ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1arith GIF version

Theorem 1arith 12319
Description: Fundamental theorem of arithmetic, where a prime factorization is represented as a sequence of prime exponents, for which only finitely many primes have nonzero exponent. The function 𝑀 maps the set of positive integers one-to-one onto the set of prime factorizations 𝑅. (Contributed by Paul Chapman, 17-Nov-2012.) (Proof shortened by Mario Carneiro, 30-May-2014.)
Hypotheses
Ref Expression
1arith.1 𝑀 = (𝑛 ∈ ℕ ↦ (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)))
1arith.2 𝑅 = {𝑒 ∈ (ℕ0𝑚 ℙ) ∣ (𝑒 “ ℕ) ∈ Fin}
Assertion
Ref Expression
1arith 𝑀:ℕ–1-1-onto𝑅
Distinct variable groups:   𝑒,𝑛,𝑝   𝑒,𝑀   𝑅,𝑛
Allowed substitution hints:   𝑅(𝑒,𝑝)   𝑀(𝑛,𝑝)

Proof of Theorem 1arith
Dummy variables 𝑓 𝑔 𝑘 𝑞 𝑥 𝑦 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prmex 12067 . . . . . 6 ℙ ∈ V
21mptex 5722 . . . . 5 (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)) ∈ V
3 1arith.1 . . . . 5 𝑀 = (𝑛 ∈ ℕ ↦ (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)))
42, 3fnmpti 5326 . . . 4 𝑀 Fn ℕ
531arithlem3 12317 . . . . . . 7 (𝑥 ∈ ℕ → (𝑀𝑥):ℙ⟶ℕ0)
6 nn0ex 9141 . . . . . . . 8 0 ∈ V
76, 1elmap 6655 . . . . . . 7 ((𝑀𝑥) ∈ (ℕ0𝑚 ℙ) ↔ (𝑀𝑥):ℙ⟶ℕ0)
85, 7sylibr 133 . . . . . 6 (𝑥 ∈ ℕ → (𝑀𝑥) ∈ (ℕ0𝑚 ℙ))
9 1zzd 9239 . . . . . . . 8 (𝑥 ∈ ℕ → 1 ∈ ℤ)
10 nnz 9231 . . . . . . . 8 (𝑥 ∈ ℕ → 𝑥 ∈ ℤ)
119, 10fzfigd 10387 . . . . . . 7 (𝑥 ∈ ℕ → (1...𝑥) ∈ Fin)
12 ffn 5347 . . . . . . . . . 10 ((𝑀𝑥):ℙ⟶ℕ0 → (𝑀𝑥) Fn ℙ)
13 elpreima 5615 . . . . . . . . . 10 ((𝑀𝑥) Fn ℙ → (𝑞 ∈ ((𝑀𝑥) “ ℕ) ↔ (𝑞 ∈ ℙ ∧ ((𝑀𝑥)‘𝑞) ∈ ℕ)))
145, 12, 133syl 17 . . . . . . . . 9 (𝑥 ∈ ℕ → (𝑞 ∈ ((𝑀𝑥) “ ℕ) ↔ (𝑞 ∈ ℙ ∧ ((𝑀𝑥)‘𝑞) ∈ ℕ)))
1531arithlem2 12316 . . . . . . . . . . . 12 ((𝑥 ∈ ℕ ∧ 𝑞 ∈ ℙ) → ((𝑀𝑥)‘𝑞) = (𝑞 pCnt 𝑥))
1615eleq1d 2239 . . . . . . . . . . 11 ((𝑥 ∈ ℕ ∧ 𝑞 ∈ ℙ) → (((𝑀𝑥)‘𝑞) ∈ ℕ ↔ (𝑞 pCnt 𝑥) ∈ ℕ))
17 prmz 12065 . . . . . . . . . . . . 13 (𝑞 ∈ ℙ → 𝑞 ∈ ℤ)
18 id 19 . . . . . . . . . . . . 13 (𝑥 ∈ ℕ → 𝑥 ∈ ℕ)
19 dvdsle 11804 . . . . . . . . . . . . 13 ((𝑞 ∈ ℤ ∧ 𝑥 ∈ ℕ) → (𝑞𝑥𝑞𝑥))
2017, 18, 19syl2anr 288 . . . . . . . . . . . 12 ((𝑥 ∈ ℕ ∧ 𝑞 ∈ ℙ) → (𝑞𝑥𝑞𝑥))
21 pcelnn 12274 . . . . . . . . . . . . 13 ((𝑞 ∈ ℙ ∧ 𝑥 ∈ ℕ) → ((𝑞 pCnt 𝑥) ∈ ℕ ↔ 𝑞𝑥))
2221ancoms 266 . . . . . . . . . . . 12 ((𝑥 ∈ ℕ ∧ 𝑞 ∈ ℙ) → ((𝑞 pCnt 𝑥) ∈ ℕ ↔ 𝑞𝑥))
23 prmnn 12064 . . . . . . . . . . . . . 14 (𝑞 ∈ ℙ → 𝑞 ∈ ℕ)
24 nnuz 9522 . . . . . . . . . . . . . 14 ℕ = (ℤ‘1)
2523, 24eleqtrdi 2263 . . . . . . . . . . . . 13 (𝑞 ∈ ℙ → 𝑞 ∈ (ℤ‘1))
26 elfz5 9973 . . . . . . . . . . . . 13 ((𝑞 ∈ (ℤ‘1) ∧ 𝑥 ∈ ℤ) → (𝑞 ∈ (1...𝑥) ↔ 𝑞𝑥))
2725, 10, 26syl2anr 288 . . . . . . . . . . . 12 ((𝑥 ∈ ℕ ∧ 𝑞 ∈ ℙ) → (𝑞 ∈ (1...𝑥) ↔ 𝑞𝑥))
2820, 22, 273imtr4d 202 . . . . . . . . . . 11 ((𝑥 ∈ ℕ ∧ 𝑞 ∈ ℙ) → ((𝑞 pCnt 𝑥) ∈ ℕ → 𝑞 ∈ (1...𝑥)))
2916, 28sylbid 149 . . . . . . . . . 10 ((𝑥 ∈ ℕ ∧ 𝑞 ∈ ℙ) → (((𝑀𝑥)‘𝑞) ∈ ℕ → 𝑞 ∈ (1...𝑥)))
3029expimpd 361 . . . . . . . . 9 (𝑥 ∈ ℕ → ((𝑞 ∈ ℙ ∧ ((𝑀𝑥)‘𝑞) ∈ ℕ) → 𝑞 ∈ (1...𝑥)))
3114, 30sylbid 149 . . . . . . . 8 (𝑥 ∈ ℕ → (𝑞 ∈ ((𝑀𝑥) “ ℕ) → 𝑞 ∈ (1...𝑥)))
3231ssrdv 3153 . . . . . . 7 (𝑥 ∈ ℕ → ((𝑀𝑥) “ ℕ) ⊆ (1...𝑥))
33 elfznn 10010 . . . . . . . . . . . . . 14 (𝑗 ∈ (1...𝑥) → 𝑗 ∈ ℕ)
3433adantl 275 . . . . . . . . . . . . 13 ((𝑥 ∈ ℕ ∧ 𝑗 ∈ (1...𝑥)) → 𝑗 ∈ ℕ)
35 prmdc 12084 . . . . . . . . . . . . 13 (𝑗 ∈ ℕ → DECID 𝑗 ∈ ℙ)
3634, 35syl 14 . . . . . . . . . . . 12 ((𝑥 ∈ ℕ ∧ 𝑗 ∈ (1...𝑥)) → DECID 𝑗 ∈ ℙ)
3736adantr 274 . . . . . . . . . . 11 (((𝑥 ∈ ℕ ∧ 𝑗 ∈ (1...𝑥)) ∧ 𝑗 ∈ ℙ) → DECID 𝑗 ∈ ℙ)
385ad2antrr 485 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℕ ∧ 𝑗 ∈ (1...𝑥)) ∧ 𝑗 ∈ ℙ) → (𝑀𝑥):ℙ⟶ℕ0)
39 simpr 109 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℕ ∧ 𝑗 ∈ (1...𝑥)) ∧ 𝑗 ∈ ℙ) → 𝑗 ∈ ℙ)
4038, 39ffvelrnd 5632 . . . . . . . . . . . . 13 (((𝑥 ∈ ℕ ∧ 𝑗 ∈ (1...𝑥)) ∧ 𝑗 ∈ ℙ) → ((𝑀𝑥)‘𝑗) ∈ ℕ0)
4140nn0zd 9332 . . . . . . . . . . . 12 (((𝑥 ∈ ℕ ∧ 𝑗 ∈ (1...𝑥)) ∧ 𝑗 ∈ ℙ) → ((𝑀𝑥)‘𝑗) ∈ ℤ)
42 elnndc 9571 . . . . . . . . . . . 12 (((𝑀𝑥)‘𝑗) ∈ ℤ → DECID ((𝑀𝑥)‘𝑗) ∈ ℕ)
4341, 42syl 14 . . . . . . . . . . 11 (((𝑥 ∈ ℕ ∧ 𝑗 ∈ (1...𝑥)) ∧ 𝑗 ∈ ℙ) → DECID ((𝑀𝑥)‘𝑗) ∈ ℕ)
44 dcan2 929 . . . . . . . . . . 11 (DECID 𝑗 ∈ ℙ → (DECID ((𝑀𝑥)‘𝑗) ∈ ℕ → DECID (𝑗 ∈ ℙ ∧ ((𝑀𝑥)‘𝑗) ∈ ℕ)))
4537, 43, 44sylc 62 . . . . . . . . . 10 (((𝑥 ∈ ℕ ∧ 𝑗 ∈ (1...𝑥)) ∧ 𝑗 ∈ ℙ) → DECID (𝑗 ∈ ℙ ∧ ((𝑀𝑥)‘𝑗) ∈ ℕ))
46 simpr 109 . . . . . . . . . . . . 13 (((𝑥 ∈ ℕ ∧ 𝑗 ∈ (1...𝑥)) ∧ ¬ 𝑗 ∈ ℙ) → ¬ 𝑗 ∈ ℙ)
4746intnanrd 927 . . . . . . . . . . . 12 (((𝑥 ∈ ℕ ∧ 𝑗 ∈ (1...𝑥)) ∧ ¬ 𝑗 ∈ ℙ) → ¬ (𝑗 ∈ ℙ ∧ ((𝑀𝑥)‘𝑗) ∈ ℕ))
4847olcd 729 . . . . . . . . . . 11 (((𝑥 ∈ ℕ ∧ 𝑗 ∈ (1...𝑥)) ∧ ¬ 𝑗 ∈ ℙ) → ((𝑗 ∈ ℙ ∧ ((𝑀𝑥)‘𝑗) ∈ ℕ) ∨ ¬ (𝑗 ∈ ℙ ∧ ((𝑀𝑥)‘𝑗) ∈ ℕ)))
49 df-dc 830 . . . . . . . . . . 11 (DECID (𝑗 ∈ ℙ ∧ ((𝑀𝑥)‘𝑗) ∈ ℕ) ↔ ((𝑗 ∈ ℙ ∧ ((𝑀𝑥)‘𝑗) ∈ ℕ) ∨ ¬ (𝑗 ∈ ℙ ∧ ((𝑀𝑥)‘𝑗) ∈ ℕ)))
5048, 49sylibr 133 . . . . . . . . . 10 (((𝑥 ∈ ℕ ∧ 𝑗 ∈ (1...𝑥)) ∧ ¬ 𝑗 ∈ ℙ) → DECID (𝑗 ∈ ℙ ∧ ((𝑀𝑥)‘𝑗) ∈ ℕ))
51 exmiddc 831 . . . . . . . . . . 11 (DECID 𝑗 ∈ ℙ → (𝑗 ∈ ℙ ∨ ¬ 𝑗 ∈ ℙ))
5236, 51syl 14 . . . . . . . . . 10 ((𝑥 ∈ ℕ ∧ 𝑗 ∈ (1...𝑥)) → (𝑗 ∈ ℙ ∨ ¬ 𝑗 ∈ ℙ))
5345, 50, 52mpjaodan 793 . . . . . . . . 9 ((𝑥 ∈ ℕ ∧ 𝑗 ∈ (1...𝑥)) → DECID (𝑗 ∈ ℙ ∧ ((𝑀𝑥)‘𝑗) ∈ ℕ))
54 elpreima 5615 . . . . . . . . . . . 12 ((𝑀𝑥) Fn ℙ → (𝑗 ∈ ((𝑀𝑥) “ ℕ) ↔ (𝑗 ∈ ℙ ∧ ((𝑀𝑥)‘𝑗) ∈ ℕ)))
555, 12, 543syl 17 . . . . . . . . . . 11 (𝑥 ∈ ℕ → (𝑗 ∈ ((𝑀𝑥) “ ℕ) ↔ (𝑗 ∈ ℙ ∧ ((𝑀𝑥)‘𝑗) ∈ ℕ)))
5655dcbid 833 . . . . . . . . . 10 (𝑥 ∈ ℕ → (DECID 𝑗 ∈ ((𝑀𝑥) “ ℕ) ↔ DECID (𝑗 ∈ ℙ ∧ ((𝑀𝑥)‘𝑗) ∈ ℕ)))
5756adantr 274 . . . . . . . . 9 ((𝑥 ∈ ℕ ∧ 𝑗 ∈ (1...𝑥)) → (DECID 𝑗 ∈ ((𝑀𝑥) “ ℕ) ↔ DECID (𝑗 ∈ ℙ ∧ ((𝑀𝑥)‘𝑗) ∈ ℕ)))
5853, 57mpbird 166 . . . . . . . 8 ((𝑥 ∈ ℕ ∧ 𝑗 ∈ (1...𝑥)) → DECID 𝑗 ∈ ((𝑀𝑥) “ ℕ))
5958ralrimiva 2543 . . . . . . 7 (𝑥 ∈ ℕ → ∀𝑗 ∈ (1...𝑥)DECID 𝑗 ∈ ((𝑀𝑥) “ ℕ))
60 ssfidc 6912 . . . . . . 7 (((1...𝑥) ∈ Fin ∧ ((𝑀𝑥) “ ℕ) ⊆ (1...𝑥) ∧ ∀𝑗 ∈ (1...𝑥)DECID 𝑗 ∈ ((𝑀𝑥) “ ℕ)) → ((𝑀𝑥) “ ℕ) ∈ Fin)
6111, 32, 59, 60syl3anc 1233 . . . . . 6 (𝑥 ∈ ℕ → ((𝑀𝑥) “ ℕ) ∈ Fin)
62 cnveq 4785 . . . . . . . . 9 (𝑒 = (𝑀𝑥) → 𝑒 = (𝑀𝑥))
6362imaeq1d 4952 . . . . . . . 8 (𝑒 = (𝑀𝑥) → (𝑒 “ ℕ) = ((𝑀𝑥) “ ℕ))
6463eleq1d 2239 . . . . . . 7 (𝑒 = (𝑀𝑥) → ((𝑒 “ ℕ) ∈ Fin ↔ ((𝑀𝑥) “ ℕ) ∈ Fin))
65 1arith.2 . . . . . . 7 𝑅 = {𝑒 ∈ (ℕ0𝑚 ℙ) ∣ (𝑒 “ ℕ) ∈ Fin}
6664, 65elrab2 2889 . . . . . 6 ((𝑀𝑥) ∈ 𝑅 ↔ ((𝑀𝑥) ∈ (ℕ0𝑚 ℙ) ∧ ((𝑀𝑥) “ ℕ) ∈ Fin))
678, 61, 66sylanbrc 415 . . . . 5 (𝑥 ∈ ℕ → (𝑀𝑥) ∈ 𝑅)
6867rgen 2523 . . . 4 𝑥 ∈ ℕ (𝑀𝑥) ∈ 𝑅
69 ffnfv 5654 . . . 4 (𝑀:ℕ⟶𝑅 ↔ (𝑀 Fn ℕ ∧ ∀𝑥 ∈ ℕ (𝑀𝑥) ∈ 𝑅))
704, 68, 69mpbir2an 937 . . 3 𝑀:ℕ⟶𝑅
7115adantlr 474 . . . . . . . 8 (((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑞 ∈ ℙ) → ((𝑀𝑥)‘𝑞) = (𝑞 pCnt 𝑥))
7231arithlem2 12316 . . . . . . . . 9 ((𝑦 ∈ ℕ ∧ 𝑞 ∈ ℙ) → ((𝑀𝑦)‘𝑞) = (𝑞 pCnt 𝑦))
7372adantll 473 . . . . . . . 8 (((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑞 ∈ ℙ) → ((𝑀𝑦)‘𝑞) = (𝑞 pCnt 𝑦))
7471, 73eqeq12d 2185 . . . . . . 7 (((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑞 ∈ ℙ) → (((𝑀𝑥)‘𝑞) = ((𝑀𝑦)‘𝑞) ↔ (𝑞 pCnt 𝑥) = (𝑞 pCnt 𝑦)))
7574ralbidva 2466 . . . . . 6 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (∀𝑞 ∈ ℙ ((𝑀𝑥)‘𝑞) = ((𝑀𝑦)‘𝑞) ↔ ∀𝑞 ∈ ℙ (𝑞 pCnt 𝑥) = (𝑞 pCnt 𝑦)))
7631arithlem3 12317 . . . . . . 7 (𝑦 ∈ ℕ → (𝑀𝑦):ℙ⟶ℕ0)
77 ffn 5347 . . . . . . . 8 ((𝑀𝑦):ℙ⟶ℕ0 → (𝑀𝑦) Fn ℙ)
78 eqfnfv 5593 . . . . . . . 8 (((𝑀𝑥) Fn ℙ ∧ (𝑀𝑦) Fn ℙ) → ((𝑀𝑥) = (𝑀𝑦) ↔ ∀𝑞 ∈ ℙ ((𝑀𝑥)‘𝑞) = ((𝑀𝑦)‘𝑞)))
7912, 77, 78syl2an 287 . . . . . . 7 (((𝑀𝑥):ℙ⟶ℕ0 ∧ (𝑀𝑦):ℙ⟶ℕ0) → ((𝑀𝑥) = (𝑀𝑦) ↔ ∀𝑞 ∈ ℙ ((𝑀𝑥)‘𝑞) = ((𝑀𝑦)‘𝑞)))
805, 76, 79syl2an 287 . . . . . 6 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → ((𝑀𝑥) = (𝑀𝑦) ↔ ∀𝑞 ∈ ℙ ((𝑀𝑥)‘𝑞) = ((𝑀𝑦)‘𝑞)))
81 nnnn0 9142 . . . . . . 7 (𝑥 ∈ ℕ → 𝑥 ∈ ℕ0)
82 nnnn0 9142 . . . . . . 7 (𝑦 ∈ ℕ → 𝑦 ∈ ℕ0)
83 pc11 12284 . . . . . . 7 ((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) → (𝑥 = 𝑦 ↔ ∀𝑞 ∈ ℙ (𝑞 pCnt 𝑥) = (𝑞 pCnt 𝑦)))
8481, 82, 83syl2an 287 . . . . . 6 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝑥 = 𝑦 ↔ ∀𝑞 ∈ ℙ (𝑞 pCnt 𝑥) = (𝑞 pCnt 𝑦)))
8575, 80, 843bitr4d 219 . . . . 5 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → ((𝑀𝑥) = (𝑀𝑦) ↔ 𝑥 = 𝑦))
8685biimpd 143 . . . 4 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → ((𝑀𝑥) = (𝑀𝑦) → 𝑥 = 𝑦))
8786rgen2 2556 . . 3 𝑥 ∈ ℕ ∀𝑦 ∈ ℕ ((𝑀𝑥) = (𝑀𝑦) → 𝑥 = 𝑦)
88 dff13 5747 . . 3 (𝑀:ℕ–1-1𝑅 ↔ (𝑀:ℕ⟶𝑅 ∧ ∀𝑥 ∈ ℕ ∀𝑦 ∈ ℕ ((𝑀𝑥) = (𝑀𝑦) → 𝑥 = 𝑦)))
8970, 87, 88mpbir2an 937 . 2 𝑀:ℕ–1-1𝑅
90 eqid 2170 . . . . . 6 (𝑔 ∈ ℕ ↦ if(𝑔 ∈ ℙ, (𝑔↑(𝑓𝑔)), 1)) = (𝑔 ∈ ℕ ↦ if(𝑔 ∈ ℙ, (𝑔↑(𝑓𝑔)), 1))
91 cnveq 4785 . . . . . . . . . . . 12 (𝑒 = 𝑓𝑒 = 𝑓)
9291imaeq1d 4952 . . . . . . . . . . 11 (𝑒 = 𝑓 → (𝑒 “ ℕ) = (𝑓 “ ℕ))
9392eleq1d 2239 . . . . . . . . . 10 (𝑒 = 𝑓 → ((𝑒 “ ℕ) ∈ Fin ↔ (𝑓 “ ℕ) ∈ Fin))
9493, 65elrab2 2889 . . . . . . . . 9 (𝑓𝑅 ↔ (𝑓 ∈ (ℕ0𝑚 ℙ) ∧ (𝑓 “ ℕ) ∈ Fin))
9594simplbi 272 . . . . . . . 8 (𝑓𝑅𝑓 ∈ (ℕ0𝑚 ℙ))
966, 1elmap 6655 . . . . . . . 8 (𝑓 ∈ (ℕ0𝑚 ℙ) ↔ 𝑓:ℙ⟶ℕ0)
9795, 96sylib 121 . . . . . . 7 (𝑓𝑅𝑓:ℙ⟶ℕ0)
9897ad2antrr 485 . . . . . 6 (((𝑓𝑅𝑦 ∈ ℕ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) → 𝑓:ℙ⟶ℕ0)
99 simplr 525 . . . . . . 7 (((𝑓𝑅𝑦 ∈ ℕ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) → 𝑦 ∈ ℕ)
10099peano2nnd 8893 . . . . . 6 (((𝑓𝑅𝑦 ∈ ℕ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) → (𝑦 + 1) ∈ ℕ)
10199adantr 274 . . . . . . . . . . 11 ((((𝑓𝑅𝑦 ∈ ℕ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) ∧ (𝑞 ∈ ℙ ∧ (𝑦 + 1) ≤ 𝑞)) → 𝑦 ∈ ℕ)
102101nnred 8891 . . . . . . . . . 10 ((((𝑓𝑅𝑦 ∈ ℕ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) ∧ (𝑞 ∈ ℙ ∧ (𝑦 + 1) ≤ 𝑞)) → 𝑦 ∈ ℝ)
103 peano2re 8055 . . . . . . . . . . 11 (𝑦 ∈ ℝ → (𝑦 + 1) ∈ ℝ)
104102, 103syl 14 . . . . . . . . . 10 ((((𝑓𝑅𝑦 ∈ ℕ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) ∧ (𝑞 ∈ ℙ ∧ (𝑦 + 1) ≤ 𝑞)) → (𝑦 + 1) ∈ ℝ)
10523ad2antrl 487 . . . . . . . . . . 11 ((((𝑓𝑅𝑦 ∈ ℕ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) ∧ (𝑞 ∈ ℙ ∧ (𝑦 + 1) ≤ 𝑞)) → 𝑞 ∈ ℕ)
106105nnred 8891 . . . . . . . . . 10 ((((𝑓𝑅𝑦 ∈ ℕ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) ∧ (𝑞 ∈ ℙ ∧ (𝑦 + 1) ≤ 𝑞)) → 𝑞 ∈ ℝ)
107102ltp1d 8846 . . . . . . . . . 10 ((((𝑓𝑅𝑦 ∈ ℕ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) ∧ (𝑞 ∈ ℙ ∧ (𝑦 + 1) ≤ 𝑞)) → 𝑦 < (𝑦 + 1))
108 simprr 527 . . . . . . . . . 10 ((((𝑓𝑅𝑦 ∈ ℕ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) ∧ (𝑞 ∈ ℙ ∧ (𝑦 + 1) ≤ 𝑞)) → (𝑦 + 1) ≤ 𝑞)
109102, 104, 106, 107, 108ltletrd 8342 . . . . . . . . 9 ((((𝑓𝑅𝑦 ∈ ℕ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) ∧ (𝑞 ∈ ℙ ∧ (𝑦 + 1) ≤ 𝑞)) → 𝑦 < 𝑞)
110101nnzd 9333 . . . . . . . . . 10 ((((𝑓𝑅𝑦 ∈ ℕ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) ∧ (𝑞 ∈ ℙ ∧ (𝑦 + 1) ≤ 𝑞)) → 𝑦 ∈ ℤ)
11117ad2antrl 487 . . . . . . . . . 10 ((((𝑓𝑅𝑦 ∈ ℕ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) ∧ (𝑞 ∈ ℙ ∧ (𝑦 + 1) ≤ 𝑞)) → 𝑞 ∈ ℤ)
112 zltnle 9258 . . . . . . . . . 10 ((𝑦 ∈ ℤ ∧ 𝑞 ∈ ℤ) → (𝑦 < 𝑞 ↔ ¬ 𝑞𝑦))
113110, 111, 112syl2anc 409 . . . . . . . . 9 ((((𝑓𝑅𝑦 ∈ ℕ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) ∧ (𝑞 ∈ ℙ ∧ (𝑦 + 1) ≤ 𝑞)) → (𝑦 < 𝑞 ↔ ¬ 𝑞𝑦))
114109, 113mpbid 146 . . . . . . . 8 ((((𝑓𝑅𝑦 ∈ ℕ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) ∧ (𝑞 ∈ ℙ ∧ (𝑦 + 1) ≤ 𝑞)) → ¬ 𝑞𝑦)
115 simprl 526 . . . . . . . . . . 11 ((((𝑓𝑅𝑦 ∈ ℕ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) ∧ (𝑞 ∈ ℙ ∧ (𝑦 + 1) ≤ 𝑞)) → 𝑞 ∈ ℙ)
116115biantrurd 303 . . . . . . . . . 10 ((((𝑓𝑅𝑦 ∈ ℕ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) ∧ (𝑞 ∈ ℙ ∧ (𝑦 + 1) ≤ 𝑞)) → ((𝑓𝑞) ∈ ℕ ↔ (𝑞 ∈ ℙ ∧ (𝑓𝑞) ∈ ℕ)))
11797ad3antrrr 489 . . . . . . . . . . 11 ((((𝑓𝑅𝑦 ∈ ℕ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) ∧ (𝑞 ∈ ℙ ∧ (𝑦 + 1) ≤ 𝑞)) → 𝑓:ℙ⟶ℕ0)
118 ffn 5347 . . . . . . . . . . 11 (𝑓:ℙ⟶ℕ0𝑓 Fn ℙ)
119 elpreima 5615 . . . . . . . . . . 11 (𝑓 Fn ℙ → (𝑞 ∈ (𝑓 “ ℕ) ↔ (𝑞 ∈ ℙ ∧ (𝑓𝑞) ∈ ℕ)))
120117, 118, 1193syl 17 . . . . . . . . . 10 ((((𝑓𝑅𝑦 ∈ ℕ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) ∧ (𝑞 ∈ ℙ ∧ (𝑦 + 1) ≤ 𝑞)) → (𝑞 ∈ (𝑓 “ ℕ) ↔ (𝑞 ∈ ℙ ∧ (𝑓𝑞) ∈ ℕ)))
121116, 120bitr4d 190 . . . . . . . . 9 ((((𝑓𝑅𝑦 ∈ ℕ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) ∧ (𝑞 ∈ ℙ ∧ (𝑦 + 1) ≤ 𝑞)) → ((𝑓𝑞) ∈ ℕ ↔ 𝑞 ∈ (𝑓 “ ℕ)))
122 breq1 3992 . . . . . . . . . . 11 (𝑘 = 𝑞 → (𝑘𝑦𝑞𝑦))
123122rspccv 2831 . . . . . . . . . 10 (∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦 → (𝑞 ∈ (𝑓 “ ℕ) → 𝑞𝑦))
124123ad2antlr 486 . . . . . . . . 9 ((((𝑓𝑅𝑦 ∈ ℕ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) ∧ (𝑞 ∈ ℙ ∧ (𝑦 + 1) ≤ 𝑞)) → (𝑞 ∈ (𝑓 “ ℕ) → 𝑞𝑦))
125121, 124sylbid 149 . . . . . . . 8 ((((𝑓𝑅𝑦 ∈ ℕ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) ∧ (𝑞 ∈ ℙ ∧ (𝑦 + 1) ≤ 𝑞)) → ((𝑓𝑞) ∈ ℕ → 𝑞𝑦))
126114, 125mtod 658 . . . . . . 7 ((((𝑓𝑅𝑦 ∈ ℕ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) ∧ (𝑞 ∈ ℙ ∧ (𝑦 + 1) ≤ 𝑞)) → ¬ (𝑓𝑞) ∈ ℕ)
127117, 115ffvelrnd 5632 . . . . . . . . 9 ((((𝑓𝑅𝑦 ∈ ℕ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) ∧ (𝑞 ∈ ℙ ∧ (𝑦 + 1) ≤ 𝑞)) → (𝑓𝑞) ∈ ℕ0)
128 elnn0 9137 . . . . . . . . 9 ((𝑓𝑞) ∈ ℕ0 ↔ ((𝑓𝑞) ∈ ℕ ∨ (𝑓𝑞) = 0))
129127, 128sylib 121 . . . . . . . 8 ((((𝑓𝑅𝑦 ∈ ℕ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) ∧ (𝑞 ∈ ℙ ∧ (𝑦 + 1) ≤ 𝑞)) → ((𝑓𝑞) ∈ ℕ ∨ (𝑓𝑞) = 0))
130129ord 719 . . . . . . 7 ((((𝑓𝑅𝑦 ∈ ℕ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) ∧ (𝑞 ∈ ℙ ∧ (𝑦 + 1) ≤ 𝑞)) → (¬ (𝑓𝑞) ∈ ℕ → (𝑓𝑞) = 0))
131126, 130mpd 13 . . . . . 6 ((((𝑓𝑅𝑦 ∈ ℕ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) ∧ (𝑞 ∈ ℙ ∧ (𝑦 + 1) ≤ 𝑞)) → (𝑓𝑞) = 0)
1323, 90, 98, 100, 1311arithlem4 12318 . . . . 5 (((𝑓𝑅𝑦 ∈ ℕ) ∧ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦) → ∃𝑥 ∈ ℕ 𝑓 = (𝑀𝑥))
133 cnvimass 4974 . . . . . . 7 (𝑓 “ ℕ) ⊆ dom 𝑓
13497fdmd 5354 . . . . . . . 8 (𝑓𝑅 → dom 𝑓 = ℙ)
135 prmssnn 12066 . . . . . . . 8 ℙ ⊆ ℕ
136134, 135eqsstrdi 3199 . . . . . . 7 (𝑓𝑅 → dom 𝑓 ⊆ ℕ)
137133, 136sstrid 3158 . . . . . 6 (𝑓𝑅 → (𝑓 “ ℕ) ⊆ ℕ)
13894simprbi 273 . . . . . 6 (𝑓𝑅 → (𝑓 “ ℕ) ∈ Fin)
139 fiubnn 10765 . . . . . 6 (((𝑓 “ ℕ) ⊆ ℕ ∧ (𝑓 “ ℕ) ∈ Fin) → ∃𝑦 ∈ ℕ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦)
140137, 138, 139syl2anc 409 . . . . 5 (𝑓𝑅 → ∃𝑦 ∈ ℕ ∀𝑘 ∈ (𝑓 “ ℕ)𝑘𝑦)
141132, 140r19.29a 2613 . . . 4 (𝑓𝑅 → ∃𝑥 ∈ ℕ 𝑓 = (𝑀𝑥))
142141rgen 2523 . . 3 𝑓𝑅𝑥 ∈ ℕ 𝑓 = (𝑀𝑥)
143 dffo3 5643 . . 3 (𝑀:ℕ–onto𝑅 ↔ (𝑀:ℕ⟶𝑅 ∧ ∀𝑓𝑅𝑥 ∈ ℕ 𝑓 = (𝑀𝑥)))
14470, 142, 143mpbir2an 937 . 2 𝑀:ℕ–onto𝑅
145 df-f1o 5205 . 2 (𝑀:ℕ–1-1-onto𝑅 ↔ (𝑀:ℕ–1-1𝑅𝑀:ℕ–onto𝑅))
14689, 144, 145mpbir2an 937 1 𝑀:ℕ–1-1-onto𝑅
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 703  DECID wdc 829   = wceq 1348  wcel 2141  wral 2448  wrex 2449  {crab 2452  wss 3121  ifcif 3526   class class class wbr 3989  cmpt 4050  ccnv 4610  dom cdm 4611  cima 4614   Fn wfn 5193  wf 5194  1-1wf1 5195  ontowfo 5196  1-1-ontowf1o 5197  cfv 5198  (class class class)co 5853  𝑚 cmap 6626  Fincfn 6718  cr 7773  0cc0 7774  1c1 7775   + caddc 7777   < clt 7954  cle 7955  cn 8878  0cn0 9135  cz 9212  cuz 9487  ...cfz 9965  cexp 10475  cdvds 11749  cprime 12061   pCnt cpc 12238
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892  ax-arch 7893  ax-caucvg 7894
This theorem depends on definitions:  df-bi 116  df-stab 826  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-isom 5207  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-frec 6370  df-1o 6395  df-2o 6396  df-er 6513  df-map 6628  df-en 6719  df-fin 6721  df-sup 6961  df-inf 6962  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-3 8938  df-4 8939  df-n0 9136  df-xnn0 9199  df-z 9213  df-uz 9488  df-q 9579  df-rp 9611  df-fz 9966  df-fzo 10099  df-fl 10226  df-mod 10279  df-seqfrec 10402  df-exp 10476  df-cj 10806  df-re 10807  df-im 10808  df-rsqrt 10962  df-abs 10963  df-dvds 11750  df-gcd 11898  df-prm 12062  df-pc 12239
This theorem is referenced by:  1arith2  12320
  Copyright terms: Public domain W3C validator