| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3impia | GIF version | ||
| Description: Importation to triple conjunction. (Contributed by NM, 13-Jun-2006.) |
| Ref | Expression |
|---|---|
| 3impia.1 | ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) |
| Ref | Expression |
|---|---|
| 3impia | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3impia.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) | |
| 2 | 1 | ex 115 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| 3 | 2 | 3imp 1217 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 1002 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 |
| This theorem is referenced by: mopick2 2161 3gencl 2834 mob2 2983 moi 2986 reupick3 3489 disjne 3545 elpr2elpr 3853 disji2 4074 tz7.2 4444 funopg 5351 fvun1 5699 fvopab6 5730 isores3 5938 ovmpt4g 6126 ovmpos 6127 ov2gf 6128 ofrval 6227 poxp 6376 smoel 6444 tfr1onlemaccex 6492 tfrcllemaccex 6505 nnaass 6629 qsel 6757 xpdom3m 6989 phpm 7023 ctssdc 7276 mkvprop 7321 prarloclem3 7680 aptisr 7962 axpre-apti 8068 axapti 8213 addn0nid 8516 divvalap 8817 letrp1 8991 p1le 8992 zextle 9534 zextlt 9535 btwnnz 9537 gtndiv 9538 uzind2 9555 fzind 9558 iccleub 10123 uzsubsubfz 10239 elfz0fzfz0 10318 difelfznle 10327 elfzo0le 10381 fzonmapblen 10383 fzofzim 10384 fzosplitprm1 10435 rebtwn2zlemstep 10467 qbtwnxr 10472 icogelb 10480 expcl2lemap 10768 expclzaplem 10780 expnegzap 10790 leexp2r 10810 expnbnd 10880 bcval4 10969 bccmpl 10971 elovmpowrd 11108 ccatval2 11128 wrdl1s1 11158 swrdsb0eq 11192 swrdccatin1 11252 pfxccatpfx2 11264 absexpzap 11586 divalgb 12431 ndvdssub 12436 dvdsgcd 12528 dfgcd2 12530 rplpwr 12543 nnmindc 12550 lcmgcdlem 12594 coprmdvds1 12608 qredeq 12613 prmdvdsexpr 12667 nnnn0modprm0 12773 pcexp 12827 difsqpwdvds 12856 prmpwdvds 12873 elrestr 13275 isnmgm 13388 grpasscan1 13591 grpinvnz 13599 mulgneg2 13688 dvdsrmul1 14060 dvdsunit 14070 lmodlema 14250 mopni 15150 sincosq1lem 15493 rpcxpmul2 15581 logbgcd1irr 15635 gausslemma2dlem1a 15731 gausslemma2dlem2 15735 gausslemma2dlem4 15737 2lgsoddprmlem3 15784 uhgredgrnv 15930 usgredg4 16007 |
| Copyright terms: Public domain | W3C validator |