Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3impia | GIF version |
Description: Importation to triple conjunction. (Contributed by NM, 13-Jun-2006.) |
Ref | Expression |
---|---|
3impia.1 | ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) |
Ref | Expression |
---|---|
3impia | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3impia.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) | |
2 | 1 | ex 114 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
3 | 2 | 3imp 1183 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∧ w3a 968 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 df-3an 970 |
This theorem is referenced by: mopick2 2097 3gencl 2759 mob2 2905 moi 2908 reupick3 3406 disjne 3461 disji2 3974 tz7.2 4331 funopg 5221 fvun1 5551 fvopab6 5581 isores3 5782 ovmpt4g 5960 ovmpos 5961 ov2gf 5962 ofrval 6059 poxp 6196 smoel 6264 tfr1onlemaccex 6312 tfrcllemaccex 6325 nnaass 6449 qsel 6574 xpdom3m 6796 phpm 6827 ctssdc 7074 mkvprop 7118 prarloclem3 7434 aptisr 7716 axpre-apti 7822 axapti 7965 addn0nid 8268 divvalap 8566 letrp1 8739 p1le 8740 zextle 9278 zextlt 9279 btwnnz 9281 gtndiv 9282 uzind2 9299 fzind 9302 iccleub 9863 uzsubsubfz 9978 elfz0fzfz0 10057 difelfznle 10066 elfzo0le 10116 fzonmapblen 10118 fzofzim 10119 fzosplitprm1 10165 rebtwn2zlemstep 10184 qbtwnxr 10189 icogelb 10197 expcl2lemap 10463 expclzaplem 10475 expnegzap 10485 leexp2r 10505 expnbnd 10574 bcval4 10661 bccmpl 10663 absexpzap 11018 divalgb 11858 ndvdssub 11863 dvdsgcd 11941 dfgcd2 11943 rplpwr 11956 nnmindc 11963 lcmgcdlem 12005 coprmdvds1 12019 qredeq 12024 prmdvdsexpr 12078 nnnn0modprm0 12183 pcexp 12237 difsqpwdvds 12265 prmpwdvds 12281 elrestr 12559 mopni 13082 sincosq1lem 13346 logbgcd1irr 13485 |
Copyright terms: Public domain | W3C validator |