![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > iunab | GIF version |
Description: The indexed union of a class abstraction. (Contributed by NM, 27-Dec-2004.) |
Ref | Expression |
---|---|
iunab | ⊢ ∪ 𝑥 ∈ 𝐴 {𝑦 ∣ 𝜑} = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝜑} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2332 | . . . 4 ⊢ Ⅎ𝑦𝐴 | |
2 | nfab1 2334 | . . . 4 ⊢ Ⅎ𝑦{𝑦 ∣ 𝜑} | |
3 | 1, 2 | nfiunxy 3927 | . . 3 ⊢ Ⅎ𝑦∪ 𝑥 ∈ 𝐴 {𝑦 ∣ 𝜑} |
4 | nfab1 2334 | . . 3 ⊢ Ⅎ𝑦{𝑦 ∣ ∃𝑥 ∈ 𝐴 𝜑} | |
5 | 3, 4 | cleqf 2357 | . 2 ⊢ (∪ 𝑥 ∈ 𝐴 {𝑦 ∣ 𝜑} = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝜑} ↔ ∀𝑦(𝑦 ∈ ∪ 𝑥 ∈ 𝐴 {𝑦 ∣ 𝜑} ↔ 𝑦 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝜑})) |
6 | abid 2177 | . . . 4 ⊢ (𝑦 ∈ {𝑦 ∣ 𝜑} ↔ 𝜑) | |
7 | 6 | rexbii 2497 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝑦 ∈ {𝑦 ∣ 𝜑} ↔ ∃𝑥 ∈ 𝐴 𝜑) |
8 | eliun 3905 | . . 3 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 {𝑦 ∣ 𝜑} ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ {𝑦 ∣ 𝜑}) | |
9 | abid 2177 | . . 3 ⊢ (𝑦 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝜑} ↔ ∃𝑥 ∈ 𝐴 𝜑) | |
10 | 7, 8, 9 | 3bitr4i 212 | . 2 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 {𝑦 ∣ 𝜑} ↔ 𝑦 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝜑}) |
11 | 5, 10 | mpgbir 1464 | 1 ⊢ ∪ 𝑥 ∈ 𝐴 {𝑦 ∣ 𝜑} = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝜑} |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 = wceq 1364 ∈ wcel 2160 {cab 2175 ∃wrex 2469 ∪ ciun 3901 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2171 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ral 2473 df-rex 2474 df-v 2754 df-iun 3903 |
This theorem is referenced by: iunrab 3949 iunid 3957 dfimafn2 5586 |
Copyright terms: Public domain | W3C validator |