| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > iunab | GIF version | ||
| Description: The indexed union of a class abstraction. (Contributed by NM, 27-Dec-2004.) |
| Ref | Expression |
|---|---|
| iunab | ⊢ ∪ 𝑥 ∈ 𝐴 {𝑦 ∣ 𝜑} = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝜑} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2348 | . . . 4 ⊢ Ⅎ𝑦𝐴 | |
| 2 | nfab1 2350 | . . . 4 ⊢ Ⅎ𝑦{𝑦 ∣ 𝜑} | |
| 3 | 1, 2 | nfiunxy 3953 | . . 3 ⊢ Ⅎ𝑦∪ 𝑥 ∈ 𝐴 {𝑦 ∣ 𝜑} |
| 4 | nfab1 2350 | . . 3 ⊢ Ⅎ𝑦{𝑦 ∣ ∃𝑥 ∈ 𝐴 𝜑} | |
| 5 | 3, 4 | cleqf 2373 | . 2 ⊢ (∪ 𝑥 ∈ 𝐴 {𝑦 ∣ 𝜑} = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝜑} ↔ ∀𝑦(𝑦 ∈ ∪ 𝑥 ∈ 𝐴 {𝑦 ∣ 𝜑} ↔ 𝑦 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝜑})) |
| 6 | abid 2193 | . . . 4 ⊢ (𝑦 ∈ {𝑦 ∣ 𝜑} ↔ 𝜑) | |
| 7 | 6 | rexbii 2513 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝑦 ∈ {𝑦 ∣ 𝜑} ↔ ∃𝑥 ∈ 𝐴 𝜑) |
| 8 | eliun 3931 | . . 3 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 {𝑦 ∣ 𝜑} ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ {𝑦 ∣ 𝜑}) | |
| 9 | abid 2193 | . . 3 ⊢ (𝑦 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝜑} ↔ ∃𝑥 ∈ 𝐴 𝜑) | |
| 10 | 7, 8, 9 | 3bitr4i 212 | . 2 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 {𝑦 ∣ 𝜑} ↔ 𝑦 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝜑}) |
| 11 | 5, 10 | mpgbir 1476 | 1 ⊢ ∪ 𝑥 ∈ 𝐴 {𝑦 ∣ 𝜑} = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝜑} |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 = wceq 1373 ∈ wcel 2176 {cab 2191 ∃wrex 2485 ∪ ciun 3927 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-iun 3929 |
| This theorem is referenced by: iunrab 3975 iunid 3983 dfimafn2 5628 |
| Copyright terms: Public domain | W3C validator |