑞) ↔ ∀𝑞 ∈ ℙ (𝑞 pCnt 𝑥) = (𝑞 pCnt 𝑦))) |
76 | 3 | 1arithlem3 12317 |
. . . . . . 7
⊢ (𝑦 ∈ ℕ → (𝑀‘𝑦):ℙ⟶ℕ0) |
77 | | ffn 5347 |
. . . . . . . 8
⊢ ((𝑀‘𝑦):ℙ⟶ℕ0 →
(𝑀‘𝑦) Fn ℙ) |
78 | | eqfnfv 5593 |
. . . . . . . 8
⊢ (((𝑀‘𝑥) Fn ℙ ∧ (𝑀‘𝑦) Fn ℙ) → ((𝑀‘𝑥) = (𝑀‘𝑦) ↔ ∀𝑞 ∈ ℙ ((𝑀‘𝑥)‘𝑞) = ((𝑀‘𝑦)‘𝑞))) |
79 | 12, 77, 78 | syl2an 287 |
. . . . . . 7
⊢ (((𝑀‘𝑥):ℙ⟶ℕ0 ∧
(𝑀‘𝑦):ℙ⟶ℕ0) →
((𝑀‘𝑥) = (𝑀‘𝑦) ↔ ∀𝑞 ∈ ℙ ((𝑀‘𝑥)‘𝑞) = ((𝑀‘𝑦)‘𝑞))) |
80 | 5, 76, 79 | syl2an 287 |
. . . . . 6
⊢ ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → ((𝑀‘𝑥) = (𝑀‘𝑦) ↔ ∀𝑞 ∈ ℙ ((𝑀‘𝑥)‘𝑞) = ((𝑀‘𝑦)‘𝑞))) |
81 | | nnnn0 9142 |
. . . . . . 7
⊢ (𝑥 ∈ ℕ → 𝑥 ∈
ℕ0) |
82 | | nnnn0 9142 |
. . . . . . 7
⊢ (𝑦 ∈ ℕ → 𝑦 ∈
ℕ0) |
83 | | pc11 12284 |
. . . . . . 7
⊢ ((𝑥 ∈ ℕ0
∧ 𝑦 ∈
ℕ0) → (𝑥 = 𝑦 ↔ ∀𝑞 ∈ ℙ (𝑞 pCnt 𝑥) = (𝑞 pCnt 𝑦))) |
84 | 81, 82, 83 | syl2an 287 |
. . . . . 6
⊢ ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝑥 = 𝑦 ↔ ∀𝑞 ∈ ℙ (𝑞 pCnt 𝑥) = (𝑞 pCnt 𝑦))) |
85 | 75, 80, 84 | 3bitr4d 219 |
. . . . 5
⊢ ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → ((𝑀‘𝑥) = (𝑀‘𝑦) ↔ 𝑥 = 𝑦)) |
86 | 85 | biimpd 143 |
. . . 4
⊢ ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → ((𝑀‘𝑥) = (𝑀‘𝑦) → 𝑥 = 𝑦)) |
87 | 86 | rgen2 2556 |
. . 3
⊢
∀𝑥 ∈
ℕ ∀𝑦 ∈
ℕ ((𝑀‘𝑥) = (𝑀‘𝑦) → 𝑥 = 𝑦) |
88 | | dff13 5747 |
. . 3
⊢ (𝑀:ℕ–1-1→𝑅 ↔ (𝑀:ℕ⟶𝑅 ∧ ∀𝑥 ∈ ℕ ∀𝑦 ∈ ℕ ((𝑀‘𝑥) = (𝑀‘𝑦) → 𝑥 = 𝑦))) |
89 | 70, 87, 88 | mpbir2an 937 |
. 2
⊢ 𝑀:ℕ–1-1→𝑅 |
90 | | eqid 2170 |
. . . . . 6
⊢ (𝑔 ∈ ℕ ↦ if(𝑔 ∈ ℙ, (𝑔↑(𝑓‘𝑔)), 1)) = (𝑔 ∈ ℕ ↦ if(𝑔 ∈ ℙ, (𝑔↑(𝑓‘𝑔)), 1)) |
91 | | cnveq 4785 |
. . . . . . . . . . . 12
⊢ (𝑒 = 𝑓 → ◡𝑒 = ◡𝑓) |
92 | 91 | imaeq1d 4952 |
. . . . . . . . . . 11
⊢ (𝑒 = 𝑓 → (◡𝑒 “ ℕ) = (◡𝑓 “ ℕ)) |
93 | 92 | eleq1d 2239 |
. . . . . . . . . 10
⊢ (𝑒 = 𝑓 → ((◡𝑒 “ ℕ) ∈ Fin ↔ (◡𝑓 “ ℕ) ∈
Fin)) |
94 | 93, 65 | elrab2 2889 |
. . . . . . . . 9
⊢ (𝑓 ∈ 𝑅 ↔ (𝑓 ∈ (ℕ0
↑𝑚 ℙ) ∧ (◡𝑓 “ ℕ) ∈
Fin)) |
95 | 94 | simplbi 272 |
. . . . . . . 8
⊢ (𝑓 ∈ 𝑅 → 𝑓 ∈ (ℕ0
↑𝑚 ℙ)) |
96 | 6, 1 | elmap 6655 |
. . . . . . . 8
⊢ (𝑓 ∈ (ℕ0
↑𝑚 ℙ) ↔ 𝑓:ℙ⟶ℕ0) |
97 | 95, 96 | sylib 121 |
. . . . . . 7
⊢ (𝑓 ∈ 𝑅 → 𝑓:ℙ⟶ℕ0) |
98 | 97 | ad2antrr 485 |
. . . . . 6
⊢ (((𝑓 ∈ 𝑅 ∧ 𝑦 ∈ ℕ) ∧ ∀𝑘 ∈ (◡𝑓 “ ℕ)𝑘 ≤ 𝑦) → 𝑓:ℙ⟶ℕ0) |
99 | | simplr 525 |
. . . . . . 7
⊢ (((𝑓 ∈ 𝑅 ∧ 𝑦 ∈ ℕ) ∧ ∀𝑘 ∈ (◡𝑓 “ ℕ)𝑘 ≤ 𝑦) → 𝑦 ∈ ℕ) |
100 | 99 | peano2nnd 8893 |
. . . . . 6
⊢ (((𝑓 ∈ 𝑅 ∧ 𝑦 ∈ ℕ) ∧ ∀𝑘 ∈ (◡𝑓 “ ℕ)𝑘 ≤ 𝑦) → (𝑦 + 1) ∈ ℕ) |
101 | 99 | adantr 274 |
. . . . . . . . . . 11
⊢ ((((𝑓 ∈ 𝑅 ∧ 𝑦 ∈ ℕ) ∧ ∀𝑘 ∈ (◡𝑓 “ ℕ)𝑘 ≤ 𝑦) ∧ (𝑞 ∈ ℙ ∧ (𝑦 + 1) ≤ 𝑞)) → 𝑦 ∈ ℕ) |
102 | 101 | nnred 8891 |
. . . . . . . . . 10
⊢ ((((𝑓 ∈ 𝑅 ∧ 𝑦 ∈ ℕ) ∧ ∀𝑘 ∈ (◡𝑓 “ ℕ)𝑘 ≤ 𝑦) ∧ (𝑞 ∈ ℙ ∧ (𝑦 + 1) ≤ 𝑞)) → 𝑦 ∈ ℝ) |
103 | | peano2re 8055 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ ℝ → (𝑦 + 1) ∈
ℝ) |
104 | 102, 103 | syl 14 |
. . . . . . . . . 10
⊢ ((((𝑓 ∈ 𝑅 ∧ 𝑦 ∈ ℕ) ∧ ∀𝑘 ∈ (◡𝑓 “ ℕ)𝑘 ≤ 𝑦) ∧ (𝑞 ∈ ℙ ∧ (𝑦 + 1) ≤ 𝑞)) → (𝑦 + 1) ∈ ℝ) |
105 | 23 | ad2antrl 487 |
. . . . . . . . . . 11
⊢ ((((𝑓 ∈ 𝑅 ∧ 𝑦 ∈ ℕ) ∧ ∀𝑘 ∈ (◡𝑓 “ ℕ)𝑘 ≤ 𝑦) ∧ (𝑞 ∈ ℙ ∧ (𝑦 + 1) ≤ 𝑞)) → 𝑞 ∈ ℕ) |
106 | 105 | nnred 8891 |
. . . . . . . . . 10
⊢ ((((𝑓 ∈ 𝑅 ∧ 𝑦 ∈ ℕ) ∧ ∀𝑘 ∈ (◡𝑓 “ ℕ)𝑘 ≤ 𝑦) ∧ (𝑞 ∈ ℙ ∧ (𝑦 + 1) ≤ 𝑞)) → 𝑞 ∈ ℝ) |
107 | 102 | ltp1d 8846 |
. . . . . . . . . 10
⊢ ((((𝑓 ∈ 𝑅 ∧ 𝑦 ∈ ℕ) ∧ ∀𝑘 ∈ (◡𝑓 “ ℕ)𝑘 ≤ 𝑦) ∧ (𝑞 ∈ ℙ ∧ (𝑦 + 1) ≤ 𝑞)) → 𝑦 < (𝑦 + 1)) |
108 | | simprr 527 |
. . . . . . . . . 10
⊢ ((((𝑓 ∈ 𝑅 ∧ 𝑦 ∈ ℕ) ∧ ∀𝑘 ∈ (◡𝑓 “ ℕ)𝑘 ≤ 𝑦) ∧ (𝑞 ∈ ℙ ∧ (𝑦 + 1) ≤ 𝑞)) → (𝑦 + 1) ≤ 𝑞) |
109 | 102, 104,
106, 107, 108 | ltletrd 8342 |
. . . . . . . . 9
⊢ ((((𝑓 ∈ 𝑅 ∧ 𝑦 ∈ ℕ) ∧ ∀𝑘 ∈ (◡𝑓 “ ℕ)𝑘 ≤ 𝑦) ∧ (𝑞 ∈ ℙ ∧ (𝑦 + 1) ≤ 𝑞)) → 𝑦 < 𝑞) |
110 | 101 | nnzd 9333 |
. . . . . . . . . 10
⊢ ((((𝑓 ∈ 𝑅 ∧ 𝑦 ∈ ℕ) ∧ ∀𝑘 ∈ (◡𝑓 “ ℕ)𝑘 ≤ 𝑦) ∧ (𝑞 ∈ ℙ ∧ (𝑦 + 1) ≤ 𝑞)) → 𝑦 ∈ ℤ) |
111 | 17 | ad2antrl 487 |
. . . . . . . . . 10
⊢ ((((𝑓 ∈ 𝑅 ∧ 𝑦 ∈ ℕ) ∧ ∀𝑘 ∈ (◡𝑓 “ ℕ)𝑘 ≤ 𝑦) ∧ (𝑞 ∈ ℙ ∧ (𝑦 + 1) ≤ 𝑞)) → 𝑞 ∈ ℤ) |
112 | | zltnle 9258 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ ℤ ∧ 𝑞 ∈ ℤ) → (𝑦 < 𝑞 ↔ ¬ 𝑞 ≤ 𝑦)) |
113 | 110, 111,
112 | syl2anc 409 |
. . . . . . . . 9
⊢ ((((𝑓 ∈ 𝑅 ∧ 𝑦 ∈ ℕ) ∧ ∀𝑘 ∈ (◡𝑓 “ ℕ)𝑘 ≤ 𝑦) ∧ (𝑞 ∈ ℙ ∧ (𝑦 + 1) ≤ 𝑞)) → (𝑦 < 𝑞 ↔ ¬ 𝑞 ≤ 𝑦)) |
114 | 109, 113 | mpbid 146 |
. . . . . . . 8
⊢ ((((𝑓 ∈ 𝑅 ∧ 𝑦 ∈ ℕ) ∧ ∀𝑘 ∈ (◡𝑓 “ ℕ)𝑘 ≤ 𝑦) ∧ (𝑞 ∈ ℙ ∧ (𝑦 + 1) ≤ 𝑞)) → ¬ 𝑞 ≤ 𝑦) |
115 | | simprl 526 |
. . . . . . . . . . 11
⊢ ((((𝑓 ∈ 𝑅 ∧ 𝑦 ∈ ℕ) ∧ ∀𝑘 ∈ (◡𝑓 “ ℕ)𝑘 ≤ 𝑦) ∧ (𝑞 ∈ ℙ ∧ (𝑦 + 1) ≤ 𝑞)) → 𝑞 ∈ ℙ) |
116 | 115 | biantrurd 303 |
. . . . . . . . . 10
⊢ ((((𝑓 ∈ 𝑅 ∧ 𝑦 ∈ ℕ) ∧ ∀𝑘 ∈ (◡𝑓 “ ℕ)𝑘 ≤ 𝑦) ∧ (𝑞 ∈ ℙ ∧ (𝑦 + 1) ≤ 𝑞)) → ((𝑓‘𝑞) ∈ ℕ ↔ (𝑞 ∈ ℙ ∧ (𝑓‘𝑞) ∈ ℕ))) |
117 | 97 | ad3antrrr 489 |
. . . . . . . . . . 11
⊢ ((((𝑓 ∈ 𝑅 ∧ 𝑦 ∈ ℕ) ∧ ∀𝑘 ∈ (◡𝑓 “ ℕ)𝑘 ≤ 𝑦) ∧ (𝑞 ∈ ℙ ∧ (𝑦 + 1) ≤ 𝑞)) → 𝑓:ℙ⟶ℕ0) |
118 | | ffn 5347 |
. . . . . . . . . . 11
⊢ (𝑓:ℙ⟶ℕ0 →
𝑓 Fn
ℙ) |
119 | | elpreima 5615 |
. . . . . . . . . . 11
⊢ (𝑓 Fn ℙ → (𝑞 ∈ (◡𝑓 “ ℕ) ↔ (𝑞 ∈ ℙ ∧ (𝑓‘𝑞) ∈ ℕ))) |
120 | 117, 118,
119 | 3syl 17 |
. . . . . . . . . 10
⊢ ((((𝑓 ∈ 𝑅 ∧ 𝑦 ∈ ℕ) ∧ ∀𝑘 ∈ (◡𝑓 “ ℕ)𝑘 ≤ 𝑦) ∧ (𝑞 ∈ ℙ ∧ (𝑦 + 1) ≤ 𝑞)) → (𝑞 ∈ (◡𝑓 “ ℕ) ↔ (𝑞 ∈ ℙ ∧ (𝑓‘𝑞) ∈ ℕ))) |
121 | 116, 120 | bitr4d 190 |
. . . . . . . . 9
⊢ ((((𝑓 ∈ 𝑅 ∧ 𝑦 ∈ ℕ) ∧ ∀𝑘 ∈ (◡𝑓 “ ℕ)𝑘 ≤ 𝑦) ∧ (𝑞 ∈ ℙ ∧ (𝑦 + 1) ≤ 𝑞)) → ((𝑓‘𝑞) ∈ ℕ ↔ 𝑞 ∈ (◡𝑓 “ ℕ))) |
122 | | breq1 3992 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝑞 → (𝑘 ≤ 𝑦 ↔ 𝑞 ≤ 𝑦)) |
123 | 122 | rspccv 2831 |
. . . . . . . . . 10
⊢
(∀𝑘 ∈
(◡𝑓 “ ℕ)𝑘 ≤ 𝑦 → (𝑞 ∈ (◡𝑓 “ ℕ) → 𝑞 ≤ 𝑦)) |
124 | 123 | ad2antlr 486 |
. . . . . . . . 9
⊢ ((((𝑓 ∈ 𝑅 ∧ 𝑦 ∈ ℕ) ∧ ∀𝑘 ∈ (◡𝑓 “ ℕ)𝑘 ≤ 𝑦) ∧ (𝑞 ∈ ℙ ∧ (𝑦 + 1) ≤ 𝑞)) → (𝑞 ∈ (◡𝑓 “ ℕ) → 𝑞 ≤ 𝑦)) |
125 | 121, 124 | sylbid 149 |
. . . . . . . 8
⊢ ((((𝑓 ∈ 𝑅 ∧ 𝑦 ∈ ℕ) ∧ ∀𝑘 ∈ (◡𝑓 “ ℕ)𝑘 ≤ 𝑦) ∧ (𝑞 ∈ ℙ ∧ (𝑦 + 1) ≤ 𝑞)) → ((𝑓‘𝑞) ∈ ℕ → 𝑞 ≤ 𝑦)) |
126 | 114, 125 | mtod 658 |
. . . . . . 7
⊢ ((((𝑓 ∈ 𝑅 ∧ 𝑦 ∈ ℕ) ∧ ∀𝑘 ∈ (◡𝑓 “ ℕ)𝑘 ≤ 𝑦) ∧ (𝑞 ∈ ℙ ∧ (𝑦 + 1) ≤ 𝑞)) → ¬ (𝑓‘𝑞) ∈ ℕ) |
127 | 117, 115 | ffvelrnd 5632 |
. . . . . . . . 9
⊢ ((((𝑓 ∈ 𝑅 ∧ 𝑦 ∈ ℕ) ∧ ∀𝑘 ∈ (◡𝑓 “ ℕ)𝑘 ≤ 𝑦) ∧ (𝑞 ∈ ℙ ∧ (𝑦 + 1) ≤ 𝑞)) → (𝑓‘𝑞) ∈
ℕ0) |
128 | | elnn0 9137 |
. . . . . . . . 9
⊢ ((𝑓‘𝑞) ∈ ℕ0 ↔ ((𝑓‘𝑞) ∈ ℕ ∨ (𝑓‘𝑞) = 0)) |
129 | 127, 128 | sylib 121 |
. . . . . . . 8
⊢ ((((𝑓 ∈ 𝑅 ∧ 𝑦 ∈ ℕ) ∧ ∀𝑘 ∈ (◡𝑓 “ ℕ)𝑘 ≤ 𝑦) ∧ (𝑞 ∈ ℙ ∧ (𝑦 + 1) ≤ 𝑞)) → ((𝑓‘𝑞) ∈ ℕ ∨ (𝑓‘𝑞) = 0)) |
130 | 129 | ord 719 |
. . . . . . 7
⊢ ((((𝑓 ∈ 𝑅 ∧ 𝑦 ∈ ℕ) ∧ ∀𝑘 ∈ (◡𝑓 “ ℕ)𝑘 ≤ 𝑦) ∧ (𝑞 ∈ ℙ ∧ (𝑦 + 1) ≤ 𝑞)) → (¬ (𝑓‘𝑞) ∈ ℕ → (𝑓‘𝑞) = 0)) |
131 | 126, 130 | mpd 13 |
. . . . . 6
⊢ ((((𝑓 ∈ 𝑅 ∧ 𝑦 ∈ ℕ) ∧ ∀𝑘 ∈ (◡𝑓 “ ℕ)𝑘 ≤ 𝑦) ∧ (𝑞 ∈ ℙ ∧ (𝑦 + 1) ≤ 𝑞)) → (𝑓‘𝑞) = 0) |
132 | 3, 90, 98, 100, 131 | 1arithlem4 12318 |
. . . . 5
⊢ (((𝑓 ∈ 𝑅 ∧ 𝑦 ∈ ℕ) ∧ ∀𝑘 ∈ (◡𝑓 “ ℕ)𝑘 ≤ 𝑦) → ∃𝑥 ∈ ℕ 𝑓 = (𝑀‘𝑥)) |
133 | | cnvimass 4974 |
. . . . . . 7
⊢ (◡𝑓 “ ℕ) ⊆ dom 𝑓 |
134 | 97 | fdmd 5354 |
. . . . . . . 8
⊢ (𝑓 ∈ 𝑅 → dom 𝑓 = ℙ) |
135 | | prmssnn 12066 |
. . . . . . . 8
⊢ ℙ
⊆ ℕ |
136 | 134, 135 | eqsstrdi 3199 |
. . . . . . 7
⊢ (𝑓 ∈ 𝑅 → dom 𝑓 ⊆ ℕ) |
137 | 133, 136 | sstrid 3158 |
. . . . . 6
⊢ (𝑓 ∈ 𝑅 → (◡𝑓 “ ℕ) ⊆
ℕ) |
138 | 94 | simprbi 273 |
. . . . . 6
⊢ (𝑓 ∈ 𝑅 → (◡𝑓 “ ℕ) ∈
Fin) |
139 | | fiubnn 10765 |
. . . . . 6
⊢ (((◡𝑓 “ ℕ) ⊆ ℕ ∧
(◡𝑓 “ ℕ) ∈ Fin) →
∃𝑦 ∈ ℕ
∀𝑘 ∈ (◡𝑓 “ ℕ)𝑘 ≤ 𝑦) |
140 | 137, 138,
139 | syl2anc 409 |
. . . . 5
⊢ (𝑓 ∈ 𝑅 → ∃𝑦 ∈ ℕ ∀𝑘 ∈ (◡𝑓 “ ℕ)𝑘 ≤ 𝑦) |
141 | 132, 140 | r19.29a 2613 |
. . . 4
⊢ (𝑓 ∈ 𝑅 → ∃𝑥 ∈ ℕ 𝑓 = (𝑀‘𝑥)) |
142 | 141 | rgen 2523 |
. . 3
⊢
∀𝑓 ∈
𝑅 ∃𝑥 ∈ ℕ 𝑓 = (𝑀‘𝑥) |
143 | | dffo3 5643 |
. . 3
⊢ (𝑀:ℕ–onto→𝑅 ↔ (𝑀:ℕ⟶𝑅 ∧ ∀𝑓 ∈ 𝑅 ∃𝑥 ∈ ℕ 𝑓 = (𝑀‘𝑥))) |
144 | 70, 142, 143 | mpbir2an 937 |
. 2
⊢ 𝑀:ℕ–onto→𝑅 |
145 | | df-f1o 5205 |
. 2
⊢ (𝑀:ℕ–1-1-onto→𝑅 ↔ (𝑀:ℕ–1-1→𝑅 ∧ 𝑀:ℕ–onto→𝑅)) |
146 | 89, 144, 145 | mpbir2an 937 |
1
⊢ 𝑀:ℕ–1-1-onto→𝑅 |