| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > axpweq | GIF version | ||
| Description: Two equivalent ways to express the Power Set Axiom. Note that ax-pow 4237 is not used by the proof. (Contributed by NM, 22-Jun-2009.) |
| Ref | Expression |
|---|---|
| axpweq.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| axpweq | ⊢ (𝒫 𝐴 ∈ V ↔ ∃𝑥∀𝑦(∀𝑧(𝑧 ∈ 𝑦 → 𝑧 ∈ 𝐴) → 𝑦 ∈ 𝑥)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwidg 3643 | . . . 4 ⊢ (𝒫 𝐴 ∈ V → 𝒫 𝐴 ∈ 𝒫 𝒫 𝐴) | |
| 2 | pweq 3632 | . . . . . 6 ⊢ (𝑥 = 𝒫 𝐴 → 𝒫 𝑥 = 𝒫 𝒫 𝐴) | |
| 3 | 2 | eleq2d 2279 | . . . . 5 ⊢ (𝑥 = 𝒫 𝐴 → (𝒫 𝐴 ∈ 𝒫 𝑥 ↔ 𝒫 𝐴 ∈ 𝒫 𝒫 𝐴)) |
| 4 | 3 | spcegv 2871 | . . . 4 ⊢ (𝒫 𝐴 ∈ V → (𝒫 𝐴 ∈ 𝒫 𝒫 𝐴 → ∃𝑥𝒫 𝐴 ∈ 𝒫 𝑥)) |
| 5 | 1, 4 | mpd 13 | . . 3 ⊢ (𝒫 𝐴 ∈ V → ∃𝑥𝒫 𝐴 ∈ 𝒫 𝑥) |
| 6 | elex 2791 | . . . 4 ⊢ (𝒫 𝐴 ∈ 𝒫 𝑥 → 𝒫 𝐴 ∈ V) | |
| 7 | 6 | exlimiv 1624 | . . 3 ⊢ (∃𝑥𝒫 𝐴 ∈ 𝒫 𝑥 → 𝒫 𝐴 ∈ V) |
| 8 | 5, 7 | impbii 126 | . 2 ⊢ (𝒫 𝐴 ∈ V ↔ ∃𝑥𝒫 𝐴 ∈ 𝒫 𝑥) |
| 9 | vex 2782 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 10 | 9 | elpw2 4220 | . . . 4 ⊢ (𝒫 𝐴 ∈ 𝒫 𝑥 ↔ 𝒫 𝐴 ⊆ 𝑥) |
| 11 | pwss 3645 | . . . . 5 ⊢ (𝒫 𝐴 ⊆ 𝑥 ↔ ∀𝑦(𝑦 ⊆ 𝐴 → 𝑦 ∈ 𝑥)) | |
| 12 | ssalel 3192 | . . . . . . 7 ⊢ (𝑦 ⊆ 𝐴 ↔ ∀𝑧(𝑧 ∈ 𝑦 → 𝑧 ∈ 𝐴)) | |
| 13 | 12 | imbi1i 238 | . . . . . 6 ⊢ ((𝑦 ⊆ 𝐴 → 𝑦 ∈ 𝑥) ↔ (∀𝑧(𝑧 ∈ 𝑦 → 𝑧 ∈ 𝐴) → 𝑦 ∈ 𝑥)) |
| 14 | 13 | albii 1496 | . . . . 5 ⊢ (∀𝑦(𝑦 ⊆ 𝐴 → 𝑦 ∈ 𝑥) ↔ ∀𝑦(∀𝑧(𝑧 ∈ 𝑦 → 𝑧 ∈ 𝐴) → 𝑦 ∈ 𝑥)) |
| 15 | 11, 14 | bitri 184 | . . . 4 ⊢ (𝒫 𝐴 ⊆ 𝑥 ↔ ∀𝑦(∀𝑧(𝑧 ∈ 𝑦 → 𝑧 ∈ 𝐴) → 𝑦 ∈ 𝑥)) |
| 16 | 10, 15 | bitri 184 | . . 3 ⊢ (𝒫 𝐴 ∈ 𝒫 𝑥 ↔ ∀𝑦(∀𝑧(𝑧 ∈ 𝑦 → 𝑧 ∈ 𝐴) → 𝑦 ∈ 𝑥)) |
| 17 | 16 | exbii 1631 | . 2 ⊢ (∃𝑥𝒫 𝐴 ∈ 𝒫 𝑥 ↔ ∃𝑥∀𝑦(∀𝑧(𝑧 ∈ 𝑦 → 𝑧 ∈ 𝐴) → 𝑦 ∈ 𝑥)) |
| 18 | 8, 17 | bitri 184 | 1 ⊢ (𝒫 𝐴 ∈ V ↔ ∃𝑥∀𝑦(∀𝑧(𝑧 ∈ 𝑦 → 𝑧 ∈ 𝐴) → 𝑦 ∈ 𝑥)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∀wal 1373 = wceq 1375 ∃wex 1518 ∈ wcel 2180 Vcvv 2779 ⊆ wss 3177 𝒫 cpw 3629 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-ext 2191 ax-sep 4181 |
| This theorem depends on definitions: df-bi 117 df-tru 1378 df-nf 1487 df-sb 1789 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-v 2781 df-in 3183 df-ss 3190 df-pw 3631 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |