ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iotabidv GIF version

Theorem iotabidv 5301
Description: Formula-building deduction for iota. (Contributed by NM, 20-Aug-2011.)
Hypothesis
Ref Expression
iotabidv.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
iotabidv (𝜑 → (℩𝑥𝜓) = (℩𝑥𝜒))
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑥)

Proof of Theorem iotabidv
StepHypRef Expression
1 iotabidv.1 . . 3 (𝜑 → (𝜓𝜒))
21alrimiv 1920 . 2 (𝜑 → ∀𝑥(𝜓𝜒))
3 iotabi 5288 . 2 (∀𝑥(𝜓𝜒) → (℩𝑥𝜓) = (℩𝑥𝜒))
42, 3syl 14 1 (𝜑 → (℩𝑥𝜓) = (℩𝑥𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wal 1393   = wceq 1395  cio 5276
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-rex 2514  df-uni 3889  df-iota 5278
This theorem is referenced by:  csbiotag  5311  dffv3g  5625  fveq1  5628  fveq2  5629  fvres  5653  csbfv12g  5669  fvco2  5705  riotaeqdv  5961  riotabidv  5962  riotabidva  5978  ovtposg  6411  shftval  11344  sumeq1  11874  sumeq2  11878  zsumdc  11903  isumclim3  11942  isumshft  12009  prodeq1f  12071  prodeq2w  12075  prodeq2  12076  zproddc  12098  pcval  12827  grpidvalg  13414  grpidpropdg  13415  igsumvalx  13430  gsumpropd  13433  gsumpropd2  13434  gsumress  13436  gsumval2  13438  dfur2g  13933  oppr0g  14052  oppr1g  14053
  Copyright terms: Public domain W3C validator