Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3impia | GIF version |
Description: Importation to triple conjunction. (Contributed by NM, 13-Jun-2006.) |
Ref | Expression |
---|---|
3impia.1 | ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) |
Ref | Expression |
---|---|
3impia | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3impia.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) | |
2 | 1 | ex 114 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
3 | 2 | 3imp 1176 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∧ w3a 963 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 df-3an 965 |
This theorem is referenced by: mopick2 2089 3gencl 2746 mob2 2892 moi 2895 reupick3 3392 disjne 3447 disji2 3958 tz7.2 4314 funopg 5203 fvun1 5533 fvopab6 5563 isores3 5762 ovmpt4g 5940 ovmpos 5941 ov2gf 5942 ofrval 6039 poxp 6176 smoel 6244 tfr1onlemaccex 6292 tfrcllemaccex 6305 nnaass 6429 qsel 6554 xpdom3m 6776 phpm 6807 ctssdc 7051 mkvprop 7095 prarloclem3 7411 aptisr 7693 axpre-apti 7799 axapti 7942 addn0nid 8243 divvalap 8541 letrp1 8713 p1le 8714 zextle 9249 zextlt 9250 btwnnz 9252 gtndiv 9253 uzind2 9270 fzind 9273 iccleub 9828 uzsubsubfz 9942 elfz0fzfz0 10018 difelfznle 10027 elfzo0le 10077 fzonmapblen 10079 fzofzim 10080 fzosplitprm1 10126 rebtwn2zlemstep 10145 qbtwnxr 10150 icogelb 10158 expcl2lemap 10424 expclzaplem 10436 expnegzap 10446 leexp2r 10466 expnbnd 10534 bcval4 10619 bccmpl 10621 absexpzap 10973 divalgb 11808 ndvdssub 11813 dvdsgcd 11887 dfgcd2 11889 rplpwr 11902 lcmgcdlem 11945 coprmdvds1 11959 qredeq 11964 prmdvdsexpr 12015 elrestr 12330 mopni 12853 sincosq1lem 13117 logbgcd1irr 13255 |
Copyright terms: Public domain | W3C validator |