| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > renfdisj | GIF version | ||
| Description: The reals and the infinities are disjoint. (Contributed by NM, 25-Oct-2005.) (Proof shortened by Andrew Salmon, 19-Nov-2011.) |
| Ref | Expression |
|---|---|
| renfdisj | ⊢ (ℝ ∩ {+∞, -∞}) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | disj 3508 | . 2 ⊢ ((ℝ ∩ {+∞, -∞}) = ∅ ↔ ∀𝑥 ∈ ℝ ¬ 𝑥 ∈ {+∞, -∞}) | |
| 2 | vex 2774 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 3 | 2 | elpr 3653 | . . . 4 ⊢ (𝑥 ∈ {+∞, -∞} ↔ (𝑥 = +∞ ∨ 𝑥 = -∞)) |
| 4 | renepnf 8102 | . . . . . 6 ⊢ (𝑥 ∈ ℝ → 𝑥 ≠ +∞) | |
| 5 | 4 | necon2bi 2430 | . . . . 5 ⊢ (𝑥 = +∞ → ¬ 𝑥 ∈ ℝ) |
| 6 | renemnf 8103 | . . . . . 6 ⊢ (𝑥 ∈ ℝ → 𝑥 ≠ -∞) | |
| 7 | 6 | necon2bi 2430 | . . . . 5 ⊢ (𝑥 = -∞ → ¬ 𝑥 ∈ ℝ) |
| 8 | 5, 7 | jaoi 717 | . . . 4 ⊢ ((𝑥 = +∞ ∨ 𝑥 = -∞) → ¬ 𝑥 ∈ ℝ) |
| 9 | 3, 8 | sylbi 121 | . . 3 ⊢ (𝑥 ∈ {+∞, -∞} → ¬ 𝑥 ∈ ℝ) |
| 10 | 9 | con2i 628 | . 2 ⊢ (𝑥 ∈ ℝ → ¬ 𝑥 ∈ {+∞, -∞}) |
| 11 | 1, 10 | mprgbir 2563 | 1 ⊢ (ℝ ∩ {+∞, -∞}) = ∅ |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 ∨ wo 709 = wceq 1372 ∈ wcel 2175 ∩ cin 3164 ∅c0 3459 {cpr 3633 ℝcr 7906 +∞cpnf 8086 -∞cmnf 8087 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-un 4478 ax-setind 4583 ax-cnex 7998 ax-resscn 7999 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-rab 2492 df-v 2773 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-uni 3850 df-pnf 8091 df-mnf 8092 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |