ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lgsmod GIF version

Theorem lgsmod 15142
Description: The Legendre (Jacobi) symbol is preserved under reduction mod 𝑛 when 𝑛 is odd. (Contributed by Mario Carneiro, 4-Feb-2015.)
Assertion
Ref Expression
lgsmod ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → ((𝐴 mod 𝑁) /L 𝑁) = (𝐴 /L 𝑁))

Proof of Theorem lgsmod
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 zmodcl 10415 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝐴 mod 𝑁) ∈ ℕ0)
213adant3 1019 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → (𝐴 mod 𝑁) ∈ ℕ0)
32nn0zd 9437 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → (𝐴 mod 𝑁) ∈ ℤ)
43ad2antrr 488 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ 𝑛𝑁) → (𝐴 mod 𝑁) ∈ ℤ)
5 simpr 110 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) → 𝑛 ∈ ℙ)
65adantr 276 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ 𝑛𝑁) → 𝑛 ∈ ℙ)
7 simpl3 1004 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) → ¬ 2 ∥ 𝑁)
8 breq1 4032 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 = 2 → (𝑛𝑁 ↔ 2 ∥ 𝑁))
98notbid 668 . . . . . . . . . . . . . . . . . . . 20 (𝑛 = 2 → (¬ 𝑛𝑁 ↔ ¬ 2 ∥ 𝑁))
107, 9syl5ibrcom 157 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) → (𝑛 = 2 → ¬ 𝑛𝑁))
1110necon2ad 2421 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) → (𝑛𝑁𝑛 ≠ 2))
1211imp 124 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ 𝑛𝑁) → 𝑛 ≠ 2)
13 eldifsn 3745 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ (ℙ ∖ {2}) ↔ (𝑛 ∈ ℙ ∧ 𝑛 ≠ 2))
146, 12, 13sylanbrc 417 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ 𝑛𝑁) → 𝑛 ∈ (ℙ ∖ {2}))
15 oddprm 12397 . . . . . . . . . . . . . . . 16 (𝑛 ∈ (ℙ ∖ {2}) → ((𝑛 − 1) / 2) ∈ ℕ)
1614, 15syl 14 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ 𝑛𝑁) → ((𝑛 − 1) / 2) ∈ ℕ)
1716nnnn0d 9293 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ 𝑛𝑁) → ((𝑛 − 1) / 2) ∈ ℕ0)
18 zexpcl 10625 . . . . . . . . . . . . . 14 (((𝐴 mod 𝑁) ∈ ℤ ∧ ((𝑛 − 1) / 2) ∈ ℕ0) → ((𝐴 mod 𝑁)↑((𝑛 − 1) / 2)) ∈ ℤ)
194, 17, 18syl2anc 411 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ 𝑛𝑁) → ((𝐴 mod 𝑁)↑((𝑛 − 1) / 2)) ∈ ℤ)
20 zq 9691 . . . . . . . . . . . . 13 (((𝐴 mod 𝑁)↑((𝑛 − 1) / 2)) ∈ ℤ → ((𝐴 mod 𝑁)↑((𝑛 − 1) / 2)) ∈ ℚ)
2119, 20syl 14 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ 𝑛𝑁) → ((𝐴 mod 𝑁)↑((𝑛 − 1) / 2)) ∈ ℚ)
22 simpll1 1038 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ 𝑛𝑁) → 𝐴 ∈ ℤ)
23 zexpcl 10625 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℤ ∧ ((𝑛 − 1) / 2) ∈ ℕ0) → (𝐴↑((𝑛 − 1) / 2)) ∈ ℤ)
2422, 17, 23syl2anc 411 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ 𝑛𝑁) → (𝐴↑((𝑛 − 1) / 2)) ∈ ℤ)
25 zq 9691 . . . . . . . . . . . . 13 ((𝐴↑((𝑛 − 1) / 2)) ∈ ℤ → (𝐴↑((𝑛 − 1) / 2)) ∈ ℚ)
2624, 25syl 14 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ 𝑛𝑁) → (𝐴↑((𝑛 − 1) / 2)) ∈ ℚ)
27 1z 9343 . . . . . . . . . . . . 13 1 ∈ ℤ
28 zq 9691 . . . . . . . . . . . . 13 (1 ∈ ℤ → 1 ∈ ℚ)
2927, 28mp1i 10 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ 𝑛𝑁) → 1 ∈ ℚ)
30 prmz 12249 . . . . . . . . . . . . . 14 (𝑛 ∈ ℙ → 𝑛 ∈ ℤ)
3130ad2antlr 489 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ 𝑛𝑁) → 𝑛 ∈ ℤ)
32 zq 9691 . . . . . . . . . . . . 13 (𝑛 ∈ ℤ → 𝑛 ∈ ℚ)
3331, 32syl 14 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ 𝑛𝑁) → 𝑛 ∈ ℚ)
34 prmnn 12248 . . . . . . . . . . . . . 14 (𝑛 ∈ ℙ → 𝑛 ∈ ℕ)
3534ad2antlr 489 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ 𝑛𝑁) → 𝑛 ∈ ℕ)
3635nngt0d 9026 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ 𝑛𝑁) → 0 < 𝑛)
37 simp2 1000 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → 𝑁 ∈ ℕ)
3837ad2antrr 488 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ 𝑛𝑁) → 𝑁 ∈ ℕ)
3938nnzd 9438 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ 𝑛𝑁) → 𝑁 ∈ ℤ)
404, 22zsubcld 9444 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ 𝑛𝑁) → ((𝐴 mod 𝑁) − 𝐴) ∈ ℤ)
41 simpr 110 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ 𝑛𝑁) → 𝑛𝑁)
42 zq 9691 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ ℤ → 𝐴 ∈ ℚ)
4322, 42syl 14 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ 𝑛𝑁) → 𝐴 ∈ ℚ)
44 zq 9691 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℤ → 𝑁 ∈ ℚ)
4539, 44syl 14 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ 𝑛𝑁) → 𝑁 ∈ ℚ)
4638nngt0d 9026 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ 𝑛𝑁) → 0 < 𝑁)
47 modqabs2 10429 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℚ ∧ 0 < 𝑁) → ((𝐴 mod 𝑁) mod 𝑁) = (𝐴 mod 𝑁))
4843, 45, 46, 47syl3anc 1249 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ 𝑛𝑁) → ((𝐴 mod 𝑁) mod 𝑁) = (𝐴 mod 𝑁))
49 moddvds 11942 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℕ ∧ (𝐴 mod 𝑁) ∈ ℤ ∧ 𝐴 ∈ ℤ) → (((𝐴 mod 𝑁) mod 𝑁) = (𝐴 mod 𝑁) ↔ 𝑁 ∥ ((𝐴 mod 𝑁) − 𝐴)))
5038, 4, 22, 49syl3anc 1249 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ 𝑛𝑁) → (((𝐴 mod 𝑁) mod 𝑁) = (𝐴 mod 𝑁) ↔ 𝑁 ∥ ((𝐴 mod 𝑁) − 𝐴)))
5148, 50mpbid 147 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ 𝑛𝑁) → 𝑁 ∥ ((𝐴 mod 𝑁) − 𝐴))
5231, 39, 40, 41, 51dvdstrd 11973 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ 𝑛𝑁) → 𝑛 ∥ ((𝐴 mod 𝑁) − 𝐴))
53 moddvds 11942 . . . . . . . . . . . . . . 15 ((𝑛 ∈ ℕ ∧ (𝐴 mod 𝑁) ∈ ℤ ∧ 𝐴 ∈ ℤ) → (((𝐴 mod 𝑁) mod 𝑛) = (𝐴 mod 𝑛) ↔ 𝑛 ∥ ((𝐴 mod 𝑁) − 𝐴)))
5435, 4, 22, 53syl3anc 1249 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ 𝑛𝑁) → (((𝐴 mod 𝑁) mod 𝑛) = (𝐴 mod 𝑛) ↔ 𝑛 ∥ ((𝐴 mod 𝑁) − 𝐴)))
5552, 54mpbird 167 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ 𝑛𝑁) → ((𝐴 mod 𝑁) mod 𝑛) = (𝐴 mod 𝑛))
564, 22, 17, 33, 36, 55modqexp 10737 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ 𝑛𝑁) → (((𝐴 mod 𝑁)↑((𝑛 − 1) / 2)) mod 𝑛) = ((𝐴↑((𝑛 − 1) / 2)) mod 𝑛))
5721, 26, 29, 33, 36, 56modqadd1 10432 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ 𝑛𝑁) → ((((𝐴 mod 𝑁)↑((𝑛 − 1) / 2)) + 1) mod 𝑛) = (((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛))
5857oveq1d 5933 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ 𝑛𝑁) → (((((𝐴 mod 𝑁)↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1) = ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))
59 lgsval3 15134 . . . . . . . . . . 11 (((𝐴 mod 𝑁) ∈ ℤ ∧ 𝑛 ∈ (ℙ ∖ {2})) → ((𝐴 mod 𝑁) /L 𝑛) = (((((𝐴 mod 𝑁)↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))
604, 14, 59syl2anc 411 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ 𝑛𝑁) → ((𝐴 mod 𝑁) /L 𝑛) = (((((𝐴 mod 𝑁)↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))
61 lgsval3 15134 . . . . . . . . . . 11 ((𝐴 ∈ ℤ ∧ 𝑛 ∈ (ℙ ∖ {2})) → (𝐴 /L 𝑛) = ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))
6222, 14, 61syl2anc 411 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ 𝑛𝑁) → (𝐴 /L 𝑛) = ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))
6358, 60, 623eqtr4d 2236 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ 𝑛𝑁) → ((𝐴 mod 𝑁) /L 𝑛) = (𝐴 /L 𝑛))
6463oveq1d 5933 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ 𝑛𝑁) → (((𝐴 mod 𝑁) /L 𝑛)↑(𝑛 pCnt 𝑁)) = ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)))
653ad2antrr 488 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ ¬ 𝑛𝑁) → (𝐴 mod 𝑁) ∈ ℤ)
6630ad2antlr 489 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ ¬ 𝑛𝑁) → 𝑛 ∈ ℤ)
67 lgscl 15130 . . . . . . . . . . . . 13 (((𝐴 mod 𝑁) ∈ ℤ ∧ 𝑛 ∈ ℤ) → ((𝐴 mod 𝑁) /L 𝑛) ∈ ℤ)
6865, 66, 67syl2anc 411 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ ¬ 𝑛𝑁) → ((𝐴 mod 𝑁) /L 𝑛) ∈ ℤ)
6968zcnd 9440 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ ¬ 𝑛𝑁) → ((𝐴 mod 𝑁) /L 𝑛) ∈ ℂ)
7069exp0d 10738 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ ¬ 𝑛𝑁) → (((𝐴 mod 𝑁) /L 𝑛)↑0) = 1)
71 simpll1 1038 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ ¬ 𝑛𝑁) → 𝐴 ∈ ℤ)
72 lgscl 15130 . . . . . . . . . . . . 13 ((𝐴 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (𝐴 /L 𝑛) ∈ ℤ)
7371, 66, 72syl2anc 411 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ ¬ 𝑛𝑁) → (𝐴 /L 𝑛) ∈ ℤ)
7473zcnd 9440 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ ¬ 𝑛𝑁) → (𝐴 /L 𝑛) ∈ ℂ)
7574exp0d 10738 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ ¬ 𝑛𝑁) → ((𝐴 /L 𝑛)↑0) = 1)
7670, 75eqtr4d 2229 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ ¬ 𝑛𝑁) → (((𝐴 mod 𝑁) /L 𝑛)↑0) = ((𝐴 /L 𝑛)↑0))
7737adantr 276 . . . . . . . . . . . 12 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) → 𝑁 ∈ ℕ)
78 pceq0 12460 . . . . . . . . . . . 12 ((𝑛 ∈ ℙ ∧ 𝑁 ∈ ℕ) → ((𝑛 pCnt 𝑁) = 0 ↔ ¬ 𝑛𝑁))
795, 77, 78syl2anc 411 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) → ((𝑛 pCnt 𝑁) = 0 ↔ ¬ 𝑛𝑁))
8079biimpar 297 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ ¬ 𝑛𝑁) → (𝑛 pCnt 𝑁) = 0)
8180oveq2d 5934 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ ¬ 𝑛𝑁) → (((𝐴 mod 𝑁) /L 𝑛)↑(𝑛 pCnt 𝑁)) = (((𝐴 mod 𝑁) /L 𝑛)↑0))
8280oveq2d 5934 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ ¬ 𝑛𝑁) → ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)) = ((𝐴 /L 𝑛)↑0))
8376, 81, 823eqtr4d 2236 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) ∧ ¬ 𝑛𝑁) → (((𝐴 mod 𝑁) /L 𝑛)↑(𝑛 pCnt 𝑁)) = ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)))
8434adantl 277 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) → 𝑛 ∈ ℕ)
8577nnzd 9438 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) → 𝑁 ∈ ℤ)
86 dvdsdc 11941 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ 𝑁 ∈ ℤ) → DECID 𝑛𝑁)
8784, 85, 86syl2anc 411 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) → DECID 𝑛𝑁)
88 exmiddc 837 . . . . . . . . 9 (DECID 𝑛𝑁 → (𝑛𝑁 ∨ ¬ 𝑛𝑁))
8987, 88syl 14 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) → (𝑛𝑁 ∨ ¬ 𝑛𝑁))
9064, 83, 89mpjaodan 799 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℙ) → (((𝐴 mod 𝑁) /L 𝑛)↑(𝑛 pCnt 𝑁)) = ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)))
9190adantlr 477 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℕ) ∧ 𝑛 ∈ ℙ) → (((𝐴 mod 𝑁) /L 𝑛)↑(𝑛 pCnt 𝑁)) = ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)))
92 prmdc 12268 . . . . . . 7 (𝑛 ∈ ℕ → DECID 𝑛 ∈ ℙ)
9392adantl 277 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℕ) → DECID 𝑛 ∈ ℙ)
9491, 93ifeq1dadc 3587 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) ∧ 𝑛 ∈ ℕ) → if(𝑛 ∈ ℙ, (((𝐴 mod 𝑁) /L 𝑛)↑(𝑛 pCnt 𝑁)), 1) = if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))
9594mpteq2dva 4119 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (((𝐴 mod 𝑁) /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)) = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))
9695seqeq3d 10526 . . 3 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (((𝐴 mod 𝑁) /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))) = seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))))
9796fveq1d 5556 . 2 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (((𝐴 mod 𝑁) /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘𝑁) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘𝑁))
98 eqid 2193 . . . 4 (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (((𝐴 mod 𝑁) /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)) = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (((𝐴 mod 𝑁) /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))
9998lgsval4a 15138 . . 3 (((𝐴 mod 𝑁) ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝐴 mod 𝑁) /L 𝑁) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (((𝐴 mod 𝑁) /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘𝑁))
1003, 37, 99syl2anc 411 . 2 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → ((𝐴 mod 𝑁) /L 𝑁) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (((𝐴 mod 𝑁) /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘𝑁))
101 eqid 2193 . . . 4 (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)) = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1))
102101lgsval4a 15138 . . 3 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝐴 /L 𝑁) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘𝑁))
1031023adant3 1019 . 2 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → (𝐴 /L 𝑁) = (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑁)), 1)))‘𝑁))
10497, 100, 1033eqtr4d 2236 1 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → ((𝐴 mod 𝑁) /L 𝑁) = (𝐴 /L 𝑁))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709  DECID wdc 835  w3a 980   = wceq 1364  wcel 2164  wne 2364  cdif 3150  ifcif 3557  {csn 3618   class class class wbr 4029  cmpt 4090  cfv 5254  (class class class)co 5918  0cc0 7872  1c1 7873   + caddc 7875   · cmul 7877   < clt 8054  cmin 8190   / cdiv 8691  cn 8982  2c2 9033  0cn0 9240  cz 9317  cq 9684   mod cmo 10393  seqcseq 10518  cexp 10609  cdvds 11930  cprime 12245   pCnt cpc 12422   /L clgs 15113
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990  ax-arch 7991  ax-caucvg 7992
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-xor 1387  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-isom 5263  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-irdg 6423  df-frec 6444  df-1o 6469  df-2o 6470  df-oadd 6473  df-er 6587  df-en 6795  df-dom 6796  df-fin 6797  df-sup 7043  df-inf 7044  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-5 9044  df-6 9045  df-7 9046  df-8 9047  df-n0 9241  df-z 9318  df-uz 9593  df-q 9685  df-rp 9720  df-fz 10075  df-fzo 10209  df-fl 10339  df-mod 10394  df-seqfrec 10519  df-exp 10610  df-ihash 10847  df-cj 10986  df-re 10987  df-im 10988  df-rsqrt 11142  df-abs 11143  df-clim 11422  df-proddc 11694  df-dvds 11931  df-gcd 12080  df-prm 12246  df-phi 12349  df-pc 12423  df-lgs 15114
This theorem is referenced by:  lgsmodeq  15161
  Copyright terms: Public domain W3C validator