![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > iotabidv | GIF version |
Description: Formula-building deduction for iota. (Contributed by NM, 20-Aug-2011.) |
Ref | Expression |
---|---|
iotabidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
iotabidv | ⊢ (𝜑 → (℩𝑥𝜓) = (℩𝑥𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iotabidv.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | alrimiv 1885 | . 2 ⊢ (𝜑 → ∀𝑥(𝜓 ↔ 𝜒)) |
3 | iotabi 5224 | . 2 ⊢ (∀𝑥(𝜓 ↔ 𝜒) → (℩𝑥𝜓) = (℩𝑥𝜒)) | |
4 | 2, 3 | syl 14 | 1 ⊢ (𝜑 → (℩𝑥𝜓) = (℩𝑥𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 ∀wal 1362 = wceq 1364 ℩cio 5213 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-rex 2478 df-uni 3836 df-iota 5215 |
This theorem is referenced by: csbiotag 5247 dffv3g 5550 fveq1 5553 fveq2 5554 fvres 5578 csbfv12g 5592 fvco2 5626 riotaeqdv 5874 riotabidv 5875 riotabidva 5890 ovtposg 6312 shftval 10969 sumeq1 11498 sumeq2 11502 zsumdc 11527 isumclim3 11566 isumshft 11633 prodeq1f 11695 prodeq2w 11699 prodeq2 11700 zproddc 11722 pcval 12434 grpidvalg 12956 grpidpropdg 12957 igsumvalx 12972 gsumpropd 12975 gsumpropd2 12976 gsumress 12978 gsumval2 12980 dfur2g 13458 oppr0g 13577 oppr1g 13578 |
Copyright terms: Public domain | W3C validator |