![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > renfdisj | GIF version |
Description: The reals and the infinities are disjoint. (Contributed by NM, 25-Oct-2005.) (Proof shortened by Andrew Salmon, 19-Nov-2011.) |
Ref | Expression |
---|---|
renfdisj | ⊢ (ℝ ∩ {+∞, -∞}) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | disj 3335 | . 2 ⊢ ((ℝ ∩ {+∞, -∞}) = ∅ ↔ ∀𝑥 ∈ ℝ ¬ 𝑥 ∈ {+∞, -∞}) | |
2 | vex 2623 | . . . . 5 ⊢ 𝑥 ∈ V | |
3 | 2 | elpr 3471 | . . . 4 ⊢ (𝑥 ∈ {+∞, -∞} ↔ (𝑥 = +∞ ∨ 𝑥 = -∞)) |
4 | renepnf 7596 | . . . . . 6 ⊢ (𝑥 ∈ ℝ → 𝑥 ≠ +∞) | |
5 | 4 | necon2bi 2311 | . . . . 5 ⊢ (𝑥 = +∞ → ¬ 𝑥 ∈ ℝ) |
6 | renemnf 7597 | . . . . . 6 ⊢ (𝑥 ∈ ℝ → 𝑥 ≠ -∞) | |
7 | 6 | necon2bi 2311 | . . . . 5 ⊢ (𝑥 = -∞ → ¬ 𝑥 ∈ ℝ) |
8 | 5, 7 | jaoi 672 | . . . 4 ⊢ ((𝑥 = +∞ ∨ 𝑥 = -∞) → ¬ 𝑥 ∈ ℝ) |
9 | 3, 8 | sylbi 120 | . . 3 ⊢ (𝑥 ∈ {+∞, -∞} → ¬ 𝑥 ∈ ℝ) |
10 | 9 | con2i 593 | . 2 ⊢ (𝑥 ∈ ℝ → ¬ 𝑥 ∈ {+∞, -∞}) |
11 | 1, 10 | mprgbir 2434 | 1 ⊢ (ℝ ∩ {+∞, -∞}) = ∅ |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ∨ wo 665 = wceq 1290 ∈ wcel 1439 ∩ cin 2999 ∅c0 3287 {cpr 3451 ℝcr 7410 +∞cpnf 7580 -∞cmnf 7581 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 580 ax-in2 581 ax-io 666 ax-5 1382 ax-7 1383 ax-gen 1384 ax-ie1 1428 ax-ie2 1429 ax-8 1441 ax-10 1442 ax-11 1443 ax-i12 1444 ax-bndl 1445 ax-4 1446 ax-13 1450 ax-14 1451 ax-17 1465 ax-i9 1469 ax-ial 1473 ax-i5r 1474 ax-ext 2071 ax-sep 3963 ax-un 4269 ax-setind 4366 ax-cnex 7497 ax-resscn 7498 |
This theorem depends on definitions: df-bi 116 df-3an 927 df-tru 1293 df-fal 1296 df-nf 1396 df-sb 1694 df-clab 2076 df-cleq 2082 df-clel 2085 df-nfc 2218 df-ne 2257 df-nel 2352 df-ral 2365 df-rex 2366 df-rab 2369 df-v 2622 df-dif 3002 df-un 3004 df-in 3006 df-ss 3013 df-nul 3288 df-pw 3435 df-sn 3456 df-pr 3457 df-uni 3660 df-pnf 7585 df-mnf 7586 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |