ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  renfdisj GIF version

Theorem renfdisj 7991
Description: The reals and the infinities are disjoint. (Contributed by NM, 25-Oct-2005.) (Proof shortened by Andrew Salmon, 19-Nov-2011.)
Assertion
Ref Expression
renfdisj (ℝ ∩ {+∞, -∞}) = ∅

Proof of Theorem renfdisj
StepHypRef Expression
1 disj 3469 . 2 ((ℝ ∩ {+∞, -∞}) = ∅ ↔ ∀𝑥 ∈ ℝ ¬ 𝑥 ∈ {+∞, -∞})
2 vex 2738 . . . . 5 𝑥 ∈ V
32elpr 3610 . . . 4 (𝑥 ∈ {+∞, -∞} ↔ (𝑥 = +∞ ∨ 𝑥 = -∞))
4 renepnf 7979 . . . . . 6 (𝑥 ∈ ℝ → 𝑥 ≠ +∞)
54necon2bi 2400 . . . . 5 (𝑥 = +∞ → ¬ 𝑥 ∈ ℝ)
6 renemnf 7980 . . . . . 6 (𝑥 ∈ ℝ → 𝑥 ≠ -∞)
76necon2bi 2400 . . . . 5 (𝑥 = -∞ → ¬ 𝑥 ∈ ℝ)
85, 7jaoi 716 . . . 4 ((𝑥 = +∞ ∨ 𝑥 = -∞) → ¬ 𝑥 ∈ ℝ)
93, 8sylbi 121 . . 3 (𝑥 ∈ {+∞, -∞} → ¬ 𝑥 ∈ ℝ)
109con2i 627 . 2 (𝑥 ∈ ℝ → ¬ 𝑥 ∈ {+∞, -∞})
111, 10mprgbir 2533 1 (ℝ ∩ {+∞, -∞}) = ∅
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wo 708   = wceq 1353  wcel 2146  cin 3126  c0 3420  {cpr 3590  cr 7785  +∞cpnf 7963  -∞cmnf 7964
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-un 4427  ax-setind 4530  ax-cnex 7877  ax-resscn 7878
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-nel 2441  df-ral 2458  df-rex 2459  df-rab 2462  df-v 2737  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-nul 3421  df-pw 3574  df-sn 3595  df-pr 3596  df-uni 3806  df-pnf 7968  df-mnf 7969
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator