ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iunab GIF version

Theorem iunab 4011
Description: The indexed union of a class abstraction. (Contributed by NM, 27-Dec-2004.)
Assertion
Ref Expression
iunab 𝑥𝐴 {𝑦𝜑} = {𝑦 ∣ ∃𝑥𝐴 𝜑}
Distinct variable groups:   𝑦,𝐴   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥)

Proof of Theorem iunab
StepHypRef Expression
1 nfcv 2372 . . . 4 𝑦𝐴
2 nfab1 2374 . . . 4 𝑦{𝑦𝜑}
31, 2nfiunxy 3990 . . 3 𝑦 𝑥𝐴 {𝑦𝜑}
4 nfab1 2374 . . 3 𝑦{𝑦 ∣ ∃𝑥𝐴 𝜑}
53, 4cleqf 2397 . 2 ( 𝑥𝐴 {𝑦𝜑} = {𝑦 ∣ ∃𝑥𝐴 𝜑} ↔ ∀𝑦(𝑦 𝑥𝐴 {𝑦𝜑} ↔ 𝑦 ∈ {𝑦 ∣ ∃𝑥𝐴 𝜑}))
6 abid 2217 . . . 4 (𝑦 ∈ {𝑦𝜑} ↔ 𝜑)
76rexbii 2537 . . 3 (∃𝑥𝐴 𝑦 ∈ {𝑦𝜑} ↔ ∃𝑥𝐴 𝜑)
8 eliun 3968 . . 3 (𝑦 𝑥𝐴 {𝑦𝜑} ↔ ∃𝑥𝐴 𝑦 ∈ {𝑦𝜑})
9 abid 2217 . . 3 (𝑦 ∈ {𝑦 ∣ ∃𝑥𝐴 𝜑} ↔ ∃𝑥𝐴 𝜑)
107, 8, 93bitr4i 212 . 2 (𝑦 𝑥𝐴 {𝑦𝜑} ↔ 𝑦 ∈ {𝑦 ∣ ∃𝑥𝐴 𝜑})
115, 10mpgbir 1499 1 𝑥𝐴 {𝑦𝜑} = {𝑦 ∣ ∃𝑥𝐴 𝜑}
Colors of variables: wff set class
Syntax hints:  wb 105   = wceq 1395  wcel 2200  {cab 2215  wrex 2509   ciun 3964
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-iun 3966
This theorem is referenced by:  iunrab  4012  iunid  4020  dfimafn2  5682
  Copyright terms: Public domain W3C validator