ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  moi GIF version

Theorem moi 2986
Description: Equality implied by "at most one". (Contributed by NM, 18-Feb-2006.)
Hypotheses
Ref Expression
moi.1 (𝑥 = 𝐴 → (𝜑𝜓))
moi.2 (𝑥 = 𝐵 → (𝜑𝜒))
Assertion
Ref Expression
moi (((𝐴𝐶𝐵𝐷) ∧ ∃*𝑥𝜑 ∧ (𝜓𝜒)) → 𝐴 = 𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜒,𝑥   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝐶(𝑥)   𝐷(𝑥)

Proof of Theorem moi
StepHypRef Expression
1 moi.1 . . . . . 6 (𝑥 = 𝐴 → (𝜑𝜓))
2 moi.2 . . . . . 6 (𝑥 = 𝐵 → (𝜑𝜒))
31, 2mob 2985 . . . . 5 (((𝐴𝐶𝐵𝐷) ∧ ∃*𝑥𝜑𝜓) → (𝐴 = 𝐵𝜒))
43biimprd 158 . . . 4 (((𝐴𝐶𝐵𝐷) ∧ ∃*𝑥𝜑𝜓) → (𝜒𝐴 = 𝐵))
543expia 1229 . . 3 (((𝐴𝐶𝐵𝐷) ∧ ∃*𝑥𝜑) → (𝜓 → (𝜒𝐴 = 𝐵)))
65impd 254 . 2 (((𝐴𝐶𝐵𝐷) ∧ ∃*𝑥𝜑) → ((𝜓𝜒) → 𝐴 = 𝐵))
763impia 1224 1 (((𝐴𝐶𝐵𝐷) ∧ ∃*𝑥𝜑 ∧ (𝜓𝜒)) → 𝐴 = 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 1002   = wceq 1395  ∃*wmo 2078  wcel 2200
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator