![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eldifsni | GIF version |
Description: Membership in a set with an element removed. (Contributed by NM, 10-Mar-2015.) |
Ref | Expression |
---|---|
eldifsni | ⊢ (𝐴 ∈ (𝐵 ∖ {𝐶}) → 𝐴 ≠ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldifsn 3567 | . 2 ⊢ (𝐴 ∈ (𝐵 ∖ {𝐶}) ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ≠ 𝐶)) | |
2 | 1 | simprbi 269 | 1 ⊢ (𝐴 ∈ (𝐵 ∖ {𝐶}) → 𝐴 ≠ 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 1438 ≠ wne 2255 ∖ cdif 2996 {csn 3446 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 579 ax-in2 580 ax-io 665 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-10 1441 ax-11 1442 ax-i12 1443 ax-bndl 1444 ax-4 1445 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 ax-ext 2070 |
This theorem depends on definitions: df-bi 115 df-tru 1292 df-nf 1395 df-sb 1693 df-clab 2075 df-cleq 2081 df-clel 2084 df-nfc 2217 df-ne 2256 df-v 2621 df-dif 3001 df-sn 3452 |
This theorem is referenced by: neldifsn 3570 suppssfv 5852 suppssov1 5853 en2other2 6822 |
Copyright terms: Public domain | W3C validator |