| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eldifsni | GIF version | ||
| Description: Membership in a set with an element removed. (Contributed by NM, 10-Mar-2015.) |
| Ref | Expression |
|---|---|
| eldifsni | ⊢ (𝐴 ∈ (𝐵 ∖ {𝐶}) → 𝐴 ≠ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldifsn 3760 | . 2 ⊢ (𝐴 ∈ (𝐵 ∖ {𝐶}) ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ≠ 𝐶)) | |
| 2 | 1 | simprbi 275 | 1 ⊢ (𝐴 ∈ (𝐵 ∖ {𝐶}) → 𝐴 ≠ 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2176 ≠ wne 2376 ∖ cdif 3163 {csn 3633 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-v 2774 df-dif 3168 df-sn 3639 |
| This theorem is referenced by: neldifsn 3763 suppssfv 6156 suppssov1 6157 elfi2 7076 fiuni 7082 fifo 7084 en2other2 7306 oddprm 12615 ringelnzr 13982 lgslem1 15510 lgseisenlem2 15581 lgseisenlem4 15583 lgseisen 15584 lgsquadlem1 15587 lgsquad2 15593 m1lgs 15595 |
| Copyright terms: Public domain | W3C validator |