| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3impia | GIF version | ||
| Description: Importation to triple conjunction. (Contributed by NM, 13-Jun-2006.) |
| Ref | Expression |
|---|---|
| 3impia.1 | ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) |
| Ref | Expression |
|---|---|
| 3impia | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3impia.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) | |
| 2 | 1 | ex 115 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| 3 | 2 | 3imp 1196 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 981 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: mopick2 2138 3gencl 2808 mob2 2957 moi 2960 reupick3 3462 disjne 3518 disji2 4043 tz7.2 4409 funopg 5314 fvun1 5658 fvopab6 5689 isores3 5897 ovmpt4g 6081 ovmpos 6082 ov2gf 6083 ofrval 6182 poxp 6331 smoel 6399 tfr1onlemaccex 6447 tfrcllemaccex 6460 nnaass 6584 qsel 6712 xpdom3m 6944 phpm 6977 ctssdc 7230 mkvprop 7275 prarloclem3 7630 aptisr 7912 axpre-apti 8018 axapti 8163 addn0nid 8466 divvalap 8767 letrp1 8941 p1le 8942 zextle 9484 zextlt 9485 btwnnz 9487 gtndiv 9488 uzind2 9505 fzind 9508 iccleub 10073 uzsubsubfz 10189 elfz0fzfz0 10268 difelfznle 10277 elfzo0le 10331 fzonmapblen 10333 fzofzim 10334 fzosplitprm1 10385 rebtwn2zlemstep 10417 qbtwnxr 10422 icogelb 10430 expcl2lemap 10718 expclzaplem 10730 expnegzap 10740 leexp2r 10760 expnbnd 10830 bcval4 10919 bccmpl 10921 elovmpowrd 11057 ccatval2 11077 wrdl1s1 11107 swrdsb0eq 11141 absexpzap 11466 divalgb 12311 ndvdssub 12316 dvdsgcd 12408 dfgcd2 12410 rplpwr 12423 nnmindc 12430 lcmgcdlem 12474 coprmdvds1 12488 qredeq 12493 prmdvdsexpr 12547 nnnn0modprm0 12653 pcexp 12707 difsqpwdvds 12736 prmpwdvds 12753 elrestr 13154 isnmgm 13267 grpasscan1 13470 grpinvnz 13478 mulgneg2 13567 dvdsrmul1 13939 dvdsunit 13949 lmodlema 14129 mopni 15029 sincosq1lem 15372 rpcxpmul2 15460 logbgcd1irr 15514 gausslemma2dlem1a 15610 gausslemma2dlem2 15614 gausslemma2dlem4 15616 2lgsoddprmlem3 15663 |
| Copyright terms: Public domain | W3C validator |