ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1arith GIF version

Theorem 1arith 12293
Description: Fundamental theorem of arithmetic, where a prime factorization is represented as a sequence of prime exponents, for which only finitely many primes have nonzero exponent. The function 𝑀 maps the set of positive integers one-to-one onto the set of prime factorizations 𝑅. (Contributed by Paul Chapman, 17-Nov-2012.) (Proof shortened by Mario Carneiro, 30-May-2014.)
Hypotheses
Ref Expression
1arith.1 𝑀 = (𝑛 ∈ ℕ ↦ (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)))
1arith.2 𝑅 = {𝑒 ∈ (ℕ0𝑚 ℙ) ∣ (𝑒 “ ℕ) ∈ Fin}
Assertion
Ref Expression
1arith 𝑀:ℕ–1-1-onto𝑅
Distinct variable groups:   𝑒,𝑛,𝑝   𝑒,𝑀   𝑅,𝑛
Allowed substitution hints:   𝑅(𝑒,𝑝)   𝑀(𝑛,𝑝)

Proof of Theorem 1arith
Dummy variables 𝑓 𝑔 𝑘 𝑞 𝑥 𝑦 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prmex 12041 . . . . . 6 ℙ ∈ V
21mptex 5710 . . . . 5 (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)) ∈ V
3 1arith.1 . . . . 5 𝑀 = (𝑛 ∈ ℕ ↦ (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)))
42, 3fnmpti 5315 . . . 4 𝑀 Fn ℕ
531arithlem3 12291 . . . . . . 7 (𝑥 ∈ ℕ → (𝑀𝑥):ℙ⟶ℕ0)
6 nn0ex 9116 . . . . . . . 8 0 ∈ V
76, 1elmap 6639 . . . . . . 7 ((𝑀𝑥) ∈ (ℕ0𝑚 ℙ) ↔ (𝑀𝑥):ℙ⟶ℕ0)
85, 7sylibr 133 . . . . . 6 (𝑥 ∈ ℕ → (𝑀𝑥) ∈ (ℕ0𝑚 ℙ))
9 1zzd 9214 . . . . . . . 8 (𝑥 ∈ ℕ → 1 ∈ ℤ)
10 nnz 9206 . . . . . . . 8 (𝑥 ∈ ℕ → 𝑥 ∈ ℤ)
119, 10fzfigd 10362 . . . . . . 7 (𝑥 ∈ ℕ → (1...𝑥) ∈ Fin)
12 ffn 5336 . . . . . . . . . 10 ((𝑀𝑥):ℙ⟶ℕ0 → (𝑀𝑥) Fn ℙ)
13 elpreima 5603 . . . . . . . . . 10 ((𝑀𝑥) Fn ℙ → (𝑞 ∈ ((𝑀𝑥) “ ℕ) ↔ (𝑞 ∈ ℙ ∧ ((𝑀𝑥)‘𝑞) ∈ ℕ)))
145, 12, 133syl 17 . . . . . . . . 9 (𝑥 ∈ ℕ → (𝑞 ∈ ((𝑀𝑥) “ ℕ) ↔ (𝑞 ∈ ℙ ∧ ((𝑀𝑥)‘𝑞) ∈ ℕ)))
1531arithlem2 12290 . . . . . . . . . . . 12 ((𝑥 ∈ ℕ ∧ 𝑞 ∈ ℙ) → ((𝑀𝑥)‘𝑞) = (𝑞 pCnt 𝑥))
1615eleq1d 2234 . . . . . . . . . . 11 ((𝑥 ∈ ℕ ∧ 𝑞 ∈ ℙ) → (((𝑀𝑥)‘𝑞) ∈ ℕ ↔ (𝑞 pCnt 𝑥) ∈ ℕ))
17 prmz 12039 . . . . . . . . . . . . 13 (𝑞 ∈ ℙ → 𝑞 ∈ ℤ)
18 id 19 . . . . . . . . . . . . 13 (𝑥 ∈ ℕ → 𝑥 ∈ ℕ)
19 dvdsle 11778 . . . . . . . . . . . . 13 ((𝑞 ∈ ℤ ∧ 𝑥 ∈ ℕ) → (𝑞𝑥𝑞𝑥))
2017, 18, 19syl2anr 288 . . . . . . . . . . . 12 ((𝑥 ∈ ℕ ∧ 𝑞 ∈ ℙ) → (𝑞𝑥𝑞𝑥))
21 pcelnn 12248 . . . . . . . . . . . . 13 ((𝑞 ∈ ℙ ∧ 𝑥 ∈ ℕ) → ((𝑞 pCnt 𝑥) ∈ ℕ ↔ 𝑞𝑥))
2221ancoms 266 . . . . . . . . . . . 12 ((𝑥 ∈ ℕ ∧ 𝑞 ∈ ℙ) → ((𝑞 pCnt 𝑥) ∈ ℕ ↔ 𝑞𝑥))
23 prmnn 12038 . . . . . . . . . . . . . 14 (𝑞 ∈ ℙ → 𝑞 ∈ ℕ)
24 nnuz 9497 . . . . . . . . . . . . . 14 ℕ = (ℤ‘1)
2523, 24eleqtrdi 2258 . . . . . . . . . . . . 13 (𝑞 ∈ ℙ → 𝑞 ∈ (ℤ‘1))
26 elfz5 9948 . . . . . . . . . . . . 13 ((𝑞 ∈ (ℤ‘1) ∧ 𝑥 ∈ ℤ) → (𝑞 ∈ (1...𝑥) ↔ 𝑞𝑥))
2725, 10, 26syl2anr 288 . . . . . . . . . . . 12 ((𝑥 ∈ ℕ ∧ 𝑞 ∈ ℙ) → (𝑞 ∈ (1...𝑥) ↔ 𝑞𝑥))
2820, 22, 273imtr4d 202 . . . . . . . . . . 11 ((𝑥 ∈ ℕ ∧ 𝑞 ∈ ℙ) → ((𝑞 pCnt 𝑥) ∈ ℕ → 𝑞 ∈ (1...𝑥)))
2916, 28sylbid 149 . . . . . . . . . 10 ((𝑥 ∈ ℕ ∧ 𝑞 ∈ ℙ) → (((𝑀𝑥)‘𝑞) ∈ ℕ → 𝑞 ∈ (1...𝑥)))
3029expimpd 361 . . . . . . . . 9 (𝑥 ∈ ℕ → ((𝑞 ∈ ℙ ∧ ((𝑀𝑥)‘𝑞) ∈ ℕ) → 𝑞 ∈ (1...𝑥)))
3114, 30sylbid 149 . . . . . . . 8 (𝑥 ∈ ℕ → (𝑞 ∈ ((𝑀𝑥) “ ℕ) → 𝑞 ∈ (1...𝑥)))
3231ssrdv 3147 . . . . . . 7 (𝑥 ∈ ℕ → ((𝑀𝑥) “ ℕ) ⊆ (1...𝑥))
33 elfznn 9985 . . . . . . . . . . . . . 14 (𝑗 ∈ (1...𝑥) → 𝑗 ∈ ℕ)
3433adantl 275 . . . . . . . . . . . . 13 ((𝑥 ∈ ℕ ∧ 𝑗 ∈ (1...𝑥)) → 𝑗 ∈ ℕ)
35 prmdc 12058 . . . . . . . . . . . . 13 (𝑗 ∈ ℕ → DECID 𝑗 ∈ ℙ)
3634, 35syl 14 . . . . . . . . . . . 12 ((𝑥 ∈ ℕ ∧ 𝑗 ∈ (1...𝑥)) → DECID 𝑗 ∈ ℙ)
3736adantr 274 . . . . . . . . . . 11 (((𝑥 ∈ ℕ ∧ 𝑗 ∈ (1...𝑥)) ∧ 𝑗 ∈ ℙ) → DECID 𝑗 ∈ ℙ)
385ad2antrr 480 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℕ ∧ 𝑗 ∈ (1...𝑥)) ∧ 𝑗 ∈ ℙ) → (𝑀𝑥):ℙ⟶ℕ0)
39 simpr 109 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℕ ∧ 𝑗 ∈ (1...𝑥)) ∧ 𝑗 ∈ ℙ) → 𝑗 ∈ ℙ)
4038, 39ffvelrnd 5620 . . . . . . . . . . . . 13 (((𝑥 ∈ ℕ ∧ 𝑗 ∈ (1...𝑥)) ∧ 𝑗 ∈ ℙ) → ((𝑀𝑥)‘𝑗) ∈ ℕ0)
4140nn0zd 9307 . . . . . . . . . . . 12 (((𝑥 ∈ ℕ ∧ 𝑗 ∈ (1...𝑥)) ∧ 𝑗 ∈ ℙ) → ((𝑀𝑥)‘𝑗) ∈ ℤ)
42 elnndc 9546 . . . . . . . . . . . 12 (((𝑀𝑥)‘𝑗) ∈ ℤ → DECID ((𝑀𝑥)‘𝑗) ∈ ℕ)
4341, 42syl 14 . . . . . . . . . . 11 (((𝑥 ∈ ℕ ∧ 𝑗 ∈ (1...𝑥)) ∧ 𝑗 ∈ ℙ) → DECID ((𝑀𝑥)‘𝑗) ∈ ℕ)
44 dcan2 924 . . . . . . . . . . 11 (DECID 𝑗 ∈ ℙ → (DECID ((𝑀𝑥)‘𝑗) ∈ ℕ → DECID (𝑗 ∈ ℙ ∧ ((𝑀𝑥)‘𝑗) ∈ ℕ)))
4537, 43, 44sylc 62 . . . . . . . . . 10 (((𝑥 ∈ ℕ ∧ 𝑗 ∈ (1...𝑥)) ∧ 𝑗 ∈ ℙ) → DECID (𝑗 ∈ ℙ ∧ ((𝑀𝑥)‘𝑗) ∈ ℕ))
46 simpr 109 . . . . . . . . . . . . 13 (((𝑥 ∈ ℕ ∧ 𝑗 ∈ (1...𝑥)) ∧ ¬ 𝑗 ∈ ℙ) → ¬ 𝑗 ∈ ℙ)
4746intnanrd 922 . . . . . . . . . . . 12 (((𝑥 ∈ ℕ ∧ 𝑗 ∈ (1...𝑥)) ∧ ¬ 𝑗 ∈ ℙ) → ¬ (𝑗 ∈ ℙ ∧ ((𝑀𝑥)‘𝑗) ∈ ℕ))
4847olcd 724 . . . . . . . . . . 11 (((𝑥 ∈ ℕ ∧ 𝑗 ∈ (1...𝑥)) ∧ ¬ 𝑗 ∈ ℙ) → ((𝑗 ∈ ℙ ∧ ((𝑀𝑥)‘𝑗) ∈ ℕ) ∨ ¬ (𝑗 ∈ ℙ ∧ ((𝑀𝑥)‘𝑗) ∈ ℕ)))
49 df-dc 825 . . . . . . . . . . 11 (DECID (𝑗 ∈ ℙ ∧ ((𝑀𝑥)‘𝑗) ∈ ℕ) ↔ ((𝑗 ∈ ℙ ∧ ((𝑀𝑥)‘𝑗) ∈ ℕ) ∨ ¬ (𝑗 ∈ ℙ ∧ ((𝑀𝑥)‘𝑗) ∈ ℕ)))
5048, 49sylibr 133 . . . . . . . . . 10 (((𝑥 ∈ ℕ ∧ 𝑗 ∈ (1...𝑥)) ∧ ¬ 𝑗 ∈ ℙ) → DECID (𝑗 ∈ ℙ ∧ ((𝑀𝑥)‘𝑗) ∈ ℕ))
51 exmiddc 826 . . . . . . . . . . 11 (DECID 𝑗 ∈ ℙ → (𝑗 ∈ ℙ ∨ ¬ 𝑗 ∈ ℙ))
5236, 51syl 14 . . . . . . . . . 10 ((𝑥 ∈ ℕ ∧ 𝑗 ∈ (1...𝑥)) → (𝑗 ∈ ℙ ∨ ¬ 𝑗 ∈ ℙ))
5345, 50, 52mpjaodan 788 . . . . . . . . 9 ((𝑥 ∈ ℕ ∧ 𝑗 ∈ (1...𝑥)) → DECID (𝑗 ∈ ℙ ∧ ((𝑀𝑥)‘𝑗) ∈ ℕ))
54 elpreima 5603 . . . . . . . . . . . 12 ((𝑀𝑥) Fn ℙ → (𝑗 ∈ ((𝑀𝑥) “ ℕ) ↔ (𝑗 ∈ ℙ ∧ ((𝑀𝑥)‘𝑗) ∈ ℕ)))
555, 12, 543syl 17 . . . . . . . . . . 11 (𝑥 ∈ ℕ → (𝑗 ∈ ((𝑀𝑥) “ ℕ) ↔ (𝑗 ∈ ℙ ∧ ((𝑀𝑥)‘𝑗) ∈ ℕ)))
5655dcbid 828 . . . . . . . . . 10 (𝑥 ∈ ℕ → (DECID 𝑗 ∈ ((𝑀𝑥) “ ℕ) ↔ DECID (𝑗 ∈ ℙ ∧ ((𝑀𝑥)‘𝑗) ∈ ℕ)))
5756adantr 274 . . . . . . . . 9 ((𝑥 ∈ ℕ ∧ 𝑗 ∈ (1...𝑥)) → (DECID 𝑗 ∈ ((𝑀𝑥) “ ℕ) ↔ DECID (𝑗 ∈ ℙ ∧ ((𝑀𝑥)‘𝑗) ∈ ℕ)))
5853, 57mpbird 166 . . . . . . . 8 ((𝑥 ∈ ℕ ∧ 𝑗 ∈ (1...𝑥)) → DECID 𝑗 ∈ ((𝑀𝑥) “ ℕ))
5958ralrimiva 2538 . . . . . . 7 (𝑥 ∈ ℕ → ∀𝑗 ∈ (1...𝑥)DECID 𝑗 ∈ ((𝑀𝑥) “ ℕ))
60 ssfidc 6896 . . . . . . 7 (((1...𝑥) ∈ Fin ∧ ((𝑀𝑥) “ ℕ) ⊆ (1...𝑥) ∧ ∀𝑗 ∈ (1...𝑥)DECID 𝑗 ∈ ((𝑀𝑥) “ ℕ)) → ((𝑀𝑥) “ ℕ) ∈ Fin)
6111, 32, 59, 60syl3anc 1228 . . . . . 6 (𝑥 ∈ ℕ → ((𝑀𝑥) “ ℕ) ∈ Fin)
62 cnveq 4777 . . . . . . . . 9 (𝑒 = (𝑀𝑥) → 𝑒 = (𝑀𝑥))
6362imaeq1d 4944 . . . . . . . 8 (𝑒 = (𝑀𝑥) → (𝑒 “ ℕ) = ((𝑀𝑥) “ ℕ))
6463eleq1d 2234 . . . . . . 7 (𝑒 = (𝑀𝑥) → ((𝑒 “ ℕ) ∈ Fin ↔ ((𝑀𝑥) “ ℕ) ∈ Fin))
65 1arith.2 . . . . . . 7 𝑅 = {𝑒 ∈ (ℕ0𝑚 ℙ) ∣ (𝑒 “ ℕ) ∈ Fin}
6664, 65elrab2 2884 . . . . . 6 ((𝑀𝑥) ∈ 𝑅 ↔ ((𝑀𝑥) ∈ (ℕ0𝑚 ℙ) ∧ ((𝑀𝑥) “ ℕ) ∈ Fin))
678, 61, 66sylanbrc 414 . . . . 5 (𝑥 ∈ ℕ → (𝑀𝑥) ∈ 𝑅)
6867rgen 2518 . . . 4 𝑥 ∈ ℕ (𝑀𝑥) ∈ 𝑅
69 ffnfv 5642 . . . 4 (𝑀:ℕ⟶𝑅 ↔ (𝑀 Fn ℕ ∧ ∀𝑥 ∈ ℕ (𝑀𝑥) ∈ 𝑅))
704, 68, 69mpbir2an 932 . . 3 𝑀:ℕ⟶𝑅
7115adantlr 469 . . . . . . . 8 (((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑞 ∈ ℙ) → ((𝑀𝑥)‘𝑞) = (𝑞 pCnt 𝑥))
7231arithlem2 12290 . . . . . . . . 9 ((𝑦 ∈ ℕ ∧ 𝑞 ∈ ℙ) → ((𝑀𝑦)‘𝑞) = (𝑞 pCnt 𝑦))
7372adantll 468 . . . . . . . 8 (((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑞 ∈ ℙ) → ((𝑀𝑦)‘𝑞) = (𝑞 pCnt 𝑦))
7471, 73eqeq12d 2180 . . . . . . 7 (((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑞 ∈ ℙ) → (((𝑀𝑥)‘𝑞) = ((𝑀𝑦)‘𝑞) ↔ (𝑞 pCnt 𝑥) = (𝑞 pCnt 𝑦)))
7574ralbidva 2461 . . . . . 6 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (∀𝑞 ∈ ℙ ((𝑀𝑥)‘𝑞) = ((𝑀𝑦)‘𝑞) ↔ ∀𝑞 ∈ ℙ (𝑞 pCnt 𝑥) = (𝑞 pCnt 𝑦)))
7631arithlem3 12291 . . . . . . 7 (𝑦 ∈ ℕ → (𝑀𝑦):ℙ⟶ℕ0)
77 ffn 5336 . . . . . . . 8 ((𝑀𝑦):ℙ⟶ℕ0 → (𝑀𝑦) Fn ℙ)
78 eqfnfv 5582 . . . . . . . 8 (((𝑀𝑥) Fn ℙ ∧ (𝑀𝑦) Fn ℙ) → ((𝑀𝑥) = (𝑀𝑦) ↔ ∀𝑞 ∈ ℙ ((𝑀𝑥)‘𝑞) = ((𝑀𝑦)‘𝑞)))
7912, 77, 78syl2an 287 . . . . . . 7 (((𝑀𝑥):ℙ⟶ℕ0 ∧ (𝑀𝑦):ℙ⟶ℕ0) → ((𝑀𝑥) = (𝑀𝑦) ↔ ∀𝑞 ∈ ℙ ((𝑀𝑥)‘𝑞) = ((𝑀𝑦)‘𝑞)))
805, 76, 79syl2an 287 . . . . . 6 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → ((𝑀𝑥) = (𝑀𝑦) ↔ ∀𝑞 ∈ ℙ ((𝑀𝑥)‘𝑞) = ((𝑀𝑦)‘𝑞)))
81 nnnn0 9117 . . . . . . 7 (𝑥 ∈ ℕ → 𝑥 ∈ ℕ0)
82 nnnn0 9117 . . . . . . 7 (𝑦 ∈ ℕ → 𝑦 ∈ ℕ0)
83 pc11 12258 . . . . . . 7 ((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) → (𝑥 = 𝑦 ↔ ∀𝑞 ∈ ℙ (𝑞 pCnt 𝑥) = (𝑞 pCnt 𝑦)))
8481, 82, 83syl2an 287 . . . . . 6 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝑥 = 𝑦 ↔ ∀𝑞 ∈ ℙ (𝑞 pCnt 𝑥) = (𝑞 pCnt 𝑦)))
8575, 80, 843bitr4d 219 . . . . 5 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → ((𝑀𝑥) = (𝑀𝑦) ↔ 𝑥 = 𝑦))
8685biimpd 143 . . . 4 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → ((𝑀𝑥) = (𝑀𝑦) → 𝑥 = 𝑦))
8786rgen2 2551 . . 3 𝑥 ∈ ℕ ∀𝑦 ∈ ℕ ((𝑀𝑥) = (𝑀𝑦) → 𝑥 = 𝑦)
88 dff13 5735 . . 3 (𝑀:ℕ–1-1𝑅 ↔ (𝑀:ℕ⟶𝑅 ∧ ∀𝑥 ∈ ℕ ∀𝑦 ∈ ℕ ((𝑀𝑥) = (𝑀𝑦) → 𝑥 = 𝑦)))
8970, 87, 88mpbir2an 932 . 2 𝑀:ℕ–1-1𝑅
90 eqid 2165 . . . . . 6 (𝑔 ∈ ℕ ↦ if(𝑔 ∈ ℙ, (𝑔↑(𝑓𝑔)), 1)) = (𝑔 ∈ ℕ ↦ if(𝑔 ∈ ℙ, (𝑔↑(𝑓𝑔)), 1))
91 cnveq 4777 . . . . . . . . . . . 12 (𝑒 = 𝑓𝑒 = 𝑓)
9291imaeq1d 4944 . . . . . . . . . . 11 (𝑒 = 𝑓 → (𝑒 “ ℕ) = (𝑓 “ ℕ))
9392eleq1d 2234 . . . . . . . . . 10 (𝑒 = 𝑓 → ((𝑒 “ ℕ) ∈ Fin ↔ (𝑓 “ ℕ) ∈ Fin))
9493, 65elrab2 2884 . . . . . . . . 9 (𝑓𝑅 ↔ (𝑓 ∈ (ℕ0𝑚 ℙ) ∧ (𝑓 “ ℕ) ∈ Fin))
9594simplbi 272 . . . . . . . 8 (𝑓𝑅𝑓 ∈ (ℕ0𝑚 ℙ))
966, 1elmap 6639 . . . . . . . 8 (𝑓 ∈ (ℕ0𝑚 ℙ) ↔ 𝑓:ℙ⟶ℕ0)
9795, 96sylib 121 . . . . . . 7 (𝑓𝑅𝑓:ℙ⟶ℕ0)
9897ad2antrr 480 . . . . . 6 (((𝑓𝑅𝑦 ∈ ℕ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) → 𝑓:ℙ⟶ℕ0)
99 simplr 520 . . . . . . 7 (((𝑓𝑅𝑦 ∈ ℕ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) → 𝑦 ∈ ℕ)
10099peano2nnd 8868 . . . . . 6 (((𝑓𝑅𝑦 ∈ ℕ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) → (𝑦 + 1) ∈ ℕ)
10199adantr 274 . . . . . . . . . . 11 ((((𝑓𝑅𝑦 ∈ ℕ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) ∧ (𝑞 ∈ ℙ ∧ (𝑦 + 1) ≤ 𝑞)) → 𝑦 ∈ ℕ)
102101nnred 8866 . . . . . . . . . 10 ((((𝑓𝑅𝑦 ∈ ℕ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) ∧ (𝑞 ∈ ℙ ∧ (𝑦 + 1) ≤ 𝑞)) → 𝑦 ∈ ℝ)
103 peano2re 8030 . . . . . . . . . . 11 (𝑦 ∈ ℝ → (𝑦 + 1) ∈ ℝ)
104102, 103syl 14 . . . . . . . . . 10 ((((𝑓𝑅𝑦 ∈ ℕ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) ∧ (𝑞 ∈ ℙ ∧ (𝑦 + 1) ≤ 𝑞)) → (𝑦 + 1) ∈ ℝ)
10523ad2antrl 482 . . . . . . . . . . 11 ((((𝑓𝑅𝑦 ∈ ℕ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) ∧ (𝑞 ∈ ℙ ∧ (𝑦 + 1) ≤ 𝑞)) → 𝑞 ∈ ℕ)
106105nnred 8866 . . . . . . . . . 10 ((((𝑓𝑅𝑦 ∈ ℕ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) ∧ (𝑞 ∈ ℙ ∧ (𝑦 + 1) ≤ 𝑞)) → 𝑞 ∈ ℝ)
107102ltp1d 8821 . . . . . . . . . 10 ((((𝑓𝑅𝑦 ∈ ℕ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) ∧ (𝑞 ∈ ℙ ∧ (𝑦 + 1) ≤ 𝑞)) → 𝑦 < (𝑦 + 1))
108 simprr 522 . . . . . . . . . 10 ((((𝑓𝑅𝑦 ∈ ℕ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) ∧ (𝑞 ∈ ℙ ∧ (𝑦 + 1) ≤ 𝑞)) → (𝑦 + 1) ≤ 𝑞)
109102, 104, 106, 107, 108ltletrd 8317 . . . . . . . . 9 ((((𝑓𝑅𝑦 ∈ ℕ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) ∧ (𝑞 ∈ ℙ ∧ (𝑦 + 1) ≤ 𝑞)) → 𝑦 < 𝑞)
110101nnzd 9308 . . . . . . . . . 10 ((((𝑓𝑅𝑦 ∈ ℕ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) ∧ (𝑞 ∈ ℙ ∧ (𝑦 + 1) ≤ 𝑞)) → 𝑦 ∈ ℤ)
11117ad2antrl 482 . . . . . . . . . 10 ((((𝑓𝑅𝑦 ∈ ℕ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) ∧ (𝑞 ∈ ℙ ∧ (𝑦 + 1) ≤ 𝑞)) → 𝑞 ∈ ℤ)
112 zltnle 9233 . . . . . . . . . 10 ((𝑦 ∈ ℤ ∧ 𝑞 ∈ ℤ) → (𝑦 < 𝑞 ↔ ¬ 𝑞𝑦))
113110, 111, 112syl2anc 409 . . . . . . . . 9 ((((𝑓𝑅𝑦 ∈ ℕ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) ∧ (𝑞 ∈ ℙ ∧ (𝑦 + 1) ≤ 𝑞)) → (𝑦 < 𝑞 ↔ ¬ 𝑞𝑦))
114109, 113mpbid 146 . . . . . . . 8 ((((𝑓𝑅𝑦 ∈ ℕ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) ∧ (𝑞 ∈ ℙ ∧ (𝑦 + 1) ≤ 𝑞)) → ¬ 𝑞𝑦)
115 simprl 521 . . . . . . . . . . 11 ((((𝑓𝑅𝑦 ∈ ℕ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) ∧ (𝑞 ∈ ℙ ∧ (𝑦 + 1) ≤ 𝑞)) → 𝑞 ∈ ℙ)
116115biantrurd 303 . . . . . . . . . 10 ((((𝑓𝑅𝑦 ∈ ℕ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) ∧ (𝑞 ∈ ℙ ∧ (𝑦 + 1) ≤ 𝑞)) → ((𝑓𝑞) ∈ ℕ ↔ (𝑞 ∈ ℙ ∧ (𝑓𝑞) ∈ ℕ)))
11797ad3antrrr 484 . . . . . . . . . . 11 ((((𝑓𝑅𝑦 ∈ ℕ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) ∧ (𝑞 ∈ ℙ ∧ (𝑦 + 1) ≤ 𝑞)) → 𝑓:ℙ⟶ℕ0)
118 ffn 5336 . . . . . . . . . . 11 (𝑓:ℙ⟶ℕ0𝑓 Fn ℙ)
119 elpreima 5603 . . . . . . . . . . 11 (𝑓 Fn ℙ → (𝑞 ∈ (𝑓 “ ℕ) ↔ (𝑞 ∈ ℙ ∧ (𝑓𝑞) ∈ ℕ)))
120117, 118, 1193syl 17 . . . . . . . . . 10 ((((𝑓𝑅𝑦 ∈ ℕ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) ∧ (𝑞 ∈ ℙ ∧ (𝑦 + 1) ≤ 𝑞)) → (𝑞 ∈ (𝑓 “ ℕ) ↔ (𝑞 ∈ ℙ ∧ (𝑓𝑞) ∈ ℕ)))
121116, 120bitr4d 190 . . . . . . . . 9 ((((𝑓𝑅𝑦 ∈ ℕ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) ∧ (𝑞 ∈ ℙ ∧ (𝑦 + 1) ≤ 𝑞)) → ((𝑓𝑞) ∈ ℕ ↔ 𝑞 ∈ (𝑓 “ ℕ)))
122 breq1 3984 . . . . . . . . . . 11 (𝑘 = 𝑞 → (𝑘𝑦𝑞𝑦))
123122rspccv 2826 . . . . . . . . . 10 (∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦 → (𝑞 ∈ (𝑓 “ ℕ) → 𝑞𝑦))
124123ad2antlr 481 . . . . . . . . 9 ((((𝑓𝑅𝑦 ∈ ℕ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) ∧ (𝑞 ∈ ℙ ∧ (𝑦 + 1) ≤ 𝑞)) → (𝑞 ∈ (𝑓 “ ℕ) → 𝑞𝑦))
125121, 124sylbid 149 . . . . . . . 8 ((((𝑓𝑅𝑦 ∈ ℕ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) ∧ (𝑞 ∈ ℙ ∧ (𝑦 + 1) ≤ 𝑞)) → ((𝑓𝑞) ∈ ℕ → 𝑞𝑦))
126114, 125mtod 653 . . . . . . 7 ((((𝑓𝑅𝑦 ∈ ℕ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) ∧ (𝑞 ∈ ℙ ∧ (𝑦 + 1) ≤ 𝑞)) → ¬ (𝑓𝑞) ∈ ℕ)
127117, 115ffvelrnd 5620 . . . . . . . . 9 ((((𝑓𝑅𝑦 ∈ ℕ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) ∧ (𝑞 ∈ ℙ ∧ (𝑦 + 1) ≤ 𝑞)) → (𝑓𝑞) ∈ ℕ0)
128 elnn0 9112 . . . . . . . . 9 ((𝑓𝑞) ∈ ℕ0 ↔ ((𝑓𝑞) ∈ ℕ ∨ (𝑓𝑞) = 0))
129127, 128sylib 121 . . . . . . . 8 ((((𝑓𝑅𝑦 ∈ ℕ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) ∧ (𝑞 ∈ ℙ ∧ (𝑦 + 1) ≤ 𝑞)) → ((𝑓𝑞) ∈ ℕ ∨ (𝑓𝑞) = 0))
130129ord 714 . . . . . . 7 ((((𝑓𝑅𝑦 ∈ ℕ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) ∧ (𝑞 ∈ ℙ ∧ (𝑦 + 1) ≤ 𝑞)) → (¬ (𝑓𝑞) ∈ ℕ → (𝑓𝑞) = 0))
131126, 130mpd 13 . . . . . 6 ((((𝑓𝑅𝑦 ∈ ℕ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) ∧ (𝑞 ∈ ℙ ∧ (𝑦 + 1) ≤ 𝑞)) → (𝑓𝑞) = 0)
1323, 90, 98, 100, 1311arithlem4 12292 . . . . 5 (((𝑓𝑅𝑦 ∈ ℕ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) → ∃𝑥 ∈ ℕ 𝑓 = (𝑀𝑥))
133 cnvimass 4966 . . . . . . 7 (𝑓 “ ℕ) ⊆ dom 𝑓
13497fdmd 5343 . . . . . . . 8 (𝑓𝑅 → dom 𝑓 = ℙ)
135 prmssnn 12040 . . . . . . . 8 ℙ ⊆ ℕ
136134, 135eqsstrdi 3193 . . . . . . 7 (𝑓𝑅 → dom 𝑓 ⊆ ℕ)
137133, 136sstrid 3152 . . . . . 6 (𝑓𝑅 → (𝑓 “ ℕ) ⊆ ℕ)
13894simprbi 273 . . . . . 6 (𝑓𝑅 → (𝑓 “ ℕ) ∈ Fin)
139 fiubnn 10739 . . . . . 6 (((𝑓 “ ℕ) ⊆ ℕ ∧ (𝑓 “ ℕ) ∈ Fin) → ∃𝑦 ∈ ℕ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦)
140137, 138, 139syl2anc 409 . . . . 5 (𝑓𝑅 → ∃𝑦 ∈ ℕ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦)
141132, 140r19.29a 2608 . . . 4 (𝑓𝑅 → ∃𝑥 ∈ ℕ 𝑓 = (𝑀𝑥))
142141rgen 2518 . . 3 𝑓𝑅𝑥 ∈ ℕ 𝑓 = (𝑀𝑥)
143 dffo3 5631 . . 3 (𝑀:ℕ–onto𝑅 ↔ (𝑀:ℕ⟶𝑅 ∧ ∀𝑓𝑅𝑥 ∈ ℕ 𝑓 = (𝑀𝑥)))
14470, 142, 143mpbir2an 932 . 2 𝑀:ℕ–onto𝑅
145 df-f1o 5194 . 2 (𝑀:ℕ–1-1-onto𝑅 ↔ (𝑀:ℕ–1-1𝑅𝑀:ℕ–onto𝑅))
14689, 144, 145mpbir2an 932 1 𝑀:ℕ–1-1-onto𝑅
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 698  DECID wdc 824   = wceq 1343  wcel 2136  wral 2443  wrex 2444  {crab 2447  wss 3115  ifcif 3519   class class class wbr 3981  cmpt 4042  ccnv 4602  dom cdm 4603  cima 4606   Fn wfn 5182  wf 5183  1-1wf1 5184  ontowfo 5185  1-1-ontowf1o 5186  cfv 5187  (class class class)co 5841  𝑚 cmap 6610  Fincfn 6702  cr 7748  0cc0 7749  1c1 7750   + caddc 7752   < clt 7929  cle 7930  cn 8853  0cn0 9110  cz 9187  cuz 9462  ...cfz 9940  cexp 10450  cdvds 11723  cprime 12035   pCnt cpc 12212
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4096  ax-sep 4099  ax-nul 4107  ax-pow 4152  ax-pr 4186  ax-un 4410  ax-setind 4513  ax-iinf 4564  ax-cnex 7840  ax-resscn 7841  ax-1cn 7842  ax-1re 7843  ax-icn 7844  ax-addcl 7845  ax-addrcl 7846  ax-mulcl 7847  ax-mulrcl 7848  ax-addcom 7849  ax-mulcom 7850  ax-addass 7851  ax-mulass 7852  ax-distr 7853  ax-i2m1 7854  ax-0lt1 7855  ax-1rid 7856  ax-0id 7857  ax-rnegex 7858  ax-precex 7859  ax-cnre 7860  ax-pre-ltirr 7861  ax-pre-ltwlin 7862  ax-pre-lttrn 7863  ax-pre-apti 7864  ax-pre-ltadd 7865  ax-pre-mulgt0 7866  ax-pre-mulext 7867  ax-arch 7868  ax-caucvg 7869
This theorem depends on definitions:  df-bi 116  df-stab 821  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2296  df-ne 2336  df-nel 2431  df-ral 2448  df-rex 2449  df-reu 2450  df-rmo 2451  df-rab 2452  df-v 2727  df-sbc 2951  df-csb 3045  df-dif 3117  df-un 3119  df-in 3121  df-ss 3128  df-nul 3409  df-if 3520  df-pw 3560  df-sn 3581  df-pr 3582  df-op 3584  df-uni 3789  df-int 3824  df-iun 3867  df-br 3982  df-opab 4043  df-mpt 4044  df-tr 4080  df-id 4270  df-po 4273  df-iso 4274  df-iord 4343  df-on 4345  df-ilim 4346  df-suc 4348  df-iom 4567  df-xp 4609  df-rel 4610  df-cnv 4611  df-co 4612  df-dm 4613  df-rn 4614  df-res 4615  df-ima 4616  df-iota 5152  df-fun 5189  df-fn 5190  df-f 5191  df-f1 5192  df-fo 5193  df-f1o 5194  df-fv 5195  df-isom 5196  df-riota 5797  df-ov 5844  df-oprab 5845  df-mpo 5846  df-1st 6105  df-2nd 6106  df-recs 6269  df-frec 6355  df-1o 6380  df-2o 6381  df-er 6497  df-map 6612  df-en 6703  df-fin 6705  df-sup 6945  df-inf 6946  df-pnf 7931  df-mnf 7932  df-xr 7933  df-ltxr 7934  df-le 7935  df-sub 8067  df-neg 8068  df-reap 8469  df-ap 8476  df-div 8565  df-inn 8854  df-2 8912  df-3 8913  df-4 8914  df-n0 9111  df-xnn0 9174  df-z 9188  df-uz 9463  df-q 9554  df-rp 9586  df-fz 9941  df-fzo 10074  df-fl 10201  df-mod 10254  df-seqfrec 10377  df-exp 10451  df-cj 10780  df-re 10781  df-im 10782  df-rsqrt 10936  df-abs 10937  df-dvds 11724  df-gcd 11872  df-prm 12036  df-pc 12213
This theorem is referenced by:  1arith2  12294
  Copyright terms: Public domain W3C validator