ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eldifsni GIF version

Theorem eldifsni 3797
Description: Membership in a set with an element removed. (Contributed by NM, 10-Mar-2015.)
Assertion
Ref Expression
eldifsni (𝐴 ∈ (𝐵 ∖ {𝐶}) → 𝐴𝐶)

Proof of Theorem eldifsni
StepHypRef Expression
1 eldifsn 3795 . 2 (𝐴 ∈ (𝐵 ∖ {𝐶}) ↔ (𝐴𝐵𝐴𝐶))
21simprbi 275 1 (𝐴 ∈ (𝐵 ∖ {𝐶}) → 𝐴𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2200  wne 2400  cdif 3194  {csn 3666
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-v 2801  df-dif 3199  df-sn 3672
This theorem is referenced by:  neldifsn  3798  suppssfv  6214  suppssov1  6215  elfi2  7139  fiuni  7145  fifo  7147  en2other2  7374  oddprm  12782  ringelnzr  14151  lgslem1  15679  lgseisenlem2  15750  lgseisenlem4  15752  lgseisen  15753  lgsquadlem1  15756  lgsquad2  15762  m1lgs  15764
  Copyright terms: Public domain W3C validator