Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fvsetsid | GIF version |
Description: The value of the structure replacement function for its first argument is its second argument. (Contributed by SO, 12-Jul-2018.) |
Ref | Expression |
---|---|
fvsetsid | ⊢ ((𝐹 ∈ 𝑉 ∧ 𝑋 ∈ 𝑊 ∧ 𝑌 ∈ 𝑈) → ((𝐹 sSet 〈𝑋, 𝑌〉)‘𝑋) = 𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | setsvala 12425 | . . 3 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝑋 ∈ 𝑊 ∧ 𝑌 ∈ 𝑈) → (𝐹 sSet 〈𝑋, 𝑌〉) = ((𝐹 ↾ (V ∖ {𝑋})) ∪ {〈𝑋, 𝑌〉})) | |
2 | 1 | fveq1d 5488 | . 2 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝑋 ∈ 𝑊 ∧ 𝑌 ∈ 𝑈) → ((𝐹 sSet 〈𝑋, 𝑌〉)‘𝑋) = (((𝐹 ↾ (V ∖ {𝑋})) ∪ {〈𝑋, 𝑌〉})‘𝑋)) |
3 | simp2 988 | . . 3 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝑋 ∈ 𝑊 ∧ 𝑌 ∈ 𝑈) → 𝑋 ∈ 𝑊) | |
4 | simp3 989 | . . 3 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝑋 ∈ 𝑊 ∧ 𝑌 ∈ 𝑈) → 𝑌 ∈ 𝑈) | |
5 | neldifsn 3706 | . . . . 5 ⊢ ¬ 𝑋 ∈ (V ∖ {𝑋}) | |
6 | dmres 4905 | . . . . . . 7 ⊢ dom (𝐹 ↾ (V ∖ {𝑋})) = ((V ∖ {𝑋}) ∩ dom 𝐹) | |
7 | inss1 3342 | . . . . . . 7 ⊢ ((V ∖ {𝑋}) ∩ dom 𝐹) ⊆ (V ∖ {𝑋}) | |
8 | 6, 7 | eqsstri 3174 | . . . . . 6 ⊢ dom (𝐹 ↾ (V ∖ {𝑋})) ⊆ (V ∖ {𝑋}) |
9 | 8 | sseli 3138 | . . . . 5 ⊢ (𝑋 ∈ dom (𝐹 ↾ (V ∖ {𝑋})) → 𝑋 ∈ (V ∖ {𝑋})) |
10 | 5, 9 | mto 652 | . . . 4 ⊢ ¬ 𝑋 ∈ dom (𝐹 ↾ (V ∖ {𝑋})) |
11 | 10 | a1i 9 | . . 3 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝑋 ∈ 𝑊 ∧ 𝑌 ∈ 𝑈) → ¬ 𝑋 ∈ dom (𝐹 ↾ (V ∖ {𝑋}))) |
12 | fsnunfv 5686 | . . 3 ⊢ ((𝑋 ∈ 𝑊 ∧ 𝑌 ∈ 𝑈 ∧ ¬ 𝑋 ∈ dom (𝐹 ↾ (V ∖ {𝑋}))) → (((𝐹 ↾ (V ∖ {𝑋})) ∪ {〈𝑋, 𝑌〉})‘𝑋) = 𝑌) | |
13 | 3, 4, 11, 12 | syl3anc 1228 | . 2 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝑋 ∈ 𝑊 ∧ 𝑌 ∈ 𝑈) → (((𝐹 ↾ (V ∖ {𝑋})) ∪ {〈𝑋, 𝑌〉})‘𝑋) = 𝑌) |
14 | 2, 13 | eqtrd 2198 | 1 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝑋 ∈ 𝑊 ∧ 𝑌 ∈ 𝑈) → ((𝐹 sSet 〈𝑋, 𝑌〉)‘𝑋) = 𝑌) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ w3a 968 = wceq 1343 ∈ wcel 2136 Vcvv 2726 ∖ cdif 3113 ∪ cun 3114 ∩ cin 3115 {csn 3576 〈cop 3579 dom cdm 4604 ↾ cres 4606 ‘cfv 5188 (class class class)co 5842 sSet csts 12392 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-res 4616 df-iota 5153 df-fun 5190 df-fn 5191 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-sets 12401 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |