ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iotabidv GIF version

Theorem iotabidv 5201
Description: Formula-building deduction for iota. (Contributed by NM, 20-Aug-2011.)
Hypothesis
Ref Expression
iotabidv.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
iotabidv (𝜑 → (℩𝑥𝜓) = (℩𝑥𝜒))
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑥)

Proof of Theorem iotabidv
StepHypRef Expression
1 iotabidv.1 . . 3 (𝜑 → (𝜓𝜒))
21alrimiv 1874 . 2 (𝜑 → ∀𝑥(𝜓𝜒))
3 iotabi 5189 . 2 (∀𝑥(𝜓𝜒) → (℩𝑥𝜓) = (℩𝑥𝜒))
42, 3syl 14 1 (𝜑 → (℩𝑥𝜓) = (℩𝑥𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wal 1351   = wceq 1353  cio 5178
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-rex 2461  df-uni 3812  df-iota 5180
This theorem is referenced by:  csbiotag  5211  dffv3g  5513  fveq1  5516  fveq2  5517  fvres  5541  csbfv12g  5554  fvco2  5588  riotaeqdv  5835  riotabidv  5836  riotabidva  5850  ovtposg  6263  shftval  10837  sumeq1  11366  sumeq2  11370  zsumdc  11395  isumclim3  11434  isumshft  11501  prodeq1f  11563  prodeq2w  11567  prodeq2  11568  zproddc  11590  pcval  12299  grpidvalg  12798  grpidpropdg  12799  dfur2g  13151  oppr0g  13257  oppr1g  13258
  Copyright terms: Public domain W3C validator