| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3impia | GIF version | ||
| Description: Importation to triple conjunction. (Contributed by NM, 13-Jun-2006.) |
| Ref | Expression |
|---|---|
| 3impia.1 | ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) |
| Ref | Expression |
|---|---|
| 3impia | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3impia.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) | |
| 2 | 1 | ex 115 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| 3 | 2 | 3imp 1195 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: mopick2 2136 3gencl 2805 mob2 2952 moi 2955 reupick3 3457 disjne 3513 disji2 4036 tz7.2 4400 funopg 5304 fvun1 5644 fvopab6 5675 isores3 5883 ovmpt4g 6067 ovmpos 6068 ov2gf 6069 ofrval 6168 poxp 6317 smoel 6385 tfr1onlemaccex 6433 tfrcllemaccex 6446 nnaass 6570 qsel 6698 xpdom3m 6928 phpm 6961 ctssdc 7214 mkvprop 7259 prarloclem3 7609 aptisr 7891 axpre-apti 7997 axapti 8142 addn0nid 8445 divvalap 8746 letrp1 8920 p1le 8921 zextle 9463 zextlt 9464 btwnnz 9466 gtndiv 9467 uzind2 9484 fzind 9487 iccleub 10052 uzsubsubfz 10168 elfz0fzfz0 10247 difelfznle 10256 elfzo0le 10307 fzonmapblen 10309 fzofzim 10310 fzosplitprm1 10361 rebtwn2zlemstep 10393 qbtwnxr 10398 icogelb 10406 expcl2lemap 10694 expclzaplem 10706 expnegzap 10716 leexp2r 10736 expnbnd 10806 bcval4 10895 bccmpl 10897 elovmpowrd 11033 ccatval2 11052 absexpzap 11333 divalgb 12178 ndvdssub 12183 dvdsgcd 12275 dfgcd2 12277 rplpwr 12290 nnmindc 12297 lcmgcdlem 12341 coprmdvds1 12355 qredeq 12360 prmdvdsexpr 12414 nnnn0modprm0 12520 pcexp 12574 difsqpwdvds 12603 prmpwdvds 12620 elrestr 13021 isnmgm 13134 grpasscan1 13337 grpinvnz 13345 mulgneg2 13434 dvdsrmul1 13806 dvdsunit 13816 lmodlema 13996 mopni 14896 sincosq1lem 15239 rpcxpmul2 15327 logbgcd1irr 15381 gausslemma2dlem1a 15477 gausslemma2dlem2 15481 gausslemma2dlem4 15483 2lgsoddprmlem3 15530 |
| Copyright terms: Public domain | W3C validator |