Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > axpweq | GIF version |
Description: Two equivalent ways to express the Power Set Axiom. Note that ax-pow 4153 is not used by the proof. (Contributed by NM, 22-Jun-2009.) |
Ref | Expression |
---|---|
axpweq.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
axpweq | ⊢ (𝒫 𝐴 ∈ V ↔ ∃𝑥∀𝑦(∀𝑧(𝑧 ∈ 𝑦 → 𝑧 ∈ 𝐴) → 𝑦 ∈ 𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pwidg 3573 | . . . 4 ⊢ (𝒫 𝐴 ∈ V → 𝒫 𝐴 ∈ 𝒫 𝒫 𝐴) | |
2 | pweq 3562 | . . . . . 6 ⊢ (𝑥 = 𝒫 𝐴 → 𝒫 𝑥 = 𝒫 𝒫 𝐴) | |
3 | 2 | eleq2d 2236 | . . . . 5 ⊢ (𝑥 = 𝒫 𝐴 → (𝒫 𝐴 ∈ 𝒫 𝑥 ↔ 𝒫 𝐴 ∈ 𝒫 𝒫 𝐴)) |
4 | 3 | spcegv 2814 | . . . 4 ⊢ (𝒫 𝐴 ∈ V → (𝒫 𝐴 ∈ 𝒫 𝒫 𝐴 → ∃𝑥𝒫 𝐴 ∈ 𝒫 𝑥)) |
5 | 1, 4 | mpd 13 | . . 3 ⊢ (𝒫 𝐴 ∈ V → ∃𝑥𝒫 𝐴 ∈ 𝒫 𝑥) |
6 | elex 2737 | . . . 4 ⊢ (𝒫 𝐴 ∈ 𝒫 𝑥 → 𝒫 𝐴 ∈ V) | |
7 | 6 | exlimiv 1586 | . . 3 ⊢ (∃𝑥𝒫 𝐴 ∈ 𝒫 𝑥 → 𝒫 𝐴 ∈ V) |
8 | 5, 7 | impbii 125 | . 2 ⊢ (𝒫 𝐴 ∈ V ↔ ∃𝑥𝒫 𝐴 ∈ 𝒫 𝑥) |
9 | vex 2729 | . . . . 5 ⊢ 𝑥 ∈ V | |
10 | 9 | elpw2 4136 | . . . 4 ⊢ (𝒫 𝐴 ∈ 𝒫 𝑥 ↔ 𝒫 𝐴 ⊆ 𝑥) |
11 | pwss 3575 | . . . . 5 ⊢ (𝒫 𝐴 ⊆ 𝑥 ↔ ∀𝑦(𝑦 ⊆ 𝐴 → 𝑦 ∈ 𝑥)) | |
12 | dfss2 3131 | . . . . . . 7 ⊢ (𝑦 ⊆ 𝐴 ↔ ∀𝑧(𝑧 ∈ 𝑦 → 𝑧 ∈ 𝐴)) | |
13 | 12 | imbi1i 237 | . . . . . 6 ⊢ ((𝑦 ⊆ 𝐴 → 𝑦 ∈ 𝑥) ↔ (∀𝑧(𝑧 ∈ 𝑦 → 𝑧 ∈ 𝐴) → 𝑦 ∈ 𝑥)) |
14 | 13 | albii 1458 | . . . . 5 ⊢ (∀𝑦(𝑦 ⊆ 𝐴 → 𝑦 ∈ 𝑥) ↔ ∀𝑦(∀𝑧(𝑧 ∈ 𝑦 → 𝑧 ∈ 𝐴) → 𝑦 ∈ 𝑥)) |
15 | 11, 14 | bitri 183 | . . . 4 ⊢ (𝒫 𝐴 ⊆ 𝑥 ↔ ∀𝑦(∀𝑧(𝑧 ∈ 𝑦 → 𝑧 ∈ 𝐴) → 𝑦 ∈ 𝑥)) |
16 | 10, 15 | bitri 183 | . . 3 ⊢ (𝒫 𝐴 ∈ 𝒫 𝑥 ↔ ∀𝑦(∀𝑧(𝑧 ∈ 𝑦 → 𝑧 ∈ 𝐴) → 𝑦 ∈ 𝑥)) |
17 | 16 | exbii 1593 | . 2 ⊢ (∃𝑥𝒫 𝐴 ∈ 𝒫 𝑥 ↔ ∃𝑥∀𝑦(∀𝑧(𝑧 ∈ 𝑦 → 𝑧 ∈ 𝐴) → 𝑦 ∈ 𝑥)) |
18 | 8, 17 | bitri 183 | 1 ⊢ (𝒫 𝐴 ∈ V ↔ ∃𝑥∀𝑦(∀𝑧(𝑧 ∈ 𝑦 → 𝑧 ∈ 𝐴) → 𝑦 ∈ 𝑥)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 ∀wal 1341 = wceq 1343 ∃wex 1480 ∈ wcel 2136 Vcvv 2726 ⊆ wss 3116 𝒫 cpw 3559 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-sep 4100 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-in 3122 df-ss 3129 df-pw 3561 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |