Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > axpweq | GIF version |
Description: Two equivalent ways to express the Power Set Axiom. Note that ax-pow 4169 is not used by the proof. (Contributed by NM, 22-Jun-2009.) |
Ref | Expression |
---|---|
axpweq.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
axpweq | ⊢ (𝒫 𝐴 ∈ V ↔ ∃𝑥∀𝑦(∀𝑧(𝑧 ∈ 𝑦 → 𝑧 ∈ 𝐴) → 𝑦 ∈ 𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pwidg 3586 | . . . 4 ⊢ (𝒫 𝐴 ∈ V → 𝒫 𝐴 ∈ 𝒫 𝒫 𝐴) | |
2 | pweq 3575 | . . . . . 6 ⊢ (𝑥 = 𝒫 𝐴 → 𝒫 𝑥 = 𝒫 𝒫 𝐴) | |
3 | 2 | eleq2d 2245 | . . . . 5 ⊢ (𝑥 = 𝒫 𝐴 → (𝒫 𝐴 ∈ 𝒫 𝑥 ↔ 𝒫 𝐴 ∈ 𝒫 𝒫 𝐴)) |
4 | 3 | spcegv 2823 | . . . 4 ⊢ (𝒫 𝐴 ∈ V → (𝒫 𝐴 ∈ 𝒫 𝒫 𝐴 → ∃𝑥𝒫 𝐴 ∈ 𝒫 𝑥)) |
5 | 1, 4 | mpd 13 | . . 3 ⊢ (𝒫 𝐴 ∈ V → ∃𝑥𝒫 𝐴 ∈ 𝒫 𝑥) |
6 | elex 2746 | . . . 4 ⊢ (𝒫 𝐴 ∈ 𝒫 𝑥 → 𝒫 𝐴 ∈ V) | |
7 | 6 | exlimiv 1596 | . . 3 ⊢ (∃𝑥𝒫 𝐴 ∈ 𝒫 𝑥 → 𝒫 𝐴 ∈ V) |
8 | 5, 7 | impbii 126 | . 2 ⊢ (𝒫 𝐴 ∈ V ↔ ∃𝑥𝒫 𝐴 ∈ 𝒫 𝑥) |
9 | vex 2738 | . . . . 5 ⊢ 𝑥 ∈ V | |
10 | 9 | elpw2 4152 | . . . 4 ⊢ (𝒫 𝐴 ∈ 𝒫 𝑥 ↔ 𝒫 𝐴 ⊆ 𝑥) |
11 | pwss 3588 | . . . . 5 ⊢ (𝒫 𝐴 ⊆ 𝑥 ↔ ∀𝑦(𝑦 ⊆ 𝐴 → 𝑦 ∈ 𝑥)) | |
12 | dfss2 3142 | . . . . . . 7 ⊢ (𝑦 ⊆ 𝐴 ↔ ∀𝑧(𝑧 ∈ 𝑦 → 𝑧 ∈ 𝐴)) | |
13 | 12 | imbi1i 238 | . . . . . 6 ⊢ ((𝑦 ⊆ 𝐴 → 𝑦 ∈ 𝑥) ↔ (∀𝑧(𝑧 ∈ 𝑦 → 𝑧 ∈ 𝐴) → 𝑦 ∈ 𝑥)) |
14 | 13 | albii 1468 | . . . . 5 ⊢ (∀𝑦(𝑦 ⊆ 𝐴 → 𝑦 ∈ 𝑥) ↔ ∀𝑦(∀𝑧(𝑧 ∈ 𝑦 → 𝑧 ∈ 𝐴) → 𝑦 ∈ 𝑥)) |
15 | 11, 14 | bitri 184 | . . . 4 ⊢ (𝒫 𝐴 ⊆ 𝑥 ↔ ∀𝑦(∀𝑧(𝑧 ∈ 𝑦 → 𝑧 ∈ 𝐴) → 𝑦 ∈ 𝑥)) |
16 | 10, 15 | bitri 184 | . . 3 ⊢ (𝒫 𝐴 ∈ 𝒫 𝑥 ↔ ∀𝑦(∀𝑧(𝑧 ∈ 𝑦 → 𝑧 ∈ 𝐴) → 𝑦 ∈ 𝑥)) |
17 | 16 | exbii 1603 | . 2 ⊢ (∃𝑥𝒫 𝐴 ∈ 𝒫 𝑥 ↔ ∃𝑥∀𝑦(∀𝑧(𝑧 ∈ 𝑦 → 𝑧 ∈ 𝐴) → 𝑦 ∈ 𝑥)) |
18 | 8, 17 | bitri 184 | 1 ⊢ (𝒫 𝐴 ∈ V ↔ ∃𝑥∀𝑦(∀𝑧(𝑧 ∈ 𝑦 → 𝑧 ∈ 𝐴) → 𝑦 ∈ 𝑥)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 ∀wal 1351 = wceq 1353 ∃wex 1490 ∈ wcel 2146 Vcvv 2735 ⊆ wss 3127 𝒫 cpw 3572 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 ax-sep 4116 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-v 2737 df-in 3133 df-ss 3140 df-pw 3574 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |