| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > renfdisj | GIF version | ||
| Description: The reals and the infinities are disjoint. (Contributed by NM, 25-Oct-2005.) (Proof shortened by Andrew Salmon, 19-Nov-2011.) |
| Ref | Expression |
|---|---|
| renfdisj | ⊢ (ℝ ∩ {+∞, -∞}) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | disj 3513 | . 2 ⊢ ((ℝ ∩ {+∞, -∞}) = ∅ ↔ ∀𝑥 ∈ ℝ ¬ 𝑥 ∈ {+∞, -∞}) | |
| 2 | vex 2776 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 3 | 2 | elpr 3659 | . . . 4 ⊢ (𝑥 ∈ {+∞, -∞} ↔ (𝑥 = +∞ ∨ 𝑥 = -∞)) |
| 4 | renepnf 8140 | . . . . . 6 ⊢ (𝑥 ∈ ℝ → 𝑥 ≠ +∞) | |
| 5 | 4 | necon2bi 2432 | . . . . 5 ⊢ (𝑥 = +∞ → ¬ 𝑥 ∈ ℝ) |
| 6 | renemnf 8141 | . . . . . 6 ⊢ (𝑥 ∈ ℝ → 𝑥 ≠ -∞) | |
| 7 | 6 | necon2bi 2432 | . . . . 5 ⊢ (𝑥 = -∞ → ¬ 𝑥 ∈ ℝ) |
| 8 | 5, 7 | jaoi 718 | . . . 4 ⊢ ((𝑥 = +∞ ∨ 𝑥 = -∞) → ¬ 𝑥 ∈ ℝ) |
| 9 | 3, 8 | sylbi 121 | . . 3 ⊢ (𝑥 ∈ {+∞, -∞} → ¬ 𝑥 ∈ ℝ) |
| 10 | 9 | con2i 628 | . 2 ⊢ (𝑥 ∈ ℝ → ¬ 𝑥 ∈ {+∞, -∞}) |
| 11 | 1, 10 | mprgbir 2565 | 1 ⊢ (ℝ ∩ {+∞, -∞}) = ∅ |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 ∨ wo 710 = wceq 1373 ∈ wcel 2177 ∩ cin 3169 ∅c0 3464 {cpr 3639 ℝcr 7944 +∞cpnf 8124 -∞cmnf 8125 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-un 4488 ax-setind 4593 ax-cnex 8036 ax-resscn 8037 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3623 df-sn 3644 df-pr 3645 df-uni 3857 df-pnf 8129 df-mnf 8130 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |