| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ge0nemnf | GIF version | ||
| Description: A nonnegative extended real is greater than negative infinity. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| Ref | Expression |
|---|---|
| ge0nemnf | ⊢ ((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) → 𝐴 ≠ -∞) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ge0gtmnf 10007 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) → -∞ < 𝐴) | |
| 2 | ngtmnft 10001 | . . . . 5 ⊢ (𝐴 ∈ ℝ* → (𝐴 = -∞ ↔ ¬ -∞ < 𝐴)) | |
| 3 | 2 | adantr 276 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) → (𝐴 = -∞ ↔ ¬ -∞ < 𝐴)) |
| 4 | 3 | biimpd 144 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) → (𝐴 = -∞ → ¬ -∞ < 𝐴)) |
| 5 | 4 | necon2ad 2457 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) → (-∞ < 𝐴 → 𝐴 ≠ -∞)) |
| 6 | 1, 5 | mpd 13 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) → 𝐴 ≠ -∞) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1395 ∈ wcel 2200 ≠ wne 2400 class class class wbr 4082 0cc0 7987 -∞cmnf 8167 ℝ*cxr 8168 < clt 8169 ≤ cle 8170 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-setind 4626 ax-cnex 8078 ax-resscn 8079 ax-1re 8081 ax-addrcl 8084 ax-rnegex 8096 ax-pre-ltirr 8099 ax-pre-ltwlin 8100 ax-pre-lttrn 8101 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-po 4384 df-iso 4385 df-xp 4722 df-cnv 4724 df-pnf 8171 df-mnf 8172 df-xr 8173 df-ltxr 8174 df-le 8175 |
| This theorem is referenced by: xlesubadd 10067 xrbdtri 11773 isxmet2d 15007 xmetrtri 15035 xblpnfps 15057 xblpnf 15058 xblss2ps 15063 xblss2 15064 |
| Copyright terms: Public domain | W3C validator |