ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltne GIF version

Theorem ltne 7491
Description: 'Less than' implies not equal. See also ltap 8026 which is the same but for apartness. (Contributed by NM, 9-Oct-1999.) (Revised by Mario Carneiro, 16-Sep-2015.)
Assertion
Ref Expression
ltne ((𝐴 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐵𝐴)

Proof of Theorem ltne
StepHypRef Expression
1 ltnr 7483 . . . 4 (𝐴 ∈ ℝ → ¬ 𝐴 < 𝐴)
2 breq2 3818 . . . . 5 (𝐵 = 𝐴 → (𝐴 < 𝐵𝐴 < 𝐴))
32notbid 625 . . . 4 (𝐵 = 𝐴 → (¬ 𝐴 < 𝐵 ↔ ¬ 𝐴 < 𝐴))
41, 3syl5ibrcom 155 . . 3 (𝐴 ∈ ℝ → (𝐵 = 𝐴 → ¬ 𝐴 < 𝐵))
54necon2ad 2308 . 2 (𝐴 ∈ ℝ → (𝐴 < 𝐵𝐵𝐴))
65imp 122 1 ((𝐴 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐵𝐴)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 102   = wceq 1287  wcel 1436  wne 2251   class class class wbr 3814  cr 7270   < clt 7443
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1379  ax-7 1380  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-10 1439  ax-11 1440  ax-i12 1441  ax-bndl 1442  ax-4 1443  ax-13 1447  ax-14 1448  ax-17 1462  ax-i9 1466  ax-ial 1470  ax-i5r 1471  ax-ext 2067  ax-sep 3925  ax-pow 3977  ax-pr 4003  ax-un 4227  ax-setind 4319  ax-cnex 7357  ax-resscn 7358  ax-pre-ltirr 7378
This theorem depends on definitions:  df-bi 115  df-3an 924  df-tru 1290  df-fal 1293  df-nf 1393  df-sb 1690  df-eu 1948  df-mo 1949  df-clab 2072  df-cleq 2078  df-clel 2081  df-nfc 2214  df-ne 2252  df-nel 2347  df-ral 2360  df-rex 2361  df-rab 2364  df-v 2616  df-dif 2988  df-un 2990  df-in 2992  df-ss 2999  df-pw 3411  df-sn 3431  df-pr 3432  df-op 3434  df-uni 3631  df-br 3815  df-opab 3869  df-xp 4410  df-pnf 7445  df-mnf 7446  df-ltxr 7448
This theorem is referenced by:  gtneii  7501  ltnei  7509  gtned  7518  gt0ne0  7826  lt0ne0  7827  gt0ne0d  7908  nngt1ne1  8368  zdceq  8732  qdceq  9561  coprm  10917  phibndlem  10986
  Copyright terms: Public domain W3C validator