| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > iotabidv | GIF version | ||
| Description: Formula-building deduction for iota. (Contributed by NM, 20-Aug-2011.) |
| Ref | Expression |
|---|---|
| iotabidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| iotabidv | ⊢ (𝜑 → (℩𝑥𝜓) = (℩𝑥𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iotabidv.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | alrimiv 1900 | . 2 ⊢ (𝜑 → ∀𝑥(𝜓 ↔ 𝜒)) |
| 3 | iotabi 5264 | . 2 ⊢ (∀𝑥(𝜓 ↔ 𝜒) → (℩𝑥𝜓) = (℩𝑥𝜒)) | |
| 4 | 2, 3 | syl 14 | 1 ⊢ (𝜑 → (℩𝑥𝜓) = (℩𝑥𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∀wal 1373 = wceq 1375 ℩cio 5252 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-ext 2191 |
| This theorem depends on definitions: df-bi 117 df-tru 1378 df-nf 1487 df-sb 1789 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-rex 2494 df-uni 3868 df-iota 5254 |
| This theorem is referenced by: csbiotag 5287 dffv3g 5599 fveq1 5602 fveq2 5603 fvres 5627 csbfv12g 5641 fvco2 5676 riotaeqdv 5928 riotabidv 5929 riotabidva 5945 ovtposg 6375 shftval 11302 sumeq1 11832 sumeq2 11836 zsumdc 11861 isumclim3 11900 isumshft 11967 prodeq1f 12029 prodeq2w 12033 prodeq2 12034 zproddc 12056 pcval 12785 grpidvalg 13372 grpidpropdg 13373 igsumvalx 13388 gsumpropd 13391 gsumpropd2 13392 gsumress 13394 gsumval2 13396 dfur2g 13891 oppr0g 14010 oppr1g 14011 |
| Copyright terms: Public domain | W3C validator |