ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfcsb GIF version

Theorem nfcsb 3122
Description: Bound-variable hypothesis builder for substitution into a class. (Contributed by Mario Carneiro, 12-Oct-2016.)
Hypotheses
Ref Expression
nfcsb.1 𝑥𝐴
nfcsb.2 𝑥𝐵
Assertion
Ref Expression
nfcsb 𝑥𝐴 / 𝑦𝐵

Proof of Theorem nfcsb
StepHypRef Expression
1 nftru 1480 . . 3 𝑦
2 nfcsb.1 . . . 4 𝑥𝐴
32a1i 9 . . 3 (⊤ → 𝑥𝐴)
4 nfcsb.2 . . . 4 𝑥𝐵
54a1i 9 . . 3 (⊤ → 𝑥𝐵)
61, 3, 5nfcsbd 3120 . 2 (⊤ → 𝑥𝐴 / 𝑦𝐵)
76mptru 1373 1 𝑥𝐴 / 𝑦𝐵
Colors of variables: wff set class
Syntax hints:  wtru 1365  wnfc 2326  csb 3084
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-sbc 2990  df-csb 3085
This theorem is referenced by:  cbvralcsf  3147  cbvrexcsf  3148  cbvreucsf  3149  cbvrabcsf  3150  elfvmptrab1  5657  fmptcof  5730  mpomptsx  6257  dmmpossx  6259  fmpox  6260  fmpoco  6276  dfmpo  6283  f1od2  6295  nfsum  11525  fsum2dlemstep  11602  fisumcom2  11606  nfcprod  11723  fsumcncntop  14829
  Copyright terms: Public domain W3C validator