| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3impia | GIF version | ||
| Description: Importation to triple conjunction. (Contributed by NM, 13-Jun-2006.) |
| Ref | Expression |
|---|---|
| 3impia.1 | ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) |
| Ref | Expression |
|---|---|
| 3impia | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3impia.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) | |
| 2 | 1 | ex 115 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| 3 | 2 | 3imp 1195 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: mopick2 2128 3gencl 2797 mob2 2944 moi 2947 reupick3 3449 disjne 3505 disji2 4027 tz7.2 4390 funopg 5293 fvun1 5630 fvopab6 5661 isores3 5865 ovmpt4g 6049 ovmpos 6050 ov2gf 6051 ofrval 6150 poxp 6299 smoel 6367 tfr1onlemaccex 6415 tfrcllemaccex 6428 nnaass 6552 qsel 6680 xpdom3m 6902 phpm 6935 ctssdc 7188 mkvprop 7233 prarloclem3 7583 aptisr 7865 axpre-apti 7971 axapti 8116 addn0nid 8419 divvalap 8720 letrp1 8894 p1le 8895 zextle 9436 zextlt 9437 btwnnz 9439 gtndiv 9440 uzind2 9457 fzind 9460 iccleub 10025 uzsubsubfz 10141 elfz0fzfz0 10220 difelfznle 10229 elfzo0le 10280 fzonmapblen 10282 fzofzim 10283 fzosplitprm1 10329 rebtwn2zlemstep 10361 qbtwnxr 10366 icogelb 10374 expcl2lemap 10662 expclzaplem 10674 expnegzap 10684 leexp2r 10704 expnbnd 10774 bcval4 10863 bccmpl 10865 elovmpowrd 10995 absexpzap 11264 divalgb 12109 ndvdssub 12114 dvdsgcd 12206 dfgcd2 12208 rplpwr 12221 nnmindc 12228 lcmgcdlem 12272 coprmdvds1 12286 qredeq 12291 prmdvdsexpr 12345 nnnn0modprm0 12451 pcexp 12505 difsqpwdvds 12534 prmpwdvds 12551 elrestr 12951 isnmgm 13064 grpasscan1 13267 grpinvnz 13275 mulgneg2 13364 dvdsrmul1 13736 dvdsunit 13746 lmodlema 13926 mopni 14826 sincosq1lem 15169 rpcxpmul2 15257 logbgcd1irr 15311 gausslemma2dlem1a 15407 gausslemma2dlem2 15411 gausslemma2dlem4 15413 2lgsoddprmlem3 15460 |
| Copyright terms: Public domain | W3C validator |