ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  moi GIF version

Theorem moi 2909
Description: Equality implied by "at most one". (Contributed by NM, 18-Feb-2006.)
Hypotheses
Ref Expression
moi.1 (𝑥 = 𝐴 → (𝜑𝜓))
moi.2 (𝑥 = 𝐵 → (𝜑𝜒))
Assertion
Ref Expression
moi (((𝐴𝐶𝐵𝐷) ∧ ∃*𝑥𝜑 ∧ (𝜓𝜒)) → 𝐴 = 𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜒,𝑥   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝐶(𝑥)   𝐷(𝑥)

Proof of Theorem moi
StepHypRef Expression
1 moi.1 . . . . . 6 (𝑥 = 𝐴 → (𝜑𝜓))
2 moi.2 . . . . . 6 (𝑥 = 𝐵 → (𝜑𝜒))
31, 2mob 2908 . . . . 5 (((𝐴𝐶𝐵𝐷) ∧ ∃*𝑥𝜑𝜓) → (𝐴 = 𝐵𝜒))
43biimprd 157 . . . 4 (((𝐴𝐶𝐵𝐷) ∧ ∃*𝑥𝜑𝜓) → (𝜒𝐴 = 𝐵))
543expia 1195 . . 3 (((𝐴𝐶𝐵𝐷) ∧ ∃*𝑥𝜑) → (𝜓 → (𝜒𝐴 = 𝐵)))
65impd 252 . 2 (((𝐴𝐶𝐵𝐷) ∧ ∃*𝑥𝜑) → ((𝜓𝜒) → 𝐴 = 𝐵))
763impia 1190 1 (((𝐴𝐶𝐵𝐷) ∧ ∃*𝑥𝜑 ∧ (𝜓𝜒)) → 𝐴 = 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 968   = wceq 1343  ∃*wmo 2015  wcel 2136
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator