ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ge0nemnf GIF version

Theorem ge0nemnf 9837
Description: A nonnegative extended real is greater than negative infinity. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
ge0nemnf ((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) → 𝐴 ≠ -∞)

Proof of Theorem ge0nemnf
StepHypRef Expression
1 ge0gtmnf 9836 . 2 ((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) → -∞ < 𝐴)
2 ngtmnft 9830 . . . . 5 (𝐴 ∈ ℝ* → (𝐴 = -∞ ↔ ¬ -∞ < 𝐴))
32adantr 276 . . . 4 ((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) → (𝐴 = -∞ ↔ ¬ -∞ < 𝐴))
43biimpd 144 . . 3 ((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) → (𝐴 = -∞ → ¬ -∞ < 𝐴))
54necon2ad 2414 . 2 ((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) → (-∞ < 𝐴𝐴 ≠ -∞))
61, 5mpd 13 1 ((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) → 𝐴 ≠ -∞)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105   = wceq 1363  wcel 2158  wne 2357   class class class wbr 4015  0cc0 7824  -∞cmnf 8003  *cxr 8004   < clt 8005  cle 8006
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-sep 4133  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-cnex 7915  ax-resscn 7916  ax-1re 7918  ax-addrcl 7921  ax-rnegex 7933  ax-pre-ltirr 7936  ax-pre-ltwlin 7937  ax-pre-lttrn 7938
This theorem depends on definitions:  df-bi 117  df-3or 980  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-nel 2453  df-ral 2470  df-rex 2471  df-rab 2474  df-v 2751  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-br 4016  df-opab 4077  df-po 4308  df-iso 4309  df-xp 4644  df-cnv 4646  df-pnf 8007  df-mnf 8008  df-xr 8009  df-ltxr 8010  df-le 8011
This theorem is referenced by:  xlesubadd  9896  xrbdtri  11297  isxmet2d  14119  xmetrtri  14147  xblpnfps  14169  xblpnf  14170  xblss2ps  14175  xblss2  14176
  Copyright terms: Public domain W3C validator