ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xrltne GIF version

Theorem xrltne 9955
Description: 'Less than' implies not equal for extended reals. (Contributed by NM, 20-Jan-2006.)
Assertion
Ref Expression
xrltne ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → 𝐵𝐴)

Proof of Theorem xrltne
StepHypRef Expression
1 xrltnr 9921 . . . . 5 (𝐴 ∈ ℝ* → ¬ 𝐴 < 𝐴)
2 breq2 4055 . . . . . 6 (𝐵 = 𝐴 → (𝐴 < 𝐵𝐴 < 𝐴))
32notbid 669 . . . . 5 (𝐵 = 𝐴 → (¬ 𝐴 < 𝐵 ↔ ¬ 𝐴 < 𝐴))
41, 3syl5ibrcom 157 . . . 4 (𝐴 ∈ ℝ* → (𝐵 = 𝐴 → ¬ 𝐴 < 𝐵))
54necon2ad 2434 . . 3 (𝐴 ∈ ℝ* → (𝐴 < 𝐵𝐵𝐴))
65imp 124 . 2 ((𝐴 ∈ ℝ*𝐴 < 𝐵) → 𝐵𝐴)
763adant2 1019 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → 𝐵𝐴)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  w3a 981   = wceq 1373  wcel 2177  wne 2377   class class class wbr 4051  *cxr 8126   < clt 8127
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-cnex 8036  ax-resscn 8037  ax-pre-ltirr 8057
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-br 4052  df-opab 4114  df-xp 4689  df-pnf 8129  df-mnf 8130  df-xr 8131  df-ltxr 8132
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator