ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eldifsni GIF version

Theorem eldifsni 3721
Description: Membership in a set with an element removed. (Contributed by NM, 10-Mar-2015.)
Assertion
Ref Expression
eldifsni (𝐴 ∈ (𝐵 ∖ {𝐶}) → 𝐴𝐶)

Proof of Theorem eldifsni
StepHypRef Expression
1 eldifsn 3719 . 2 (𝐴 ∈ (𝐵 ∖ {𝐶}) ↔ (𝐴𝐵𝐴𝐶))
21simprbi 275 1 (𝐴 ∈ (𝐵 ∖ {𝐶}) → 𝐴𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2148  wne 2347  cdif 3126  {csn 3592
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-v 2739  df-dif 3131  df-sn 3598
This theorem is referenced by:  neldifsn  3722  suppssfv  6078  suppssov1  6079  elfi2  6970  fiuni  6976  fifo  6978  en2other2  7194  oddprm  12253  ringelnzr  13281  lgslem1  14294
  Copyright terms: Public domain W3C validator