![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > renfdisj | GIF version |
Description: The reals and the infinities are disjoint. (Contributed by NM, 25-Oct-2005.) (Proof shortened by Andrew Salmon, 19-Nov-2011.) |
Ref | Expression |
---|---|
renfdisj | ⊢ (ℝ ∩ {+∞, -∞}) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | disj 3473 | . 2 ⊢ ((ℝ ∩ {+∞, -∞}) = ∅ ↔ ∀𝑥 ∈ ℝ ¬ 𝑥 ∈ {+∞, -∞}) | |
2 | vex 2742 | . . . . 5 ⊢ 𝑥 ∈ V | |
3 | 2 | elpr 3615 | . . . 4 ⊢ (𝑥 ∈ {+∞, -∞} ↔ (𝑥 = +∞ ∨ 𝑥 = -∞)) |
4 | renepnf 8008 | . . . . . 6 ⊢ (𝑥 ∈ ℝ → 𝑥 ≠ +∞) | |
5 | 4 | necon2bi 2402 | . . . . 5 ⊢ (𝑥 = +∞ → ¬ 𝑥 ∈ ℝ) |
6 | renemnf 8009 | . . . . . 6 ⊢ (𝑥 ∈ ℝ → 𝑥 ≠ -∞) | |
7 | 6 | necon2bi 2402 | . . . . 5 ⊢ (𝑥 = -∞ → ¬ 𝑥 ∈ ℝ) |
8 | 5, 7 | jaoi 716 | . . . 4 ⊢ ((𝑥 = +∞ ∨ 𝑥 = -∞) → ¬ 𝑥 ∈ ℝ) |
9 | 3, 8 | sylbi 121 | . . 3 ⊢ (𝑥 ∈ {+∞, -∞} → ¬ 𝑥 ∈ ℝ) |
10 | 9 | con2i 627 | . 2 ⊢ (𝑥 ∈ ℝ → ¬ 𝑥 ∈ {+∞, -∞}) |
11 | 1, 10 | mprgbir 2535 | 1 ⊢ (ℝ ∩ {+∞, -∞}) = ∅ |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ∨ wo 708 = wceq 1353 ∈ wcel 2148 ∩ cin 3130 ∅c0 3424 {cpr 3595 ℝcr 7813 +∞cpnf 7992 -∞cmnf 7993 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-un 4435 ax-setind 4538 ax-cnex 7905 ax-resscn 7906 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-rab 2464 df-v 2741 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-pw 3579 df-sn 3600 df-pr 3601 df-uni 3812 df-pnf 7997 df-mnf 7998 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |