ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tz7.2 GIF version

Theorem tz7.2 4181
Description: Similar to Theorem 7.2 of [TakeutiZaring] p. 35, of except that the Axiom of Regularity is not required due to antecedent E Fr 𝐴. (Contributed by NM, 4-May-1994.)
Assertion
Ref Expression
tz7.2 ((Tr 𝐴 ∧ E Fr 𝐴𝐵𝐴) → (𝐵𝐴𝐵𝐴))

Proof of Theorem tz7.2
StepHypRef Expression
1 trss 3945 . . 3 (Tr 𝐴 → (𝐵𝐴𝐵𝐴))
2 efrirr 4180 . . . . 5 ( E Fr 𝐴 → ¬ 𝐴𝐴)
3 eleq1 2150 . . . . . 6 (𝐵 = 𝐴 → (𝐵𝐴𝐴𝐴))
43notbid 627 . . . . 5 (𝐵 = 𝐴 → (¬ 𝐵𝐴 ↔ ¬ 𝐴𝐴))
52, 4syl5ibrcom 155 . . . 4 ( E Fr 𝐴 → (𝐵 = 𝐴 → ¬ 𝐵𝐴))
65necon2ad 2312 . . 3 ( E Fr 𝐴 → (𝐵𝐴𝐵𝐴))
71, 6anim12ii 335 . 2 ((Tr 𝐴 ∧ E Fr 𝐴) → (𝐵𝐴 → (𝐵𝐴𝐵𝐴)))
873impia 1140 1 ((Tr 𝐴 ∧ E Fr 𝐴𝐵𝐴) → (𝐵𝐴𝐵𝐴))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 102  w3a 924   = wceq 1289  wcel 1438  wne 2255  wss 2999  Tr wtr 3936   E cep 4114   Fr wfr 4155
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3957  ax-pow 4009  ax-pr 4036
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-ral 2364  df-v 2621  df-dif 3001  df-un 3003  df-in 3005  df-ss 3012  df-pw 3431  df-sn 3452  df-pr 3453  df-op 3455  df-uni 3654  df-br 3846  df-opab 3900  df-tr 3937  df-eprel 4116  df-frfor 4158  df-frind 4159
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator