ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eldifsni GIF version

Theorem eldifsni 3762
Description: Membership in a set with an element removed. (Contributed by NM, 10-Mar-2015.)
Assertion
Ref Expression
eldifsni (𝐴 ∈ (𝐵 ∖ {𝐶}) → 𝐴𝐶)

Proof of Theorem eldifsni
StepHypRef Expression
1 eldifsn 3760 . 2 (𝐴 ∈ (𝐵 ∖ {𝐶}) ↔ (𝐴𝐵𝐴𝐶))
21simprbi 275 1 (𝐴 ∈ (𝐵 ∖ {𝐶}) → 𝐴𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2176  wne 2376  cdif 3163  {csn 3633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-v 2774  df-dif 3168  df-sn 3639
This theorem is referenced by:  neldifsn  3763  suppssfv  6154  suppssov1  6155  elfi2  7074  fiuni  7080  fifo  7082  en2other2  7304  oddprm  12582  ringelnzr  13949  lgslem1  15477  lgseisenlem2  15548  lgseisenlem4  15550  lgseisen  15551  lgsquadlem1  15554  lgsquad2  15560  m1lgs  15562
  Copyright terms: Public domain W3C validator