ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltne GIF version

Theorem ltne 7956
Description: 'Less than' implies not equal. See also ltap 8502 which is the same but for apartness. (Contributed by NM, 9-Oct-1999.) (Revised by Mario Carneiro, 16-Sep-2015.)
Assertion
Ref Expression
ltne ((𝐴 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐵𝐴)

Proof of Theorem ltne
StepHypRef Expression
1 ltnr 7948 . . . 4 (𝐴 ∈ ℝ → ¬ 𝐴 < 𝐴)
2 breq2 3969 . . . . 5 (𝐵 = 𝐴 → (𝐴 < 𝐵𝐴 < 𝐴))
32notbid 657 . . . 4 (𝐵 = 𝐴 → (¬ 𝐴 < 𝐵 ↔ ¬ 𝐴 < 𝐴))
41, 3syl5ibrcom 156 . . 3 (𝐴 ∈ ℝ → (𝐵 = 𝐴 → ¬ 𝐴 < 𝐵))
54necon2ad 2384 . 2 (𝐴 ∈ ℝ → (𝐴 < 𝐵𝐵𝐴))
65imp 123 1 ((𝐴 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐵𝐴)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103   = wceq 1335  wcel 2128  wne 2327   class class class wbr 3965  cr 7725   < clt 7906
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-pow 4135  ax-pr 4169  ax-un 4393  ax-setind 4495  ax-cnex 7817  ax-resscn 7818  ax-pre-ltirr 7838
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-rab 2444  df-v 2714  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-br 3966  df-opab 4026  df-xp 4591  df-pnf 7908  df-mnf 7909  df-ltxr 7911
This theorem is referenced by:  gtneii  7966  ltnei  7974  gtned  7983  gt0ne0  8296  lt0ne0  8297  gt0ne0d  8381  nngt1ne1  8862  zdceq  9233  qdceq  10139  coprm  12009  phibndlem  12079  tridceq  13598
  Copyright terms: Public domain W3C validator