ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zsupcllemstep GIF version

Theorem zsupcllemstep 11368
Description: Lemma for zsupcl 11370. Induction step. (Contributed by Jim Kingdon, 7-Dec-2021.)
Hypothesis
Ref Expression
zsupcllemstep.dc ((𝜑𝑛 ∈ (ℤ𝑀)) → DECID 𝜓)
Assertion
Ref Expression
zsupcllemstep (𝐾 ∈ (ℤ𝑀) → (((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧))) → ((𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))))
Distinct variable groups:   𝑛,𝐾,𝑥,𝑦,𝑧   𝑛,𝑀,𝑦   𝜑,𝑛,𝑦   𝜓,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑧)   𝜓(𝑛)   𝑀(𝑥,𝑧)

Proof of Theorem zsupcllemstep
StepHypRef Expression
1 eluzelz 9127 . . . . 5 (𝐾 ∈ (ℤ𝑀) → 𝐾 ∈ ℤ)
21ad3antrrr 477 . . . 4 ((((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) ∧ [𝐾 / 𝑛]𝜓) → 𝐾 ∈ ℤ)
3 nfv 1473 . . . . . . . 8 𝑦 𝐾 ∈ (ℤ𝑀)
4 nfv 1473 . . . . . . . . 9 𝑦(𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓)
5 nfcv 2235 . . . . . . . . . 10 𝑦
6 nfra1 2420 . . . . . . . . . . 11 𝑦𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦
7 nfra1 2420 . . . . . . . . . . 11 𝑦𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)
86, 7nfan 1509 . . . . . . . . . 10 𝑦(∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧))
95, 8nfrexya 2428 . . . . . . . . 9 𝑦𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧))
104, 9nfim 1516 . . . . . . . 8 𝑦((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))
113, 10nfan 1509 . . . . . . 7 𝑦(𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧))))
12 nfv 1473 . . . . . . 7 𝑦(𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)
1311, 12nfan 1509 . . . . . 6 𝑦((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓))
14 nfv 1473 . . . . . 6 𝑦[𝐾 / 𝑛]𝜓
1513, 14nfan 1509 . . . . 5 𝑦(((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) ∧ [𝐾 / 𝑛]𝜓)
16 nfcv 2235 . . . . . . . . . . 11 𝑛
1716elrabsf 2891 . . . . . . . . . 10 (𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ↔ (𝑦 ∈ ℤ ∧ [𝑦 / 𝑛]𝜓))
1817simprbi 270 . . . . . . . . 9 (𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} → [𝑦 / 𝑛]𝜓)
19 sbsbc 2858 . . . . . . . . 9 ([𝑦 / 𝑛]𝜓[𝑦 / 𝑛]𝜓)
2018, 19sylibr 133 . . . . . . . 8 (𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} → [𝑦 / 𝑛]𝜓)
2120ad2antlr 474 . . . . . . 7 ((((((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) ∧ [𝐾 / 𝑛]𝜓) ∧ 𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓}) ∧ 𝐾 < 𝑦) → [𝑦 / 𝑛]𝜓)
22 elrabi 2782 . . . . . . . . . . 11 (𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} → 𝑦 ∈ ℤ)
23 zltp1le 8902 . . . . . . . . . . 11 ((𝐾 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝐾 < 𝑦 ↔ (𝐾 + 1) ≤ 𝑦))
242, 22, 23syl2an 284 . . . . . . . . . 10 (((((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) ∧ [𝐾 / 𝑛]𝜓) ∧ 𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓}) → (𝐾 < 𝑦 ↔ (𝐾 + 1) ≤ 𝑦))
2524biimpa 291 . . . . . . . . 9 ((((((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) ∧ [𝐾 / 𝑛]𝜓) ∧ 𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓}) ∧ 𝐾 < 𝑦) → (𝐾 + 1) ≤ 𝑦)
262peano2zd 8970 . . . . . . . . . . 11 ((((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) ∧ [𝐾 / 𝑛]𝜓) → (𝐾 + 1) ∈ ℤ)
27 eluz 9131 . . . . . . . . . . 11 (((𝐾 + 1) ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝑦 ∈ (ℤ‘(𝐾 + 1)) ↔ (𝐾 + 1) ≤ 𝑦))
2826, 22, 27syl2an 284 . . . . . . . . . 10 (((((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) ∧ [𝐾 / 𝑛]𝜓) ∧ 𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓}) → (𝑦 ∈ (ℤ‘(𝐾 + 1)) ↔ (𝐾 + 1) ≤ 𝑦))
2928adantr 271 . . . . . . . . 9 ((((((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) ∧ [𝐾 / 𝑛]𝜓) ∧ 𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓}) ∧ 𝐾 < 𝑦) → (𝑦 ∈ (ℤ‘(𝐾 + 1)) ↔ (𝐾 + 1) ≤ 𝑦))
3025, 29mpbird 166 . . . . . . . 8 ((((((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) ∧ [𝐾 / 𝑛]𝜓) ∧ 𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓}) ∧ 𝐾 < 𝑦) → 𝑦 ∈ (ℤ‘(𝐾 + 1)))
31 simprr 500 . . . . . . . . 9 (((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) → ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)
3231ad3antrrr 477 . . . . . . . 8 ((((((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) ∧ [𝐾 / 𝑛]𝜓) ∧ 𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓}) ∧ 𝐾 < 𝑦) → ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)
33 nfs1v 1870 . . . . . . . . . 10 𝑛[𝑦 / 𝑛]𝜓
3433nfn 1600 . . . . . . . . 9 𝑛 ¬ [𝑦 / 𝑛]𝜓
35 sbequ12 1708 . . . . . . . . . 10 (𝑛 = 𝑦 → (𝜓 ↔ [𝑦 / 𝑛]𝜓))
3635notbid 630 . . . . . . . . 9 (𝑛 = 𝑦 → (¬ 𝜓 ↔ ¬ [𝑦 / 𝑛]𝜓))
3734, 36rspc 2730 . . . . . . . 8 (𝑦 ∈ (ℤ‘(𝐾 + 1)) → (∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓 → ¬ [𝑦 / 𝑛]𝜓))
3830, 32, 37sylc 62 . . . . . . 7 ((((((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) ∧ [𝐾 / 𝑛]𝜓) ∧ 𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓}) ∧ 𝐾 < 𝑦) → ¬ [𝑦 / 𝑛]𝜓)
3921, 38pm2.65da 625 . . . . . 6 (((((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) ∧ [𝐾 / 𝑛]𝜓) ∧ 𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓}) → ¬ 𝐾 < 𝑦)
4039ex 114 . . . . 5 ((((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) ∧ [𝐾 / 𝑛]𝜓) → (𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} → ¬ 𝐾 < 𝑦))
4115, 40ralrimi 2456 . . . 4 ((((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) ∧ [𝐾 / 𝑛]𝜓) → ∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝐾 < 𝑦)
422ad2antrr 473 . . . . . . . 8 ((((((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) ∧ [𝐾 / 𝑛]𝜓) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < 𝐾) → 𝐾 ∈ ℤ)
43 simpllr 502 . . . . . . . 8 ((((((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) ∧ [𝐾 / 𝑛]𝜓) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < 𝐾) → [𝐾 / 𝑛]𝜓)
4416elrabsf 2891 . . . . . . . 8 (𝐾 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ↔ (𝐾 ∈ ℤ ∧ [𝐾 / 𝑛]𝜓))
4542, 43, 44sylanbrc 409 . . . . . . 7 ((((((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) ∧ [𝐾 / 𝑛]𝜓) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < 𝐾) → 𝐾 ∈ {𝑛 ∈ ℤ ∣ 𝜓})
46 breq2 3871 . . . . . . . 8 (𝑧 = 𝐾 → (𝑦 < 𝑧𝑦 < 𝐾))
4746rspcev 2736 . . . . . . 7 ((𝐾 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ∧ 𝑦 < 𝐾) → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)
4845, 47sylancom 412 . . . . . 6 ((((((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) ∧ [𝐾 / 𝑛]𝜓) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < 𝐾) → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)
4948exp31 357 . . . . 5 ((((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) ∧ [𝐾 / 𝑛]𝜓) → (𝑦 ∈ ℝ → (𝑦 < 𝐾 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))
5015, 49ralrimi 2456 . . . 4 ((((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) ∧ [𝐾 / 𝑛]𝜓) → ∀𝑦 ∈ ℝ (𝑦 < 𝐾 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧))
51 breq1 3870 . . . . . . . 8 (𝑥 = 𝐾 → (𝑥 < 𝑦𝐾 < 𝑦))
5251notbid 630 . . . . . . 7 (𝑥 = 𝐾 → (¬ 𝑥 < 𝑦 ↔ ¬ 𝐾 < 𝑦))
5352ralbidv 2391 . . . . . 6 (𝑥 = 𝐾 → (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ↔ ∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝐾 < 𝑦))
54 breq2 3871 . . . . . . . 8 (𝑥 = 𝐾 → (𝑦 < 𝑥𝑦 < 𝐾))
5554imbi1d 230 . . . . . . 7 (𝑥 = 𝐾 → ((𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧) ↔ (𝑦 < 𝐾 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))
5655ralbidv 2391 . . . . . 6 (𝑥 = 𝐾 → (∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧) ↔ ∀𝑦 ∈ ℝ (𝑦 < 𝐾 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))
5753, 56anbi12d 458 . . . . 5 (𝑥 = 𝐾 → ((∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)) ↔ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝐾 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝐾 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧))))
5857rspcev 2736 . . . 4 ((𝐾 ∈ ℤ ∧ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝐾 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝐾 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧))) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))
592, 41, 50, 58syl12anc 1179 . . 3 ((((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) ∧ [𝐾 / 𝑛]𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))
60 sbcng 2893 . . . . . . . 8 (𝐾 ∈ (ℤ𝑀) → ([𝐾 / 𝑛] ¬ 𝜓 ↔ ¬ [𝐾 / 𝑛]𝜓))
6160ad2antrr 473 . . . . . . 7 (((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) → ([𝐾 / 𝑛] ¬ 𝜓 ↔ ¬ [𝐾 / 𝑛]𝜓))
6261biimpar 292 . . . . . 6 ((((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) ∧ ¬ [𝐾 / 𝑛]𝜓) → [𝐾 / 𝑛] ¬ 𝜓)
63 sbcsng 3521 . . . . . . 7 (𝐾 ∈ (ℤ𝑀) → ([𝐾 / 𝑛] ¬ 𝜓 ↔ ∀𝑛 ∈ {𝐾} ¬ 𝜓))
6463ad3antrrr 477 . . . . . 6 ((((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) ∧ ¬ [𝐾 / 𝑛]𝜓) → ([𝐾 / 𝑛] ¬ 𝜓 ↔ ∀𝑛 ∈ {𝐾} ¬ 𝜓))
6562, 64mpbid 146 . . . . 5 ((((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) ∧ ¬ [𝐾 / 𝑛]𝜓) → ∀𝑛 ∈ {𝐾} ¬ 𝜓)
66 simplrr 504 . . . . 5 ((((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) ∧ ¬ [𝐾 / 𝑛]𝜓) → ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)
67 uzid 9132 . . . . . . . . . . 11 (𝐾 ∈ ℤ → 𝐾 ∈ (ℤ𝐾))
68 peano2uz 9170 . . . . . . . . . . 11 (𝐾 ∈ (ℤ𝐾) → (𝐾 + 1) ∈ (ℤ𝐾))
6967, 68syl 14 . . . . . . . . . 10 (𝐾 ∈ ℤ → (𝐾 + 1) ∈ (ℤ𝐾))
70 fzouzsplit 9739 . . . . . . . . . 10 ((𝐾 + 1) ∈ (ℤ𝐾) → (ℤ𝐾) = ((𝐾..^(𝐾 + 1)) ∪ (ℤ‘(𝐾 + 1))))
711, 69, 703syl 17 . . . . . . . . 9 (𝐾 ∈ (ℤ𝑀) → (ℤ𝐾) = ((𝐾..^(𝐾 + 1)) ∪ (ℤ‘(𝐾 + 1))))
72 fzosn 9765 . . . . . . . . . . 11 (𝐾 ∈ ℤ → (𝐾..^(𝐾 + 1)) = {𝐾})
731, 72syl 14 . . . . . . . . . 10 (𝐾 ∈ (ℤ𝑀) → (𝐾..^(𝐾 + 1)) = {𝐾})
7473uneq1d 3168 . . . . . . . . 9 (𝐾 ∈ (ℤ𝑀) → ((𝐾..^(𝐾 + 1)) ∪ (ℤ‘(𝐾 + 1))) = ({𝐾} ∪ (ℤ‘(𝐾 + 1))))
7571, 74eqtrd 2127 . . . . . . . 8 (𝐾 ∈ (ℤ𝑀) → (ℤ𝐾) = ({𝐾} ∪ (ℤ‘(𝐾 + 1))))
7675raleqdv 2582 . . . . . . 7 (𝐾 ∈ (ℤ𝑀) → (∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓 ↔ ∀𝑛 ∈ ({𝐾} ∪ (ℤ‘(𝐾 + 1))) ¬ 𝜓))
77 ralunb 3196 . . . . . . 7 (∀𝑛 ∈ ({𝐾} ∪ (ℤ‘(𝐾 + 1))) ¬ 𝜓 ↔ (∀𝑛 ∈ {𝐾} ¬ 𝜓 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓))
7876, 77syl6bb 195 . . . . . 6 (𝐾 ∈ (ℤ𝑀) → (∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓 ↔ (∀𝑛 ∈ {𝐾} ¬ 𝜓 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)))
7978ad3antrrr 477 . . . . 5 ((((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) ∧ ¬ [𝐾 / 𝑛]𝜓) → (∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓 ↔ (∀𝑛 ∈ {𝐾} ¬ 𝜓 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)))
8065, 66, 79mpbir2and 893 . . . 4 ((((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) ∧ ¬ [𝐾 / 𝑛]𝜓) → ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓)
81 simprl 499 . . . . . 6 (((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) → 𝜑)
82 simplr 498 . . . . . 6 (((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) → ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧))))
8381, 82mpand 421 . . . . 5 (((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) → (∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓 → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧))))
8483adantr 271 . . . 4 ((((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) ∧ ¬ [𝐾 / 𝑛]𝜓) → (∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓 → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧))))
8580, 84mpd 13 . . 3 ((((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) ∧ ¬ [𝐾 / 𝑛]𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))
86 zsupcllemstep.dc . . . . . . 7 ((𝜑𝑛 ∈ (ℤ𝑀)) → DECID 𝜓)
8786ralrimiva 2458 . . . . . 6 (𝜑 → ∀𝑛 ∈ (ℤ𝑀)DECID 𝜓)
8881, 87syl 14 . . . . 5 (((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) → ∀𝑛 ∈ (ℤ𝑀)DECID 𝜓)
89 nfsbc1v 2872 . . . . . . . 8 𝑛[𝐾 / 𝑛]𝜓
9089nfdc 1601 . . . . . . 7 𝑛DECID [𝐾 / 𝑛]𝜓
91 sbceq1a 2863 . . . . . . . 8 (𝑛 = 𝐾 → (𝜓[𝐾 / 𝑛]𝜓))
9291dcbid 789 . . . . . . 7 (𝑛 = 𝐾 → (DECID 𝜓DECID [𝐾 / 𝑛]𝜓))
9390, 92rspc 2730 . . . . . 6 (𝐾 ∈ (ℤ𝑀) → (∀𝑛 ∈ (ℤ𝑀)DECID 𝜓DECID [𝐾 / 𝑛]𝜓))
9493ad2antrr 473 . . . . 5 (((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) → (∀𝑛 ∈ (ℤ𝑀)DECID 𝜓DECID [𝐾 / 𝑛]𝜓))
9588, 94mpd 13 . . . 4 (((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) → DECID [𝐾 / 𝑛]𝜓)
96 exmiddc 785 . . . 4 (DECID [𝐾 / 𝑛]𝜓 → ([𝐾 / 𝑛]𝜓 ∨ ¬ [𝐾 / 𝑛]𝜓))
9795, 96syl 14 . . 3 (((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) → ([𝐾 / 𝑛]𝜓 ∨ ¬ [𝐾 / 𝑛]𝜓))
9859, 85, 97mpjaodan 750 . 2 (((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))
9998exp31 357 1 (𝐾 ∈ (ℤ𝑀) → (((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧))) → ((𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 667  DECID wdc 783   = wceq 1296  wcel 1445  [wsb 1699  wral 2370  wrex 2371  {crab 2374  [wsbc 2854  cun 3011  {csn 3466   class class class wbr 3867  cfv 5049  (class class class)co 5690  cr 7446  1c1 7448   + caddc 7450   < clt 7619  cle 7620  cz 8848  cuz 9118  ..^cfzo 9702
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 582  ax-in2 583  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-13 1456  ax-14 1457  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077  ax-sep 3978  ax-pow 4030  ax-pr 4060  ax-un 4284  ax-setind 4381  ax-cnex 7533  ax-resscn 7534  ax-1cn 7535  ax-1re 7536  ax-icn 7537  ax-addcl 7538  ax-addrcl 7539  ax-mulcl 7540  ax-addcom 7542  ax-addass 7544  ax-distr 7546  ax-i2m1 7547  ax-0lt1 7548  ax-0id 7550  ax-rnegex 7551  ax-cnre 7553  ax-pre-ltirr 7554  ax-pre-ltwlin 7555  ax-pre-lttrn 7556  ax-pre-apti 7557  ax-pre-ltadd 7558
This theorem depends on definitions:  df-bi 116  df-dc 784  df-3or 928  df-3an 929  df-tru 1299  df-fal 1302  df-nf 1402  df-sb 1700  df-eu 1958  df-mo 1959  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-ne 2263  df-nel 2358  df-ral 2375  df-rex 2376  df-reu 2377  df-rab 2379  df-v 2635  df-sbc 2855  df-csb 2948  df-dif 3015  df-un 3017  df-in 3019  df-ss 3026  df-pw 3451  df-sn 3472  df-pr 3473  df-op 3475  df-uni 3676  df-int 3711  df-iun 3754  df-br 3868  df-opab 3922  df-mpt 3923  df-id 4144  df-xp 4473  df-rel 4474  df-cnv 4475  df-co 4476  df-dm 4477  df-rn 4478  df-res 4479  df-ima 4480  df-iota 5014  df-fun 5051  df-fn 5052  df-f 5053  df-fv 5057  df-riota 5646  df-ov 5693  df-oprab 5694  df-mpt2 5695  df-1st 5949  df-2nd 5950  df-pnf 7621  df-mnf 7622  df-xr 7623  df-ltxr 7624  df-le 7625  df-sub 7752  df-neg 7753  df-inn 8521  df-n0 8772  df-z 8849  df-uz 9119  df-fz 9574  df-fzo 9703
This theorem is referenced by:  zsupcllemex  11369
  Copyright terms: Public domain W3C validator