| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > iotabidv | GIF version | ||
| Description: Formula-building deduction for iota. (Contributed by NM, 20-Aug-2011.) |
| Ref | Expression |
|---|---|
| iotabidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| iotabidv | ⊢ (𝜑 → (℩𝑥𝜓) = (℩𝑥𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iotabidv.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | alrimiv 1920 | . 2 ⊢ (𝜑 → ∀𝑥(𝜓 ↔ 𝜒)) |
| 3 | iotabi 5288 | . 2 ⊢ (∀𝑥(𝜓 ↔ 𝜒) → (℩𝑥𝜓) = (℩𝑥𝜒)) | |
| 4 | 2, 3 | syl 14 | 1 ⊢ (𝜑 → (℩𝑥𝜓) = (℩𝑥𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∀wal 1393 = wceq 1395 ℩cio 5276 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rex 2514 df-uni 3889 df-iota 5278 |
| This theorem is referenced by: csbiotag 5311 dffv3g 5625 fveq1 5628 fveq2 5629 fvres 5653 csbfv12g 5669 fvco2 5705 riotaeqdv 5961 riotabidv 5962 riotabidva 5978 ovtposg 6411 shftval 11344 sumeq1 11874 sumeq2 11878 zsumdc 11903 isumclim3 11942 isumshft 12009 prodeq1f 12071 prodeq2w 12075 prodeq2 12076 zproddc 12098 pcval 12827 grpidvalg 13414 grpidpropdg 13415 igsumvalx 13430 gsumpropd 13433 gsumpropd2 13434 gsumress 13436 gsumval2 13438 dfur2g 13933 oppr0g 14052 oppr1g 14053 |
| Copyright terms: Public domain | W3C validator |