ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvsetsid GIF version

Theorem fvsetsid 12003
Description: The value of the structure replacement function for its first argument is its second argument. (Contributed by SO, 12-Jul-2018.)
Assertion
Ref Expression
fvsetsid ((𝐹𝑉𝑋𝑊𝑌𝑈) → ((𝐹 sSet ⟨𝑋, 𝑌⟩)‘𝑋) = 𝑌)

Proof of Theorem fvsetsid
StepHypRef Expression
1 setsvala 12000 . . 3 ((𝐹𝑉𝑋𝑊𝑌𝑈) → (𝐹 sSet ⟨𝑋, 𝑌⟩) = ((𝐹 ↾ (V ∖ {𝑋})) ∪ {⟨𝑋, 𝑌⟩}))
21fveq1d 5423 . 2 ((𝐹𝑉𝑋𝑊𝑌𝑈) → ((𝐹 sSet ⟨𝑋, 𝑌⟩)‘𝑋) = (((𝐹 ↾ (V ∖ {𝑋})) ∪ {⟨𝑋, 𝑌⟩})‘𝑋))
3 simp2 982 . . 3 ((𝐹𝑉𝑋𝑊𝑌𝑈) → 𝑋𝑊)
4 simp3 983 . . 3 ((𝐹𝑉𝑋𝑊𝑌𝑈) → 𝑌𝑈)
5 neldifsn 3653 . . . . 5 ¬ 𝑋 ∈ (V ∖ {𝑋})
6 dmres 4840 . . . . . . 7 dom (𝐹 ↾ (V ∖ {𝑋})) = ((V ∖ {𝑋}) ∩ dom 𝐹)
7 inss1 3296 . . . . . . 7 ((V ∖ {𝑋}) ∩ dom 𝐹) ⊆ (V ∖ {𝑋})
86, 7eqsstri 3129 . . . . . 6 dom (𝐹 ↾ (V ∖ {𝑋})) ⊆ (V ∖ {𝑋})
98sseli 3093 . . . . 5 (𝑋 ∈ dom (𝐹 ↾ (V ∖ {𝑋})) → 𝑋 ∈ (V ∖ {𝑋}))
105, 9mto 651 . . . 4 ¬ 𝑋 ∈ dom (𝐹 ↾ (V ∖ {𝑋}))
1110a1i 9 . . 3 ((𝐹𝑉𝑋𝑊𝑌𝑈) → ¬ 𝑋 ∈ dom (𝐹 ↾ (V ∖ {𝑋})))
12 fsnunfv 5621 . . 3 ((𝑋𝑊𝑌𝑈 ∧ ¬ 𝑋 ∈ dom (𝐹 ↾ (V ∖ {𝑋}))) → (((𝐹 ↾ (V ∖ {𝑋})) ∪ {⟨𝑋, 𝑌⟩})‘𝑋) = 𝑌)
133, 4, 11, 12syl3anc 1216 . 2 ((𝐹𝑉𝑋𝑊𝑌𝑈) → (((𝐹 ↾ (V ∖ {𝑋})) ∪ {⟨𝑋, 𝑌⟩})‘𝑋) = 𝑌)
142, 13eqtrd 2172 1 ((𝐹𝑉𝑋𝑊𝑌𝑈) → ((𝐹 sSet ⟨𝑋, 𝑌⟩)‘𝑋) = 𝑌)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  w3a 962   = wceq 1331  wcel 1480  Vcvv 2686  cdif 3068  cun 3069  cin 3070  {csn 3527  cop 3530  dom cdm 4539  cres 4541  cfv 5123  (class class class)co 5774   sSet csts 11967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-res 4551  df-iota 5088  df-fun 5125  df-fn 5126  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-sets 11976
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator