ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xrltne GIF version

Theorem xrltne 9826
Description: 'Less than' implies not equal for extended reals. (Contributed by NM, 20-Jan-2006.)
Assertion
Ref Expression
xrltne ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → 𝐵𝐴)

Proof of Theorem xrltne
StepHypRef Expression
1 xrltnr 9792 . . . . 5 (𝐴 ∈ ℝ* → ¬ 𝐴 < 𝐴)
2 breq2 4019 . . . . . 6 (𝐵 = 𝐴 → (𝐴 < 𝐵𝐴 < 𝐴))
32notbid 668 . . . . 5 (𝐵 = 𝐴 → (¬ 𝐴 < 𝐵 ↔ ¬ 𝐴 < 𝐴))
41, 3syl5ibrcom 157 . . . 4 (𝐴 ∈ ℝ* → (𝐵 = 𝐴 → ¬ 𝐴 < 𝐵))
54necon2ad 2414 . . 3 (𝐴 ∈ ℝ* → (𝐴 < 𝐵𝐵𝐴))
65imp 124 . 2 ((𝐴 ∈ ℝ*𝐴 < 𝐵) → 𝐵𝐴)
763adant2 1017 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → 𝐵𝐴)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  w3a 979   = wceq 1363  wcel 2158  wne 2357   class class class wbr 4015  *cxr 8004   < clt 8005
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-sep 4133  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-cnex 7915  ax-resscn 7916  ax-pre-ltirr 7936
This theorem depends on definitions:  df-bi 117  df-3or 980  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-nel 2453  df-ral 2470  df-rex 2471  df-rab 2474  df-v 2751  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-br 4016  df-opab 4077  df-xp 4644  df-pnf 8007  df-mnf 8008  df-xr 8009  df-ltxr 8010
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator