![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > iotabidv | GIF version |
Description: Formula-building deduction for iota. (Contributed by NM, 20-Aug-2011.) |
Ref | Expression |
---|---|
iotabidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
iotabidv | ⊢ (𝜑 → (℩𝑥𝜓) = (℩𝑥𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iotabidv.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | alrimiv 1885 | . 2 ⊢ (𝜑 → ∀𝑥(𝜓 ↔ 𝜒)) |
3 | iotabi 5225 | . 2 ⊢ (∀𝑥(𝜓 ↔ 𝜒) → (℩𝑥𝜓) = (℩𝑥𝜒)) | |
4 | 2, 3 | syl 14 | 1 ⊢ (𝜑 → (℩𝑥𝜓) = (℩𝑥𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 ∀wal 1362 = wceq 1364 ℩cio 5214 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-rex 2478 df-uni 3837 df-iota 5216 |
This theorem is referenced by: csbiotag 5248 dffv3g 5551 fveq1 5554 fveq2 5555 fvres 5579 csbfv12g 5593 fvco2 5627 riotaeqdv 5875 riotabidv 5876 riotabidva 5891 ovtposg 6314 shftval 10972 sumeq1 11501 sumeq2 11505 zsumdc 11530 isumclim3 11569 isumshft 11636 prodeq1f 11698 prodeq2w 11702 prodeq2 11703 zproddc 11725 pcval 12437 grpidvalg 12959 grpidpropdg 12960 igsumvalx 12975 gsumpropd 12978 gsumpropd2 12979 gsumress 12981 gsumval2 12983 dfur2g 13461 oppr0g 13580 oppr1g 13581 |
Copyright terms: Public domain | W3C validator |