ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iotabidv GIF version

Theorem iotabidv 5181
Description: Formula-building deduction for iota. (Contributed by NM, 20-Aug-2011.)
Hypothesis
Ref Expression
iotabidv.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
iotabidv (𝜑 → (℩𝑥𝜓) = (℩𝑥𝜒))
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑥)

Proof of Theorem iotabidv
StepHypRef Expression
1 iotabidv.1 . . 3 (𝜑 → (𝜓𝜒))
21alrimiv 1867 . 2 (𝜑 → ∀𝑥(𝜓𝜒))
3 iotabi 5169 . 2 (∀𝑥(𝜓𝜒) → (℩𝑥𝜓) = (℩𝑥𝜒))
42, 3syl 14 1 (𝜑 → (℩𝑥𝜓) = (℩𝑥𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  wal 1346   = wceq 1348  cio 5158
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-rex 2454  df-uni 3797  df-iota 5160
This theorem is referenced by:  csbiotag  5191  dffv3g  5492  fveq1  5495  fveq2  5496  fvres  5520  csbfv12g  5532  fvco2  5565  riotaeqdv  5810  riotabidv  5811  riotabidva  5825  ovtposg  6238  shftval  10789  sumeq1  11318  sumeq2  11322  zsumdc  11347  isumclim3  11386  isumshft  11453  prodeq1f  11515  prodeq2w  11519  prodeq2  11520  zproddc  11542  pcval  12250  grpidvalg  12627  grpidpropdg  12628
  Copyright terms: Public domain W3C validator