| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3impia | GIF version | ||
| Description: Importation to triple conjunction. (Contributed by NM, 13-Jun-2006.) |
| Ref | Expression |
|---|---|
| 3impia.1 | ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) |
| Ref | Expression |
|---|---|
| 3impia | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3impia.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) | |
| 2 | 1 | ex 115 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| 3 | 2 | 3imp 1195 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: mopick2 2136 3gencl 2805 mob2 2952 moi 2955 reupick3 3457 disjne 3513 disji2 4036 tz7.2 4399 funopg 5302 fvun1 5639 fvopab6 5670 isores3 5874 ovmpt4g 6058 ovmpos 6059 ov2gf 6060 ofrval 6159 poxp 6308 smoel 6376 tfr1onlemaccex 6424 tfrcllemaccex 6437 nnaass 6561 qsel 6689 xpdom3m 6911 phpm 6944 ctssdc 7197 mkvprop 7242 prarloclem3 7592 aptisr 7874 axpre-apti 7980 axapti 8125 addn0nid 8428 divvalap 8729 letrp1 8903 p1le 8904 zextle 9446 zextlt 9447 btwnnz 9449 gtndiv 9450 uzind2 9467 fzind 9470 iccleub 10035 uzsubsubfz 10151 elfz0fzfz0 10230 difelfznle 10239 elfzo0le 10290 fzonmapblen 10292 fzofzim 10293 fzosplitprm1 10344 rebtwn2zlemstep 10376 qbtwnxr 10381 icogelb 10389 expcl2lemap 10677 expclzaplem 10689 expnegzap 10699 leexp2r 10719 expnbnd 10789 bcval4 10878 bccmpl 10880 elovmpowrd 11010 ccatval2 11029 absexpzap 11310 divalgb 12155 ndvdssub 12160 dvdsgcd 12252 dfgcd2 12254 rplpwr 12267 nnmindc 12274 lcmgcdlem 12318 coprmdvds1 12332 qredeq 12337 prmdvdsexpr 12391 nnnn0modprm0 12497 pcexp 12551 difsqpwdvds 12580 prmpwdvds 12597 elrestr 12997 isnmgm 13110 grpasscan1 13313 grpinvnz 13321 mulgneg2 13410 dvdsrmul1 13782 dvdsunit 13792 lmodlema 13972 mopni 14872 sincosq1lem 15215 rpcxpmul2 15303 logbgcd1irr 15357 gausslemma2dlem1a 15453 gausslemma2dlem2 15457 gausslemma2dlem4 15459 2lgsoddprmlem3 15506 |
| Copyright terms: Public domain | W3C validator |