Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > moi | GIF version |
Description: Equality implied by "at most one." (Contributed by NM, 18-Feb-2006.) |
Ref | Expression |
---|---|
moi.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
moi.2 | ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜒)) |
Ref | Expression |
---|---|
moi | ⊢ (((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) ∧ ∃*𝑥𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | moi.1 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
2 | moi.2 | . . . . . 6 ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜒)) | |
3 | 1, 2 | mob 2894 | . . . . 5 ⊢ (((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) ∧ ∃*𝑥𝜑 ∧ 𝜓) → (𝐴 = 𝐵 ↔ 𝜒)) |
4 | 3 | biimprd 157 | . . . 4 ⊢ (((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) ∧ ∃*𝑥𝜑 ∧ 𝜓) → (𝜒 → 𝐴 = 𝐵)) |
5 | 4 | 3expia 1187 | . . 3 ⊢ (((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) ∧ ∃*𝑥𝜑) → (𝜓 → (𝜒 → 𝐴 = 𝐵))) |
6 | 5 | impd 252 | . 2 ⊢ (((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) ∧ ∃*𝑥𝜑) → ((𝜓 ∧ 𝜒) → 𝐴 = 𝐵)) |
7 | 6 | 3impia 1182 | 1 ⊢ (((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) ∧ ∃*𝑥𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝐴 = 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∧ w3a 963 = wceq 1335 ∃*wmo 2007 ∈ wcel 2128 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-v 2714 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |