Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3impia | GIF version |
Description: Importation to triple conjunction. (Contributed by NM, 13-Jun-2006.) |
Ref | Expression |
---|---|
3impia.1 | ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) |
Ref | Expression |
---|---|
3impia | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3impia.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) | |
2 | 1 | ex 114 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
3 | 2 | 3imp 1188 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∧ w3a 973 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 df-3an 975 |
This theorem is referenced by: mopick2 2102 3gencl 2764 mob2 2910 moi 2913 reupick3 3412 disjne 3468 disji2 3982 tz7.2 4339 funopg 5232 fvun1 5562 fvopab6 5592 isores3 5794 ovmpt4g 5975 ovmpos 5976 ov2gf 5977 ofrval 6071 poxp 6211 smoel 6279 tfr1onlemaccex 6327 tfrcllemaccex 6340 nnaass 6464 qsel 6590 xpdom3m 6812 phpm 6843 ctssdc 7090 mkvprop 7134 prarloclem3 7459 aptisr 7741 axpre-apti 7847 axapti 7990 addn0nid 8293 divvalap 8591 letrp1 8764 p1le 8765 zextle 9303 zextlt 9304 btwnnz 9306 gtndiv 9307 uzind2 9324 fzind 9327 iccleub 9888 uzsubsubfz 10003 elfz0fzfz0 10082 difelfznle 10091 elfzo0le 10141 fzonmapblen 10143 fzofzim 10144 fzosplitprm1 10190 rebtwn2zlemstep 10209 qbtwnxr 10214 icogelb 10222 expcl2lemap 10488 expclzaplem 10500 expnegzap 10510 leexp2r 10530 expnbnd 10599 bcval4 10686 bccmpl 10688 absexpzap 11044 divalgb 11884 ndvdssub 11889 dvdsgcd 11967 dfgcd2 11969 rplpwr 11982 nnmindc 11989 lcmgcdlem 12031 coprmdvds1 12045 qredeq 12050 prmdvdsexpr 12104 nnnn0modprm0 12209 pcexp 12263 difsqpwdvds 12291 prmpwdvds 12307 elrestr 12587 isnmgm 12614 grpasscan1 12762 grpinvnz 12770 mopni 13276 sincosq1lem 13540 logbgcd1irr 13679 |
Copyright terms: Public domain | W3C validator |