| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > renfdisj | GIF version | ||
| Description: The reals and the infinities are disjoint. (Contributed by NM, 25-Oct-2005.) (Proof shortened by Andrew Salmon, 19-Nov-2011.) |
| Ref | Expression |
|---|---|
| renfdisj | ⊢ (ℝ ∩ {+∞, -∞}) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | disj 3540 | . 2 ⊢ ((ℝ ∩ {+∞, -∞}) = ∅ ↔ ∀𝑥 ∈ ℝ ¬ 𝑥 ∈ {+∞, -∞}) | |
| 2 | vex 2802 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 3 | 2 | elpr 3687 | . . . 4 ⊢ (𝑥 ∈ {+∞, -∞} ↔ (𝑥 = +∞ ∨ 𝑥 = -∞)) |
| 4 | renepnf 8190 | . . . . . 6 ⊢ (𝑥 ∈ ℝ → 𝑥 ≠ +∞) | |
| 5 | 4 | necon2bi 2455 | . . . . 5 ⊢ (𝑥 = +∞ → ¬ 𝑥 ∈ ℝ) |
| 6 | renemnf 8191 | . . . . . 6 ⊢ (𝑥 ∈ ℝ → 𝑥 ≠ -∞) | |
| 7 | 6 | necon2bi 2455 | . . . . 5 ⊢ (𝑥 = -∞ → ¬ 𝑥 ∈ ℝ) |
| 8 | 5, 7 | jaoi 721 | . . . 4 ⊢ ((𝑥 = +∞ ∨ 𝑥 = -∞) → ¬ 𝑥 ∈ ℝ) |
| 9 | 3, 8 | sylbi 121 | . . 3 ⊢ (𝑥 ∈ {+∞, -∞} → ¬ 𝑥 ∈ ℝ) |
| 10 | 9 | con2i 630 | . 2 ⊢ (𝑥 ∈ ℝ → ¬ 𝑥 ∈ {+∞, -∞}) |
| 11 | 1, 10 | mprgbir 2588 | 1 ⊢ (ℝ ∩ {+∞, -∞}) = ∅ |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 ∨ wo 713 = wceq 1395 ∈ wcel 2200 ∩ cin 3196 ∅c0 3491 {cpr 3667 ℝcr 7994 +∞cpnf 8174 -∞cmnf 8175 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-un 4523 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-uni 3888 df-pnf 8179 df-mnf 8180 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |