ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eldifsni GIF version

Theorem eldifsni 3702
Description: Membership in a set with an element removed. (Contributed by NM, 10-Mar-2015.)
Assertion
Ref Expression
eldifsni (𝐴 ∈ (𝐵 ∖ {𝐶}) → 𝐴𝐶)

Proof of Theorem eldifsni
StepHypRef Expression
1 eldifsn 3700 . 2 (𝐴 ∈ (𝐵 ∖ {𝐶}) ↔ (𝐴𝐵𝐴𝐶))
21simprbi 273 1 (𝐴 ∈ (𝐵 ∖ {𝐶}) → 𝐴𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2135  wne 2334  cdif 3111  {csn 3573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-ext 2146
This theorem depends on definitions:  df-bi 116  df-tru 1345  df-nf 1448  df-sb 1750  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-v 2726  df-dif 3116  df-sn 3579
This theorem is referenced by:  neldifsn  3703  suppssfv  6043  suppssov1  6044  elfi2  6931  fiuni  6937  fifo  6939  en2other2  7146  oddprm  12185
  Copyright terms: Public domain W3C validator