ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xrltne GIF version

Theorem xrltne 9815
Description: 'Less than' implies not equal for extended reals. (Contributed by NM, 20-Jan-2006.)
Assertion
Ref Expression
xrltne ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → 𝐵𝐴)

Proof of Theorem xrltne
StepHypRef Expression
1 xrltnr 9781 . . . . 5 (𝐴 ∈ ℝ* → ¬ 𝐴 < 𝐴)
2 breq2 4009 . . . . . 6 (𝐵 = 𝐴 → (𝐴 < 𝐵𝐴 < 𝐴))
32notbid 667 . . . . 5 (𝐵 = 𝐴 → (¬ 𝐴 < 𝐵 ↔ ¬ 𝐴 < 𝐴))
41, 3syl5ibrcom 157 . . . 4 (𝐴 ∈ ℝ* → (𝐵 = 𝐴 → ¬ 𝐴 < 𝐵))
54necon2ad 2404 . . 3 (𝐴 ∈ ℝ* → (𝐴 < 𝐵𝐵𝐴))
65imp 124 . 2 ((𝐴 ∈ ℝ*𝐴 < 𝐵) → 𝐵𝐴)
763adant2 1016 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → 𝐵𝐴)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  w3a 978   = wceq 1353  wcel 2148  wne 2347   class class class wbr 4005  *cxr 7993   < clt 7994
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7904  ax-resscn 7905  ax-pre-ltirr 7925
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2741  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-xp 4634  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator