Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eldifsni | GIF version |
Description: Membership in a set with an element removed. (Contributed by NM, 10-Mar-2015.) |
Ref | Expression |
---|---|
eldifsni | ⊢ (𝐴 ∈ (𝐵 ∖ {𝐶}) → 𝐴 ≠ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldifsn 3700 | . 2 ⊢ (𝐴 ∈ (𝐵 ∖ {𝐶}) ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ≠ 𝐶)) | |
2 | 1 | simprbi 273 | 1 ⊢ (𝐴 ∈ (𝐵 ∖ {𝐶}) → 𝐴 ≠ 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2135 ≠ wne 2334 ∖ cdif 3111 {csn 3573 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1434 ax-7 1435 ax-gen 1436 ax-ie1 1480 ax-ie2 1481 ax-8 1491 ax-10 1492 ax-11 1493 ax-i12 1494 ax-bndl 1496 ax-4 1497 ax-17 1513 ax-i9 1517 ax-ial 1521 ax-i5r 1522 ax-ext 2146 |
This theorem depends on definitions: df-bi 116 df-tru 1345 df-nf 1448 df-sb 1750 df-clab 2151 df-cleq 2157 df-clel 2160 df-nfc 2295 df-ne 2335 df-v 2726 df-dif 3116 df-sn 3579 |
This theorem is referenced by: neldifsn 3703 suppssfv 6043 suppssov1 6044 elfi2 6931 fiuni 6937 fifo 6939 en2other2 7146 oddprm 12185 |
Copyright terms: Public domain | W3C validator |