| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > 3impia | GIF version | ||
| Description: Importation to triple conjunction. (Contributed by NM, 13-Jun-2006.) | 
| Ref | Expression | 
|---|---|
| 3impia.1 | ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) | 
| Ref | Expression | 
|---|---|
| 3impia | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 3impia.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) | |
| 2 | 1 | ex 115 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | 
| 3 | 2 | 3imp 1195 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 | 
| This theorem is referenced by: mopick2 2128 3gencl 2797 mob2 2944 moi 2947 reupick3 3448 disjne 3504 disji2 4026 tz7.2 4389 funopg 5292 fvun1 5627 fvopab6 5658 isores3 5862 ovmpt4g 6045 ovmpos 6046 ov2gf 6047 ofrval 6146 poxp 6290 smoel 6358 tfr1onlemaccex 6406 tfrcllemaccex 6419 nnaass 6543 qsel 6671 xpdom3m 6893 phpm 6926 ctssdc 7179 mkvprop 7224 prarloclem3 7564 aptisr 7846 axpre-apti 7952 axapti 8097 addn0nid 8400 divvalap 8701 letrp1 8875 p1le 8876 zextle 9417 zextlt 9418 btwnnz 9420 gtndiv 9421 uzind2 9438 fzind 9441 iccleub 10006 uzsubsubfz 10122 elfz0fzfz0 10201 difelfznle 10210 elfzo0le 10261 fzonmapblen 10263 fzofzim 10264 fzosplitprm1 10310 rebtwn2zlemstep 10342 qbtwnxr 10347 icogelb 10355 expcl2lemap 10643 expclzaplem 10655 expnegzap 10665 leexp2r 10685 expnbnd 10755 bcval4 10844 bccmpl 10846 elovmpowrd 10976 absexpzap 11245 divalgb 12090 ndvdssub 12095 dvdsgcd 12179 dfgcd2 12181 rplpwr 12194 nnmindc 12201 lcmgcdlem 12245 coprmdvds1 12259 qredeq 12264 prmdvdsexpr 12318 nnnn0modprm0 12424 pcexp 12478 difsqpwdvds 12507 prmpwdvds 12524 elrestr 12918 isnmgm 13003 grpasscan1 13195 grpinvnz 13203 mulgneg2 13286 dvdsrmul1 13658 dvdsunit 13668 lmodlema 13848 mopni 14718 sincosq1lem 15061 rpcxpmul2 15149 logbgcd1irr 15203 gausslemma2dlem1a 15299 gausslemma2dlem2 15303 gausslemma2dlem4 15305 2lgsoddprmlem3 15352 | 
| Copyright terms: Public domain | W3C validator |