ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  renfdisj GIF version

Theorem renfdisj 8114
Description: The reals and the infinities are disjoint. (Contributed by NM, 25-Oct-2005.) (Proof shortened by Andrew Salmon, 19-Nov-2011.)
Assertion
Ref Expression
renfdisj (ℝ ∩ {+∞, -∞}) = ∅

Proof of Theorem renfdisj
StepHypRef Expression
1 disj 3508 . 2 ((ℝ ∩ {+∞, -∞}) = ∅ ↔ ∀𝑥 ∈ ℝ ¬ 𝑥 ∈ {+∞, -∞})
2 vex 2774 . . . . 5 𝑥 ∈ V
32elpr 3653 . . . 4 (𝑥 ∈ {+∞, -∞} ↔ (𝑥 = +∞ ∨ 𝑥 = -∞))
4 renepnf 8102 . . . . . 6 (𝑥 ∈ ℝ → 𝑥 ≠ +∞)
54necon2bi 2430 . . . . 5 (𝑥 = +∞ → ¬ 𝑥 ∈ ℝ)
6 renemnf 8103 . . . . . 6 (𝑥 ∈ ℝ → 𝑥 ≠ -∞)
76necon2bi 2430 . . . . 5 (𝑥 = -∞ → ¬ 𝑥 ∈ ℝ)
85, 7jaoi 717 . . . 4 ((𝑥 = +∞ ∨ 𝑥 = -∞) → ¬ 𝑥 ∈ ℝ)
93, 8sylbi 121 . . 3 (𝑥 ∈ {+∞, -∞} → ¬ 𝑥 ∈ ℝ)
109con2i 628 . 2 (𝑥 ∈ ℝ → ¬ 𝑥 ∈ {+∞, -∞})
111, 10mprgbir 2563 1 (ℝ ∩ {+∞, -∞}) = ∅
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wo 709   = wceq 1372  wcel 2175  cin 3164  c0 3459  {cpr 3633  cr 7906  +∞cpnf 8086  -∞cmnf 8087
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-un 4478  ax-setind 4583  ax-cnex 7998  ax-resscn 7999
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-rab 2492  df-v 2773  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-uni 3850  df-pnf 8091  df-mnf 8092
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator