| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > iotabidv | GIF version | ||
| Description: Formula-building deduction for iota. (Contributed by NM, 20-Aug-2011.) |
| Ref | Expression |
|---|---|
| iotabidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| iotabidv | ⊢ (𝜑 → (℩𝑥𝜓) = (℩𝑥𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iotabidv.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | alrimiv 1888 | . 2 ⊢ (𝜑 → ∀𝑥(𝜓 ↔ 𝜒)) |
| 3 | iotabi 5229 | . 2 ⊢ (∀𝑥(𝜓 ↔ 𝜒) → (℩𝑥𝜓) = (℩𝑥𝜒)) | |
| 4 | 2, 3 | syl 14 | 1 ⊢ (𝜑 → (℩𝑥𝜓) = (℩𝑥𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∀wal 1362 = wceq 1364 ℩cio 5218 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-uni 3841 df-iota 5220 |
| This theorem is referenced by: csbiotag 5252 dffv3g 5557 fveq1 5560 fveq2 5561 fvres 5585 csbfv12g 5599 fvco2 5633 riotaeqdv 5881 riotabidv 5882 riotabidva 5897 ovtposg 6326 shftval 11009 sumeq1 11539 sumeq2 11543 zsumdc 11568 isumclim3 11607 isumshft 11674 prodeq1f 11736 prodeq2w 11740 prodeq2 11741 zproddc 11763 pcval 12492 grpidvalg 13077 grpidpropdg 13078 igsumvalx 13093 gsumpropd 13096 gsumpropd2 13097 gsumress 13099 gsumval2 13101 dfur2g 13596 oppr0g 13715 oppr1g 13716 |
| Copyright terms: Public domain | W3C validator |