| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eldifsni | GIF version | ||
| Description: Membership in a set with an element removed. (Contributed by NM, 10-Mar-2015.) |
| Ref | Expression |
|---|---|
| eldifsni | ⊢ (𝐴 ∈ (𝐵 ∖ {𝐶}) → 𝐴 ≠ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldifsn 3795 | . 2 ⊢ (𝐴 ∈ (𝐵 ∖ {𝐶}) ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ≠ 𝐶)) | |
| 2 | 1 | simprbi 275 | 1 ⊢ (𝐴 ∈ (𝐵 ∖ {𝐶}) → 𝐴 ≠ 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2200 ≠ wne 2400 ∖ cdif 3194 {csn 3666 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-v 2801 df-dif 3199 df-sn 3672 |
| This theorem is referenced by: neldifsn 3798 suppssfv 6214 suppssov1 6215 elfi2 7139 fiuni 7145 fifo 7147 en2other2 7374 oddprm 12782 ringelnzr 14151 lgslem1 15679 lgseisenlem2 15750 lgseisenlem4 15752 lgseisen 15753 lgsquadlem1 15756 lgsquad2 15762 m1lgs 15764 |
| Copyright terms: Public domain | W3C validator |