ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tz7.2 GIF version

Theorem tz7.2 4389
Description: Similar to Theorem 7.2 of [TakeutiZaring] p. 35, of except that the Axiom of Regularity is not required due to antecedent E Fr 𝐴. (Contributed by NM, 4-May-1994.)
Assertion
Ref Expression
tz7.2 ((Tr 𝐴 ∧ E Fr 𝐴𝐵𝐴) → (𝐵𝐴𝐵𝐴))

Proof of Theorem tz7.2
StepHypRef Expression
1 trss 4140 . . 3 (Tr 𝐴 → (𝐵𝐴𝐵𝐴))
2 efrirr 4388 . . . . 5 ( E Fr 𝐴 → ¬ 𝐴𝐴)
3 eleq1 2259 . . . . . 6 (𝐵 = 𝐴 → (𝐵𝐴𝐴𝐴))
43notbid 668 . . . . 5 (𝐵 = 𝐴 → (¬ 𝐵𝐴 ↔ ¬ 𝐴𝐴))
52, 4syl5ibrcom 157 . . . 4 ( E Fr 𝐴 → (𝐵 = 𝐴 → ¬ 𝐵𝐴))
65necon2ad 2424 . . 3 ( E Fr 𝐴 → (𝐵𝐴𝐵𝐴))
71, 6anim12ii 343 . 2 ((Tr 𝐴 ∧ E Fr 𝐴) → (𝐵𝐴 → (𝐵𝐴𝐵𝐴)))
873impia 1202 1 ((Tr 𝐴 ∧ E Fr 𝐴𝐵𝐴) → (𝐵𝐴𝐵𝐴))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  w3a 980   = wceq 1364  wcel 2167  wne 2367  wss 3157  Tr wtr 4131   E cep 4322   Fr wfr 4363
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-tr 4132  df-eprel 4324  df-frfor 4366  df-frind 4367
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator