ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lgsmod GIF version

Theorem lgsmod 14397
Description: The Legendre (Jacobi) symbol is preserved under reduction mod ๐‘› when ๐‘› is odd. (Contributed by Mario Carneiro, 4-Feb-2015.)
Assertion
Ref Expression
lgsmod ((๐ด โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„• โˆง ยฌ 2 โˆฅ ๐‘) โ†’ ((๐ด mod ๐‘) /L ๐‘) = (๐ด /L ๐‘))

Proof of Theorem lgsmod
Dummy variable ๐‘› is distinct from all other variables.
StepHypRef Expression
1 zmodcl 10343 . . . . . . . . . . . . . . . . 17 ((๐ด โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„•) โ†’ (๐ด mod ๐‘) โˆˆ โ„•0)
213adant3 1017 . . . . . . . . . . . . . . . 16 ((๐ด โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„• โˆง ยฌ 2 โˆฅ ๐‘) โ†’ (๐ด mod ๐‘) โˆˆ โ„•0)
32nn0zd 9372 . . . . . . . . . . . . . . 15 ((๐ด โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„• โˆง ยฌ 2 โˆฅ ๐‘) โ†’ (๐ด mod ๐‘) โˆˆ โ„ค)
43ad2antrr 488 . . . . . . . . . . . . . 14 ((((๐ด โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„• โˆง ยฌ 2 โˆฅ ๐‘) โˆง ๐‘› โˆˆ โ„™) โˆง ๐‘› โˆฅ ๐‘) โ†’ (๐ด mod ๐‘) โˆˆ โ„ค)
5 simpr 110 . . . . . . . . . . . . . . . . . 18 (((๐ด โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„• โˆง ยฌ 2 โˆฅ ๐‘) โˆง ๐‘› โˆˆ โ„™) โ†’ ๐‘› โˆˆ โ„™)
65adantr 276 . . . . . . . . . . . . . . . . 17 ((((๐ด โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„• โˆง ยฌ 2 โˆฅ ๐‘) โˆง ๐‘› โˆˆ โ„™) โˆง ๐‘› โˆฅ ๐‘) โ†’ ๐‘› โˆˆ โ„™)
7 simpl3 1002 . . . . . . . . . . . . . . . . . . . 20 (((๐ด โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„• โˆง ยฌ 2 โˆฅ ๐‘) โˆง ๐‘› โˆˆ โ„™) โ†’ ยฌ 2 โˆฅ ๐‘)
8 breq1 4006 . . . . . . . . . . . . . . . . . . . . 21 (๐‘› = 2 โ†’ (๐‘› โˆฅ ๐‘ โ†” 2 โˆฅ ๐‘))
98notbid 667 . . . . . . . . . . . . . . . . . . . 20 (๐‘› = 2 โ†’ (ยฌ ๐‘› โˆฅ ๐‘ โ†” ยฌ 2 โˆฅ ๐‘))
107, 9syl5ibrcom 157 . . . . . . . . . . . . . . . . . . 19 (((๐ด โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„• โˆง ยฌ 2 โˆฅ ๐‘) โˆง ๐‘› โˆˆ โ„™) โ†’ (๐‘› = 2 โ†’ ยฌ ๐‘› โˆฅ ๐‘))
1110necon2ad 2404 . . . . . . . . . . . . . . . . . 18 (((๐ด โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„• โˆง ยฌ 2 โˆฅ ๐‘) โˆง ๐‘› โˆˆ โ„™) โ†’ (๐‘› โˆฅ ๐‘ โ†’ ๐‘› โ‰  2))
1211imp 124 . . . . . . . . . . . . . . . . 17 ((((๐ด โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„• โˆง ยฌ 2 โˆฅ ๐‘) โˆง ๐‘› โˆˆ โ„™) โˆง ๐‘› โˆฅ ๐‘) โ†’ ๐‘› โ‰  2)
13 eldifsn 3719 . . . . . . . . . . . . . . . . 17 (๐‘› โˆˆ (โ„™ โˆ– {2}) โ†” (๐‘› โˆˆ โ„™ โˆง ๐‘› โ‰  2))
146, 12, 13sylanbrc 417 . . . . . . . . . . . . . . . 16 ((((๐ด โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„• โˆง ยฌ 2 โˆฅ ๐‘) โˆง ๐‘› โˆˆ โ„™) โˆง ๐‘› โˆฅ ๐‘) โ†’ ๐‘› โˆˆ (โ„™ โˆ– {2}))
15 oddprm 12258 . . . . . . . . . . . . . . . 16 (๐‘› โˆˆ (โ„™ โˆ– {2}) โ†’ ((๐‘› โˆ’ 1) / 2) โˆˆ โ„•)
1614, 15syl 14 . . . . . . . . . . . . . . 15 ((((๐ด โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„• โˆง ยฌ 2 โˆฅ ๐‘) โˆง ๐‘› โˆˆ โ„™) โˆง ๐‘› โˆฅ ๐‘) โ†’ ((๐‘› โˆ’ 1) / 2) โˆˆ โ„•)
1716nnnn0d 9228 . . . . . . . . . . . . . 14 ((((๐ด โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„• โˆง ยฌ 2 โˆฅ ๐‘) โˆง ๐‘› โˆˆ โ„™) โˆง ๐‘› โˆฅ ๐‘) โ†’ ((๐‘› โˆ’ 1) / 2) โˆˆ โ„•0)
18 zexpcl 10534 . . . . . . . . . . . . . 14 (((๐ด mod ๐‘) โˆˆ โ„ค โˆง ((๐‘› โˆ’ 1) / 2) โˆˆ โ„•0) โ†’ ((๐ด mod ๐‘)โ†‘((๐‘› โˆ’ 1) / 2)) โˆˆ โ„ค)
194, 17, 18syl2anc 411 . . . . . . . . . . . . 13 ((((๐ด โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„• โˆง ยฌ 2 โˆฅ ๐‘) โˆง ๐‘› โˆˆ โ„™) โˆง ๐‘› โˆฅ ๐‘) โ†’ ((๐ด mod ๐‘)โ†‘((๐‘› โˆ’ 1) / 2)) โˆˆ โ„ค)
20 zq 9625 . . . . . . . . . . . . 13 (((๐ด mod ๐‘)โ†‘((๐‘› โˆ’ 1) / 2)) โˆˆ โ„ค โ†’ ((๐ด mod ๐‘)โ†‘((๐‘› โˆ’ 1) / 2)) โˆˆ โ„š)
2119, 20syl 14 . . . . . . . . . . . 12 ((((๐ด โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„• โˆง ยฌ 2 โˆฅ ๐‘) โˆง ๐‘› โˆˆ โ„™) โˆง ๐‘› โˆฅ ๐‘) โ†’ ((๐ด mod ๐‘)โ†‘((๐‘› โˆ’ 1) / 2)) โˆˆ โ„š)
22 simpll1 1036 . . . . . . . . . . . . . 14 ((((๐ด โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„• โˆง ยฌ 2 โˆฅ ๐‘) โˆง ๐‘› โˆˆ โ„™) โˆง ๐‘› โˆฅ ๐‘) โ†’ ๐ด โˆˆ โ„ค)
23 zexpcl 10534 . . . . . . . . . . . . . 14 ((๐ด โˆˆ โ„ค โˆง ((๐‘› โˆ’ 1) / 2) โˆˆ โ„•0) โ†’ (๐ดโ†‘((๐‘› โˆ’ 1) / 2)) โˆˆ โ„ค)
2422, 17, 23syl2anc 411 . . . . . . . . . . . . 13 ((((๐ด โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„• โˆง ยฌ 2 โˆฅ ๐‘) โˆง ๐‘› โˆˆ โ„™) โˆง ๐‘› โˆฅ ๐‘) โ†’ (๐ดโ†‘((๐‘› โˆ’ 1) / 2)) โˆˆ โ„ค)
25 zq 9625 . . . . . . . . . . . . 13 ((๐ดโ†‘((๐‘› โˆ’ 1) / 2)) โˆˆ โ„ค โ†’ (๐ดโ†‘((๐‘› โˆ’ 1) / 2)) โˆˆ โ„š)
2624, 25syl 14 . . . . . . . . . . . 12 ((((๐ด โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„• โˆง ยฌ 2 โˆฅ ๐‘) โˆง ๐‘› โˆˆ โ„™) โˆง ๐‘› โˆฅ ๐‘) โ†’ (๐ดโ†‘((๐‘› โˆ’ 1) / 2)) โˆˆ โ„š)
27 1z 9278 . . . . . . . . . . . . 13 1 โˆˆ โ„ค
28 zq 9625 . . . . . . . . . . . . 13 (1 โˆˆ โ„ค โ†’ 1 โˆˆ โ„š)
2927, 28mp1i 10 . . . . . . . . . . . 12 ((((๐ด โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„• โˆง ยฌ 2 โˆฅ ๐‘) โˆง ๐‘› โˆˆ โ„™) โˆง ๐‘› โˆฅ ๐‘) โ†’ 1 โˆˆ โ„š)
30 prmz 12110 . . . . . . . . . . . . . 14 (๐‘› โˆˆ โ„™ โ†’ ๐‘› โˆˆ โ„ค)
3130ad2antlr 489 . . . . . . . . . . . . 13 ((((๐ด โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„• โˆง ยฌ 2 โˆฅ ๐‘) โˆง ๐‘› โˆˆ โ„™) โˆง ๐‘› โˆฅ ๐‘) โ†’ ๐‘› โˆˆ โ„ค)
32 zq 9625 . . . . . . . . . . . . 13 (๐‘› โˆˆ โ„ค โ†’ ๐‘› โˆˆ โ„š)
3331, 32syl 14 . . . . . . . . . . . 12 ((((๐ด โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„• โˆง ยฌ 2 โˆฅ ๐‘) โˆง ๐‘› โˆˆ โ„™) โˆง ๐‘› โˆฅ ๐‘) โ†’ ๐‘› โˆˆ โ„š)
34 prmnn 12109 . . . . . . . . . . . . . 14 (๐‘› โˆˆ โ„™ โ†’ ๐‘› โˆˆ โ„•)
3534ad2antlr 489 . . . . . . . . . . . . 13 ((((๐ด โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„• โˆง ยฌ 2 โˆฅ ๐‘) โˆง ๐‘› โˆˆ โ„™) โˆง ๐‘› โˆฅ ๐‘) โ†’ ๐‘› โˆˆ โ„•)
3635nngt0d 8962 . . . . . . . . . . . 12 ((((๐ด โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„• โˆง ยฌ 2 โˆฅ ๐‘) โˆง ๐‘› โˆˆ โ„™) โˆง ๐‘› โˆฅ ๐‘) โ†’ 0 < ๐‘›)
37 simp2 998 . . . . . . . . . . . . . . . . 17 ((๐ด โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„• โˆง ยฌ 2 โˆฅ ๐‘) โ†’ ๐‘ โˆˆ โ„•)
3837ad2antrr 488 . . . . . . . . . . . . . . . 16 ((((๐ด โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„• โˆง ยฌ 2 โˆฅ ๐‘) โˆง ๐‘› โˆˆ โ„™) โˆง ๐‘› โˆฅ ๐‘) โ†’ ๐‘ โˆˆ โ„•)
3938nnzd 9373 . . . . . . . . . . . . . . 15 ((((๐ด โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„• โˆง ยฌ 2 โˆฅ ๐‘) โˆง ๐‘› โˆˆ โ„™) โˆง ๐‘› โˆฅ ๐‘) โ†’ ๐‘ โˆˆ โ„ค)
404, 22zsubcld 9379 . . . . . . . . . . . . . . 15 ((((๐ด โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„• โˆง ยฌ 2 โˆฅ ๐‘) โˆง ๐‘› โˆˆ โ„™) โˆง ๐‘› โˆฅ ๐‘) โ†’ ((๐ด mod ๐‘) โˆ’ ๐ด) โˆˆ โ„ค)
41 simpr 110 . . . . . . . . . . . . . . 15 ((((๐ด โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„• โˆง ยฌ 2 โˆฅ ๐‘) โˆง ๐‘› โˆˆ โ„™) โˆง ๐‘› โˆฅ ๐‘) โ†’ ๐‘› โˆฅ ๐‘)
42 zq 9625 . . . . . . . . . . . . . . . . . 18 (๐ด โˆˆ โ„ค โ†’ ๐ด โˆˆ โ„š)
4322, 42syl 14 . . . . . . . . . . . . . . . . 17 ((((๐ด โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„• โˆง ยฌ 2 โˆฅ ๐‘) โˆง ๐‘› โˆˆ โ„™) โˆง ๐‘› โˆฅ ๐‘) โ†’ ๐ด โˆˆ โ„š)
44 zq 9625 . . . . . . . . . . . . . . . . . 18 (๐‘ โˆˆ โ„ค โ†’ ๐‘ โˆˆ โ„š)
4539, 44syl 14 . . . . . . . . . . . . . . . . 17 ((((๐ด โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„• โˆง ยฌ 2 โˆฅ ๐‘) โˆง ๐‘› โˆˆ โ„™) โˆง ๐‘› โˆฅ ๐‘) โ†’ ๐‘ โˆˆ โ„š)
4638nngt0d 8962 . . . . . . . . . . . . . . . . 17 ((((๐ด โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„• โˆง ยฌ 2 โˆฅ ๐‘) โˆง ๐‘› โˆˆ โ„™) โˆง ๐‘› โˆฅ ๐‘) โ†’ 0 < ๐‘)
47 modqabs2 10357 . . . . . . . . . . . . . . . . 17 ((๐ด โˆˆ โ„š โˆง ๐‘ โˆˆ โ„š โˆง 0 < ๐‘) โ†’ ((๐ด mod ๐‘) mod ๐‘) = (๐ด mod ๐‘))
4843, 45, 46, 47syl3anc 1238 . . . . . . . . . . . . . . . 16 ((((๐ด โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„• โˆง ยฌ 2 โˆฅ ๐‘) โˆง ๐‘› โˆˆ โ„™) โˆง ๐‘› โˆฅ ๐‘) โ†’ ((๐ด mod ๐‘) mod ๐‘) = (๐ด mod ๐‘))
49 moddvds 11805 . . . . . . . . . . . . . . . . 17 ((๐‘ โˆˆ โ„• โˆง (๐ด mod ๐‘) โˆˆ โ„ค โˆง ๐ด โˆˆ โ„ค) โ†’ (((๐ด mod ๐‘) mod ๐‘) = (๐ด mod ๐‘) โ†” ๐‘ โˆฅ ((๐ด mod ๐‘) โˆ’ ๐ด)))
5038, 4, 22, 49syl3anc 1238 . . . . . . . . . . . . . . . 16 ((((๐ด โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„• โˆง ยฌ 2 โˆฅ ๐‘) โˆง ๐‘› โˆˆ โ„™) โˆง ๐‘› โˆฅ ๐‘) โ†’ (((๐ด mod ๐‘) mod ๐‘) = (๐ด mod ๐‘) โ†” ๐‘ โˆฅ ((๐ด mod ๐‘) โˆ’ ๐ด)))
5148, 50mpbid 147 . . . . . . . . . . . . . . 15 ((((๐ด โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„• โˆง ยฌ 2 โˆฅ ๐‘) โˆง ๐‘› โˆˆ โ„™) โˆง ๐‘› โˆฅ ๐‘) โ†’ ๐‘ โˆฅ ((๐ด mod ๐‘) โˆ’ ๐ด))
5231, 39, 40, 41, 51dvdstrd 11836 . . . . . . . . . . . . . 14 ((((๐ด โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„• โˆง ยฌ 2 โˆฅ ๐‘) โˆง ๐‘› โˆˆ โ„™) โˆง ๐‘› โˆฅ ๐‘) โ†’ ๐‘› โˆฅ ((๐ด mod ๐‘) โˆ’ ๐ด))
53 moddvds 11805 . . . . . . . . . . . . . . 15 ((๐‘› โˆˆ โ„• โˆง (๐ด mod ๐‘) โˆˆ โ„ค โˆง ๐ด โˆˆ โ„ค) โ†’ (((๐ด mod ๐‘) mod ๐‘›) = (๐ด mod ๐‘›) โ†” ๐‘› โˆฅ ((๐ด mod ๐‘) โˆ’ ๐ด)))
5435, 4, 22, 53syl3anc 1238 . . . . . . . . . . . . . 14 ((((๐ด โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„• โˆง ยฌ 2 โˆฅ ๐‘) โˆง ๐‘› โˆˆ โ„™) โˆง ๐‘› โˆฅ ๐‘) โ†’ (((๐ด mod ๐‘) mod ๐‘›) = (๐ด mod ๐‘›) โ†” ๐‘› โˆฅ ((๐ด mod ๐‘) โˆ’ ๐ด)))
5552, 54mpbird 167 . . . . . . . . . . . . 13 ((((๐ด โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„• โˆง ยฌ 2 โˆฅ ๐‘) โˆง ๐‘› โˆˆ โ„™) โˆง ๐‘› โˆฅ ๐‘) โ†’ ((๐ด mod ๐‘) mod ๐‘›) = (๐ด mod ๐‘›))
564, 22, 17, 33, 36, 55modqexp 10646 . . . . . . . . . . . 12 ((((๐ด โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„• โˆง ยฌ 2 โˆฅ ๐‘) โˆง ๐‘› โˆˆ โ„™) โˆง ๐‘› โˆฅ ๐‘) โ†’ (((๐ด mod ๐‘)โ†‘((๐‘› โˆ’ 1) / 2)) mod ๐‘›) = ((๐ดโ†‘((๐‘› โˆ’ 1) / 2)) mod ๐‘›))
5721, 26, 29, 33, 36, 56modqadd1 10360 . . . . . . . . . . 11 ((((๐ด โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„• โˆง ยฌ 2 โˆฅ ๐‘) โˆง ๐‘› โˆˆ โ„™) โˆง ๐‘› โˆฅ ๐‘) โ†’ ((((๐ด mod ๐‘)โ†‘((๐‘› โˆ’ 1) / 2)) + 1) mod ๐‘›) = (((๐ดโ†‘((๐‘› โˆ’ 1) / 2)) + 1) mod ๐‘›))
5857oveq1d 5889 . . . . . . . . . 10 ((((๐ด โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„• โˆง ยฌ 2 โˆฅ ๐‘) โˆง ๐‘› โˆˆ โ„™) โˆง ๐‘› โˆฅ ๐‘) โ†’ (((((๐ด mod ๐‘)โ†‘((๐‘› โˆ’ 1) / 2)) + 1) mod ๐‘›) โˆ’ 1) = ((((๐ดโ†‘((๐‘› โˆ’ 1) / 2)) + 1) mod ๐‘›) โˆ’ 1))
59 lgsval3 14389 . . . . . . . . . . 11 (((๐ด mod ๐‘) โˆˆ โ„ค โˆง ๐‘› โˆˆ (โ„™ โˆ– {2})) โ†’ ((๐ด mod ๐‘) /L ๐‘›) = (((((๐ด mod ๐‘)โ†‘((๐‘› โˆ’ 1) / 2)) + 1) mod ๐‘›) โˆ’ 1))
604, 14, 59syl2anc 411 . . . . . . . . . 10 ((((๐ด โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„• โˆง ยฌ 2 โˆฅ ๐‘) โˆง ๐‘› โˆˆ โ„™) โˆง ๐‘› โˆฅ ๐‘) โ†’ ((๐ด mod ๐‘) /L ๐‘›) = (((((๐ด mod ๐‘)โ†‘((๐‘› โˆ’ 1) / 2)) + 1) mod ๐‘›) โˆ’ 1))
61 lgsval3 14389 . . . . . . . . . . 11 ((๐ด โˆˆ โ„ค โˆง ๐‘› โˆˆ (โ„™ โˆ– {2})) โ†’ (๐ด /L ๐‘›) = ((((๐ดโ†‘((๐‘› โˆ’ 1) / 2)) + 1) mod ๐‘›) โˆ’ 1))
6222, 14, 61syl2anc 411 . . . . . . . . . 10 ((((๐ด โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„• โˆง ยฌ 2 โˆฅ ๐‘) โˆง ๐‘› โˆˆ โ„™) โˆง ๐‘› โˆฅ ๐‘) โ†’ (๐ด /L ๐‘›) = ((((๐ดโ†‘((๐‘› โˆ’ 1) / 2)) + 1) mod ๐‘›) โˆ’ 1))
6358, 60, 623eqtr4d 2220 . . . . . . . . 9 ((((๐ด โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„• โˆง ยฌ 2 โˆฅ ๐‘) โˆง ๐‘› โˆˆ โ„™) โˆง ๐‘› โˆฅ ๐‘) โ†’ ((๐ด mod ๐‘) /L ๐‘›) = (๐ด /L ๐‘›))
6463oveq1d 5889 . . . . . . . 8 ((((๐ด โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„• โˆง ยฌ 2 โˆฅ ๐‘) โˆง ๐‘› โˆˆ โ„™) โˆง ๐‘› โˆฅ ๐‘) โ†’ (((๐ด mod ๐‘) /L ๐‘›)โ†‘(๐‘› pCnt ๐‘)) = ((๐ด /L ๐‘›)โ†‘(๐‘› pCnt ๐‘)))
653ad2antrr 488 . . . . . . . . . . . . 13 ((((๐ด โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„• โˆง ยฌ 2 โˆฅ ๐‘) โˆง ๐‘› โˆˆ โ„™) โˆง ยฌ ๐‘› โˆฅ ๐‘) โ†’ (๐ด mod ๐‘) โˆˆ โ„ค)
6630ad2antlr 489 . . . . . . . . . . . . 13 ((((๐ด โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„• โˆง ยฌ 2 โˆฅ ๐‘) โˆง ๐‘› โˆˆ โ„™) โˆง ยฌ ๐‘› โˆฅ ๐‘) โ†’ ๐‘› โˆˆ โ„ค)
67 lgscl 14385 . . . . . . . . . . . . 13 (((๐ด mod ๐‘) โˆˆ โ„ค โˆง ๐‘› โˆˆ โ„ค) โ†’ ((๐ด mod ๐‘) /L ๐‘›) โˆˆ โ„ค)
6865, 66, 67syl2anc 411 . . . . . . . . . . . 12 ((((๐ด โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„• โˆง ยฌ 2 โˆฅ ๐‘) โˆง ๐‘› โˆˆ โ„™) โˆง ยฌ ๐‘› โˆฅ ๐‘) โ†’ ((๐ด mod ๐‘) /L ๐‘›) โˆˆ โ„ค)
6968zcnd 9375 . . . . . . . . . . 11 ((((๐ด โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„• โˆง ยฌ 2 โˆฅ ๐‘) โˆง ๐‘› โˆˆ โ„™) โˆง ยฌ ๐‘› โˆฅ ๐‘) โ†’ ((๐ด mod ๐‘) /L ๐‘›) โˆˆ โ„‚)
7069exp0d 10647 . . . . . . . . . 10 ((((๐ด โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„• โˆง ยฌ 2 โˆฅ ๐‘) โˆง ๐‘› โˆˆ โ„™) โˆง ยฌ ๐‘› โˆฅ ๐‘) โ†’ (((๐ด mod ๐‘) /L ๐‘›)โ†‘0) = 1)
71 simpll1 1036 . . . . . . . . . . . . 13 ((((๐ด โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„• โˆง ยฌ 2 โˆฅ ๐‘) โˆง ๐‘› โˆˆ โ„™) โˆง ยฌ ๐‘› โˆฅ ๐‘) โ†’ ๐ด โˆˆ โ„ค)
72 lgscl 14385 . . . . . . . . . . . . 13 ((๐ด โˆˆ โ„ค โˆง ๐‘› โˆˆ โ„ค) โ†’ (๐ด /L ๐‘›) โˆˆ โ„ค)
7371, 66, 72syl2anc 411 . . . . . . . . . . . 12 ((((๐ด โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„• โˆง ยฌ 2 โˆฅ ๐‘) โˆง ๐‘› โˆˆ โ„™) โˆง ยฌ ๐‘› โˆฅ ๐‘) โ†’ (๐ด /L ๐‘›) โˆˆ โ„ค)
7473zcnd 9375 . . . . . . . . . . 11 ((((๐ด โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„• โˆง ยฌ 2 โˆฅ ๐‘) โˆง ๐‘› โˆˆ โ„™) โˆง ยฌ ๐‘› โˆฅ ๐‘) โ†’ (๐ด /L ๐‘›) โˆˆ โ„‚)
7574exp0d 10647 . . . . . . . . . 10 ((((๐ด โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„• โˆง ยฌ 2 โˆฅ ๐‘) โˆง ๐‘› โˆˆ โ„™) โˆง ยฌ ๐‘› โˆฅ ๐‘) โ†’ ((๐ด /L ๐‘›)โ†‘0) = 1)
7670, 75eqtr4d 2213 . . . . . . . . 9 ((((๐ด โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„• โˆง ยฌ 2 โˆฅ ๐‘) โˆง ๐‘› โˆˆ โ„™) โˆง ยฌ ๐‘› โˆฅ ๐‘) โ†’ (((๐ด mod ๐‘) /L ๐‘›)โ†‘0) = ((๐ด /L ๐‘›)โ†‘0))
7737adantr 276 . . . . . . . . . . . 12 (((๐ด โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„• โˆง ยฌ 2 โˆฅ ๐‘) โˆง ๐‘› โˆˆ โ„™) โ†’ ๐‘ โˆˆ โ„•)
78 pceq0 12320 . . . . . . . . . . . 12 ((๐‘› โˆˆ โ„™ โˆง ๐‘ โˆˆ โ„•) โ†’ ((๐‘› pCnt ๐‘) = 0 โ†” ยฌ ๐‘› โˆฅ ๐‘))
795, 77, 78syl2anc 411 . . . . . . . . . . 11 (((๐ด โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„• โˆง ยฌ 2 โˆฅ ๐‘) โˆง ๐‘› โˆˆ โ„™) โ†’ ((๐‘› pCnt ๐‘) = 0 โ†” ยฌ ๐‘› โˆฅ ๐‘))
8079biimpar 297 . . . . . . . . . 10 ((((๐ด โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„• โˆง ยฌ 2 โˆฅ ๐‘) โˆง ๐‘› โˆˆ โ„™) โˆง ยฌ ๐‘› โˆฅ ๐‘) โ†’ (๐‘› pCnt ๐‘) = 0)
8180oveq2d 5890 . . . . . . . . 9 ((((๐ด โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„• โˆง ยฌ 2 โˆฅ ๐‘) โˆง ๐‘› โˆˆ โ„™) โˆง ยฌ ๐‘› โˆฅ ๐‘) โ†’ (((๐ด mod ๐‘) /L ๐‘›)โ†‘(๐‘› pCnt ๐‘)) = (((๐ด mod ๐‘) /L ๐‘›)โ†‘0))
8280oveq2d 5890 . . . . . . . . 9 ((((๐ด โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„• โˆง ยฌ 2 โˆฅ ๐‘) โˆง ๐‘› โˆˆ โ„™) โˆง ยฌ ๐‘› โˆฅ ๐‘) โ†’ ((๐ด /L ๐‘›)โ†‘(๐‘› pCnt ๐‘)) = ((๐ด /L ๐‘›)โ†‘0))
8376, 81, 823eqtr4d 2220 . . . . . . . 8 ((((๐ด โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„• โˆง ยฌ 2 โˆฅ ๐‘) โˆง ๐‘› โˆˆ โ„™) โˆง ยฌ ๐‘› โˆฅ ๐‘) โ†’ (((๐ด mod ๐‘) /L ๐‘›)โ†‘(๐‘› pCnt ๐‘)) = ((๐ด /L ๐‘›)โ†‘(๐‘› pCnt ๐‘)))
8434adantl 277 . . . . . . . . . 10 (((๐ด โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„• โˆง ยฌ 2 โˆฅ ๐‘) โˆง ๐‘› โˆˆ โ„™) โ†’ ๐‘› โˆˆ โ„•)
8577nnzd 9373 . . . . . . . . . 10 (((๐ด โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„• โˆง ยฌ 2 โˆฅ ๐‘) โˆง ๐‘› โˆˆ โ„™) โ†’ ๐‘ โˆˆ โ„ค)
86 dvdsdc 11804 . . . . . . . . . 10 ((๐‘› โˆˆ โ„• โˆง ๐‘ โˆˆ โ„ค) โ†’ DECID ๐‘› โˆฅ ๐‘)
8784, 85, 86syl2anc 411 . . . . . . . . 9 (((๐ด โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„• โˆง ยฌ 2 โˆฅ ๐‘) โˆง ๐‘› โˆˆ โ„™) โ†’ DECID ๐‘› โˆฅ ๐‘)
88 exmiddc 836 . . . . . . . . 9 (DECID ๐‘› โˆฅ ๐‘ โ†’ (๐‘› โˆฅ ๐‘ โˆจ ยฌ ๐‘› โˆฅ ๐‘))
8987, 88syl 14 . . . . . . . 8 (((๐ด โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„• โˆง ยฌ 2 โˆฅ ๐‘) โˆง ๐‘› โˆˆ โ„™) โ†’ (๐‘› โˆฅ ๐‘ โˆจ ยฌ ๐‘› โˆฅ ๐‘))
9064, 83, 89mpjaodan 798 . . . . . . 7 (((๐ด โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„• โˆง ยฌ 2 โˆฅ ๐‘) โˆง ๐‘› โˆˆ โ„™) โ†’ (((๐ด mod ๐‘) /L ๐‘›)โ†‘(๐‘› pCnt ๐‘)) = ((๐ด /L ๐‘›)โ†‘(๐‘› pCnt ๐‘)))
9190adantlr 477 . . . . . 6 ((((๐ด โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„• โˆง ยฌ 2 โˆฅ ๐‘) โˆง ๐‘› โˆˆ โ„•) โˆง ๐‘› โˆˆ โ„™) โ†’ (((๐ด mod ๐‘) /L ๐‘›)โ†‘(๐‘› pCnt ๐‘)) = ((๐ด /L ๐‘›)โ†‘(๐‘› pCnt ๐‘)))
92 prmdc 12129 . . . . . . 7 (๐‘› โˆˆ โ„• โ†’ DECID ๐‘› โˆˆ โ„™)
9392adantl 277 . . . . . 6 (((๐ด โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„• โˆง ยฌ 2 โˆฅ ๐‘) โˆง ๐‘› โˆˆ โ„•) โ†’ DECID ๐‘› โˆˆ โ„™)
9491, 93ifeq1dadc 3564 . . . . 5 (((๐ด โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„• โˆง ยฌ 2 โˆฅ ๐‘) โˆง ๐‘› โˆˆ โ„•) โ†’ if(๐‘› โˆˆ โ„™, (((๐ด mod ๐‘) /L ๐‘›)โ†‘(๐‘› pCnt ๐‘)), 1) = if(๐‘› โˆˆ โ„™, ((๐ด /L ๐‘›)โ†‘(๐‘› pCnt ๐‘)), 1))
9594mpteq2dva 4093 . . . 4 ((๐ด โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„• โˆง ยฌ 2 โˆฅ ๐‘) โ†’ (๐‘› โˆˆ โ„• โ†ฆ if(๐‘› โˆˆ โ„™, (((๐ด mod ๐‘) /L ๐‘›)โ†‘(๐‘› pCnt ๐‘)), 1)) = (๐‘› โˆˆ โ„• โ†ฆ if(๐‘› โˆˆ โ„™, ((๐ด /L ๐‘›)โ†‘(๐‘› pCnt ๐‘)), 1)))
9695seqeq3d 10452 . . 3 ((๐ด โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„• โˆง ยฌ 2 โˆฅ ๐‘) โ†’ seq1( ยท , (๐‘› โˆˆ โ„• โ†ฆ if(๐‘› โˆˆ โ„™, (((๐ด mod ๐‘) /L ๐‘›)โ†‘(๐‘› pCnt ๐‘)), 1))) = seq1( ยท , (๐‘› โˆˆ โ„• โ†ฆ if(๐‘› โˆˆ โ„™, ((๐ด /L ๐‘›)โ†‘(๐‘› pCnt ๐‘)), 1))))
9796fveq1d 5517 . 2 ((๐ด โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„• โˆง ยฌ 2 โˆฅ ๐‘) โ†’ (seq1( ยท , (๐‘› โˆˆ โ„• โ†ฆ if(๐‘› โˆˆ โ„™, (((๐ด mod ๐‘) /L ๐‘›)โ†‘(๐‘› pCnt ๐‘)), 1)))โ€˜๐‘) = (seq1( ยท , (๐‘› โˆˆ โ„• โ†ฆ if(๐‘› โˆˆ โ„™, ((๐ด /L ๐‘›)โ†‘(๐‘› pCnt ๐‘)), 1)))โ€˜๐‘))
98 eqid 2177 . . . 4 (๐‘› โˆˆ โ„• โ†ฆ if(๐‘› โˆˆ โ„™, (((๐ด mod ๐‘) /L ๐‘›)โ†‘(๐‘› pCnt ๐‘)), 1)) = (๐‘› โˆˆ โ„• โ†ฆ if(๐‘› โˆˆ โ„™, (((๐ด mod ๐‘) /L ๐‘›)โ†‘(๐‘› pCnt ๐‘)), 1))
9998lgsval4a 14393 . . 3 (((๐ด mod ๐‘) โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„•) โ†’ ((๐ด mod ๐‘) /L ๐‘) = (seq1( ยท , (๐‘› โˆˆ โ„• โ†ฆ if(๐‘› โˆˆ โ„™, (((๐ด mod ๐‘) /L ๐‘›)โ†‘(๐‘› pCnt ๐‘)), 1)))โ€˜๐‘))
1003, 37, 99syl2anc 411 . 2 ((๐ด โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„• โˆง ยฌ 2 โˆฅ ๐‘) โ†’ ((๐ด mod ๐‘) /L ๐‘) = (seq1( ยท , (๐‘› โˆˆ โ„• โ†ฆ if(๐‘› โˆˆ โ„™, (((๐ด mod ๐‘) /L ๐‘›)โ†‘(๐‘› pCnt ๐‘)), 1)))โ€˜๐‘))
101 eqid 2177 . . . 4 (๐‘› โˆˆ โ„• โ†ฆ if(๐‘› โˆˆ โ„™, ((๐ด /L ๐‘›)โ†‘(๐‘› pCnt ๐‘)), 1)) = (๐‘› โˆˆ โ„• โ†ฆ if(๐‘› โˆˆ โ„™, ((๐ด /L ๐‘›)โ†‘(๐‘› pCnt ๐‘)), 1))
102101lgsval4a 14393 . . 3 ((๐ด โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„•) โ†’ (๐ด /L ๐‘) = (seq1( ยท , (๐‘› โˆˆ โ„• โ†ฆ if(๐‘› โˆˆ โ„™, ((๐ด /L ๐‘›)โ†‘(๐‘› pCnt ๐‘)), 1)))โ€˜๐‘))
1031023adant3 1017 . 2 ((๐ด โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„• โˆง ยฌ 2 โˆฅ ๐‘) โ†’ (๐ด /L ๐‘) = (seq1( ยท , (๐‘› โˆˆ โ„• โ†ฆ if(๐‘› โˆˆ โ„™, ((๐ด /L ๐‘›)โ†‘(๐‘› pCnt ๐‘)), 1)))โ€˜๐‘))
10497, 100, 1033eqtr4d 2220 1 ((๐ด โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„• โˆง ยฌ 2 โˆฅ ๐‘) โ†’ ((๐ด mod ๐‘) /L ๐‘) = (๐ด /L ๐‘))
Colors of variables: wff set class
Syntax hints:  ยฌ wn 3   โ†’ wi 4   โˆง wa 104   โ†” wb 105   โˆจ wo 708  DECID wdc 834   โˆง w3a 978   = wceq 1353   โˆˆ wcel 2148   โ‰  wne 2347   โˆ– cdif 3126  ifcif 3534  {csn 3592   class class class wbr 4003   โ†ฆ cmpt 4064  โ€˜cfv 5216  (class class class)co 5874  0cc0 7810  1c1 7811   + caddc 7813   ยท cmul 7815   < clt 7991   โˆ’ cmin 8127   / cdiv 8628  โ„•cn 8918  2c2 8969  โ„•0cn0 9175  โ„คcz 9252  โ„šcq 9618   mod cmo 10321  seqcseq 10444  โ†‘cexp 10518   โˆฅ cdvds 11793  โ„™cprime 12106   pCnt cpc 12283   /L clgs 14368
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4118  ax-sep 4121  ax-nul 4129  ax-pow 4174  ax-pr 4209  ax-un 4433  ax-setind 4536  ax-iinf 4587  ax-cnex 7901  ax-resscn 7902  ax-1cn 7903  ax-1re 7904  ax-icn 7905  ax-addcl 7906  ax-addrcl 7907  ax-mulcl 7908  ax-mulrcl 7909  ax-addcom 7910  ax-mulcom 7911  ax-addass 7912  ax-mulass 7913  ax-distr 7914  ax-i2m1 7915  ax-0lt1 7916  ax-1rid 7917  ax-0id 7918  ax-rnegex 7919  ax-precex 7920  ax-cnre 7921  ax-pre-ltirr 7922  ax-pre-ltwlin 7923  ax-pre-lttrn 7924  ax-pre-apti 7925  ax-pre-ltadd 7926  ax-pre-mulgt0 7927  ax-pre-mulext 7928  ax-arch 7929  ax-caucvg 7930
This theorem depends on definitions:  df-bi 117  df-stab 831  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-xor 1376  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-int 3845  df-iun 3888  df-br 4004  df-opab 4065  df-mpt 4066  df-tr 4102  df-id 4293  df-po 4296  df-iso 4297  df-iord 4366  df-on 4368  df-ilim 4369  df-suc 4371  df-iom 4590  df-xp 4632  df-rel 4633  df-cnv 4634  df-co 4635  df-dm 4636  df-rn 4637  df-res 4638  df-ima 4639  df-iota 5178  df-fun 5218  df-fn 5219  df-f 5220  df-f1 5221  df-fo 5222  df-f1o 5223  df-fv 5224  df-isom 5225  df-riota 5830  df-ov 5877  df-oprab 5878  df-mpo 5879  df-1st 6140  df-2nd 6141  df-recs 6305  df-irdg 6370  df-frec 6391  df-1o 6416  df-2o 6417  df-oadd 6420  df-er 6534  df-en 6740  df-dom 6741  df-fin 6742  df-sup 6982  df-inf 6983  df-pnf 7993  df-mnf 7994  df-xr 7995  df-ltxr 7996  df-le 7997  df-sub 8129  df-neg 8130  df-reap 8531  df-ap 8538  df-div 8629  df-inn 8919  df-2 8977  df-3 8978  df-4 8979  df-5 8980  df-6 8981  df-7 8982  df-8 8983  df-n0 9176  df-z 9253  df-uz 9528  df-q 9619  df-rp 9653  df-fz 10008  df-fzo 10142  df-fl 10269  df-mod 10322  df-seqfrec 10445  df-exp 10519  df-ihash 10755  df-cj 10850  df-re 10851  df-im 10852  df-rsqrt 11006  df-abs 11007  df-clim 11286  df-proddc 11558  df-dvds 11794  df-gcd 11943  df-prm 12107  df-phi 12210  df-pc 12284  df-lgs 14369
This theorem is referenced by:  lgsmodeq  14416
  Copyright terms: Public domain W3C validator