![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fvsetsid | GIF version |
Description: The value of the structure replacement function for its first argument is its second argument. (Contributed by SO, 12-Jul-2018.) |
Ref | Expression |
---|---|
fvsetsid | ⊢ ((𝐹 ∈ 𝑉 ∧ 𝑋 ∈ 𝑊 ∧ 𝑌 ∈ 𝑈) → ((𝐹 sSet 〈𝑋, 𝑌〉)‘𝑋) = 𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | setsvala 12649 | . . 3 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝑋 ∈ 𝑊 ∧ 𝑌 ∈ 𝑈) → (𝐹 sSet 〈𝑋, 𝑌〉) = ((𝐹 ↾ (V ∖ {𝑋})) ∪ {〈𝑋, 𝑌〉})) | |
2 | 1 | fveq1d 5556 | . 2 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝑋 ∈ 𝑊 ∧ 𝑌 ∈ 𝑈) → ((𝐹 sSet 〈𝑋, 𝑌〉)‘𝑋) = (((𝐹 ↾ (V ∖ {𝑋})) ∪ {〈𝑋, 𝑌〉})‘𝑋)) |
3 | simp2 1000 | . . 3 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝑋 ∈ 𝑊 ∧ 𝑌 ∈ 𝑈) → 𝑋 ∈ 𝑊) | |
4 | simp3 1001 | . . 3 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝑋 ∈ 𝑊 ∧ 𝑌 ∈ 𝑈) → 𝑌 ∈ 𝑈) | |
5 | neldifsn 3748 | . . . . 5 ⊢ ¬ 𝑋 ∈ (V ∖ {𝑋}) | |
6 | dmres 4963 | . . . . . . 7 ⊢ dom (𝐹 ↾ (V ∖ {𝑋})) = ((V ∖ {𝑋}) ∩ dom 𝐹) | |
7 | inss1 3379 | . . . . . . 7 ⊢ ((V ∖ {𝑋}) ∩ dom 𝐹) ⊆ (V ∖ {𝑋}) | |
8 | 6, 7 | eqsstri 3211 | . . . . . 6 ⊢ dom (𝐹 ↾ (V ∖ {𝑋})) ⊆ (V ∖ {𝑋}) |
9 | 8 | sseli 3175 | . . . . 5 ⊢ (𝑋 ∈ dom (𝐹 ↾ (V ∖ {𝑋})) → 𝑋 ∈ (V ∖ {𝑋})) |
10 | 5, 9 | mto 663 | . . . 4 ⊢ ¬ 𝑋 ∈ dom (𝐹 ↾ (V ∖ {𝑋})) |
11 | 10 | a1i 9 | . . 3 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝑋 ∈ 𝑊 ∧ 𝑌 ∈ 𝑈) → ¬ 𝑋 ∈ dom (𝐹 ↾ (V ∖ {𝑋}))) |
12 | fsnunfv 5759 | . . 3 ⊢ ((𝑋 ∈ 𝑊 ∧ 𝑌 ∈ 𝑈 ∧ ¬ 𝑋 ∈ dom (𝐹 ↾ (V ∖ {𝑋}))) → (((𝐹 ↾ (V ∖ {𝑋})) ∪ {〈𝑋, 𝑌〉})‘𝑋) = 𝑌) | |
13 | 3, 4, 11, 12 | syl3anc 1249 | . 2 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝑋 ∈ 𝑊 ∧ 𝑌 ∈ 𝑈) → (((𝐹 ↾ (V ∖ {𝑋})) ∪ {〈𝑋, 𝑌〉})‘𝑋) = 𝑌) |
14 | 2, 13 | eqtrd 2226 | 1 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝑋 ∈ 𝑊 ∧ 𝑌 ∈ 𝑈) → ((𝐹 sSet 〈𝑋, 𝑌〉)‘𝑋) = 𝑌) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ w3a 980 = wceq 1364 ∈ wcel 2164 Vcvv 2760 ∖ cdif 3150 ∪ cun 3151 ∩ cin 3152 {csn 3618 〈cop 3621 dom cdm 4659 ↾ cres 4661 ‘cfv 5254 (class class class)co 5918 sSet csts 12616 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-sbc 2986 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-opab 4091 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-res 4671 df-iota 5215 df-fun 5256 df-fn 5257 df-fv 5262 df-ov 5921 df-oprab 5922 df-mpo 5923 df-sets 12625 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |