ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zsupcllemstep GIF version

Theorem zsupcllemstep 11929
Description: Lemma for zsupcl 11931. Induction step. (Contributed by Jim Kingdon, 7-Dec-2021.)
Hypothesis
Ref Expression
zsupcllemstep.dc ((𝜑𝑛 ∈ (ℤ𝑀)) → DECID 𝜓)
Assertion
Ref Expression
zsupcllemstep (𝐾 ∈ (ℤ𝑀) → (((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧))) → ((𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))))
Distinct variable groups:   𝑛,𝐾,𝑥,𝑦,𝑧   𝑛,𝑀,𝑦   𝜑,𝑛,𝑦   𝜓,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑧)   𝜓(𝑛)   𝑀(𝑥,𝑧)

Proof of Theorem zsupcllemstep
StepHypRef Expression
1 eluzelz 9526 . . . . 5 (𝐾 ∈ (ℤ𝑀) → 𝐾 ∈ ℤ)
21ad3antrrr 492 . . . 4 ((((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) ∧ [𝐾 / 𝑛]𝜓) → 𝐾 ∈ ℤ)
3 nfv 1528 . . . . . . . 8 𝑦 𝐾 ∈ (ℤ𝑀)
4 nfv 1528 . . . . . . . . 9 𝑦(𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓)
5 nfcv 2319 . . . . . . . . . 10 𝑦
6 nfra1 2508 . . . . . . . . . . 11 𝑦𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦
7 nfra1 2508 . . . . . . . . . . 11 𝑦𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)
86, 7nfan 1565 . . . . . . . . . 10 𝑦(∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧))
95, 8nfrexya 2518 . . . . . . . . 9 𝑦𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧))
104, 9nfim 1572 . . . . . . . 8 𝑦((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))
113, 10nfan 1565 . . . . . . 7 𝑦(𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧))))
12 nfv 1528 . . . . . . 7 𝑦(𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)
1311, 12nfan 1565 . . . . . 6 𝑦((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓))
14 nfv 1528 . . . . . 6 𝑦[𝐾 / 𝑛]𝜓
1513, 14nfan 1565 . . . . 5 𝑦(((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) ∧ [𝐾 / 𝑛]𝜓)
16 nfcv 2319 . . . . . . . . . . 11 𝑛
1716elrabsf 3001 . . . . . . . . . 10 (𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ↔ (𝑦 ∈ ℤ ∧ [𝑦 / 𝑛]𝜓))
1817simprbi 275 . . . . . . . . 9 (𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} → [𝑦 / 𝑛]𝜓)
19 sbsbc 2966 . . . . . . . . 9 ([𝑦 / 𝑛]𝜓[𝑦 / 𝑛]𝜓)
2018, 19sylibr 134 . . . . . . . 8 (𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} → [𝑦 / 𝑛]𝜓)
2120ad2antlr 489 . . . . . . 7 ((((((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) ∧ [𝐾 / 𝑛]𝜓) ∧ 𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓}) ∧ 𝐾 < 𝑦) → [𝑦 / 𝑛]𝜓)
22 elrabi 2890 . . . . . . . . . . 11 (𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} → 𝑦 ∈ ℤ)
23 zltp1le 9296 . . . . . . . . . . 11 ((𝐾 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝐾 < 𝑦 ↔ (𝐾 + 1) ≤ 𝑦))
242, 22, 23syl2an 289 . . . . . . . . . 10 (((((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) ∧ [𝐾 / 𝑛]𝜓) ∧ 𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓}) → (𝐾 < 𝑦 ↔ (𝐾 + 1) ≤ 𝑦))
2524biimpa 296 . . . . . . . . 9 ((((((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) ∧ [𝐾 / 𝑛]𝜓) ∧ 𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓}) ∧ 𝐾 < 𝑦) → (𝐾 + 1) ≤ 𝑦)
262peano2zd 9367 . . . . . . . . . . 11 ((((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) ∧ [𝐾 / 𝑛]𝜓) → (𝐾 + 1) ∈ ℤ)
27 eluz 9530 . . . . . . . . . . 11 (((𝐾 + 1) ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝑦 ∈ (ℤ‘(𝐾 + 1)) ↔ (𝐾 + 1) ≤ 𝑦))
2826, 22, 27syl2an 289 . . . . . . . . . 10 (((((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) ∧ [𝐾 / 𝑛]𝜓) ∧ 𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓}) → (𝑦 ∈ (ℤ‘(𝐾 + 1)) ↔ (𝐾 + 1) ≤ 𝑦))
2928adantr 276 . . . . . . . . 9 ((((((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) ∧ [𝐾 / 𝑛]𝜓) ∧ 𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓}) ∧ 𝐾 < 𝑦) → (𝑦 ∈ (ℤ‘(𝐾 + 1)) ↔ (𝐾 + 1) ≤ 𝑦))
3025, 29mpbird 167 . . . . . . . 8 ((((((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) ∧ [𝐾 / 𝑛]𝜓) ∧ 𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓}) ∧ 𝐾 < 𝑦) → 𝑦 ∈ (ℤ‘(𝐾 + 1)))
31 simprr 531 . . . . . . . . 9 (((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) → ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)
3231ad3antrrr 492 . . . . . . . 8 ((((((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) ∧ [𝐾 / 𝑛]𝜓) ∧ 𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓}) ∧ 𝐾 < 𝑦) → ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)
33 nfs1v 1939 . . . . . . . . . 10 𝑛[𝑦 / 𝑛]𝜓
3433nfn 1658 . . . . . . . . 9 𝑛 ¬ [𝑦 / 𝑛]𝜓
35 sbequ12 1771 . . . . . . . . . 10 (𝑛 = 𝑦 → (𝜓 ↔ [𝑦 / 𝑛]𝜓))
3635notbid 667 . . . . . . . . 9 (𝑛 = 𝑦 → (¬ 𝜓 ↔ ¬ [𝑦 / 𝑛]𝜓))
3734, 36rspc 2835 . . . . . . . 8 (𝑦 ∈ (ℤ‘(𝐾 + 1)) → (∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓 → ¬ [𝑦 / 𝑛]𝜓))
3830, 32, 37sylc 62 . . . . . . 7 ((((((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) ∧ [𝐾 / 𝑛]𝜓) ∧ 𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓}) ∧ 𝐾 < 𝑦) → ¬ [𝑦 / 𝑛]𝜓)
3921, 38pm2.65da 661 . . . . . 6 (((((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) ∧ [𝐾 / 𝑛]𝜓) ∧ 𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓}) → ¬ 𝐾 < 𝑦)
4039ex 115 . . . . 5 ((((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) ∧ [𝐾 / 𝑛]𝜓) → (𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} → ¬ 𝐾 < 𝑦))
4115, 40ralrimi 2548 . . . 4 ((((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) ∧ [𝐾 / 𝑛]𝜓) → ∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝐾 < 𝑦)
422ad2antrr 488 . . . . . . . 8 ((((((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) ∧ [𝐾 / 𝑛]𝜓) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < 𝐾) → 𝐾 ∈ ℤ)
43 simpllr 534 . . . . . . . 8 ((((((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) ∧ [𝐾 / 𝑛]𝜓) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < 𝐾) → [𝐾 / 𝑛]𝜓)
4416elrabsf 3001 . . . . . . . 8 (𝐾 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ↔ (𝐾 ∈ ℤ ∧ [𝐾 / 𝑛]𝜓))
4542, 43, 44sylanbrc 417 . . . . . . 7 ((((((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) ∧ [𝐾 / 𝑛]𝜓) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < 𝐾) → 𝐾 ∈ {𝑛 ∈ ℤ ∣ 𝜓})
46 breq2 4004 . . . . . . . 8 (𝑧 = 𝐾 → (𝑦 < 𝑧𝑦 < 𝐾))
4746rspcev 2841 . . . . . . 7 ((𝐾 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ∧ 𝑦 < 𝐾) → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)
4845, 47sylancom 420 . . . . . 6 ((((((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) ∧ [𝐾 / 𝑛]𝜓) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < 𝐾) → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)
4948exp31 364 . . . . 5 ((((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) ∧ [𝐾 / 𝑛]𝜓) → (𝑦 ∈ ℝ → (𝑦 < 𝐾 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))
5015, 49ralrimi 2548 . . . 4 ((((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) ∧ [𝐾 / 𝑛]𝜓) → ∀𝑦 ∈ ℝ (𝑦 < 𝐾 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧))
51 breq1 4003 . . . . . . . 8 (𝑥 = 𝐾 → (𝑥 < 𝑦𝐾 < 𝑦))
5251notbid 667 . . . . . . 7 (𝑥 = 𝐾 → (¬ 𝑥 < 𝑦 ↔ ¬ 𝐾 < 𝑦))
5352ralbidv 2477 . . . . . 6 (𝑥 = 𝐾 → (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ↔ ∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝐾 < 𝑦))
54 breq2 4004 . . . . . . . 8 (𝑥 = 𝐾 → (𝑦 < 𝑥𝑦 < 𝐾))
5554imbi1d 231 . . . . . . 7 (𝑥 = 𝐾 → ((𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧) ↔ (𝑦 < 𝐾 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))
5655ralbidv 2477 . . . . . 6 (𝑥 = 𝐾 → (∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧) ↔ ∀𝑦 ∈ ℝ (𝑦 < 𝐾 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))
5753, 56anbi12d 473 . . . . 5 (𝑥 = 𝐾 → ((∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)) ↔ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝐾 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝐾 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧))))
5857rspcev 2841 . . . 4 ((𝐾 ∈ ℤ ∧ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝐾 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝐾 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧))) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))
592, 41, 50, 58syl12anc 1236 . . 3 ((((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) ∧ [𝐾 / 𝑛]𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))
60 sbcng 3003 . . . . . . . 8 (𝐾 ∈ (ℤ𝑀) → ([𝐾 / 𝑛] ¬ 𝜓 ↔ ¬ [𝐾 / 𝑛]𝜓))
6160ad2antrr 488 . . . . . . 7 (((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) → ([𝐾 / 𝑛] ¬ 𝜓 ↔ ¬ [𝐾 / 𝑛]𝜓))
6261biimpar 297 . . . . . 6 ((((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) ∧ ¬ [𝐾 / 𝑛]𝜓) → [𝐾 / 𝑛] ¬ 𝜓)
63 sbcsng 3650 . . . . . . 7 (𝐾 ∈ (ℤ𝑀) → ([𝐾 / 𝑛] ¬ 𝜓 ↔ ∀𝑛 ∈ {𝐾} ¬ 𝜓))
6463ad3antrrr 492 . . . . . 6 ((((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) ∧ ¬ [𝐾 / 𝑛]𝜓) → ([𝐾 / 𝑛] ¬ 𝜓 ↔ ∀𝑛 ∈ {𝐾} ¬ 𝜓))
6562, 64mpbid 147 . . . . 5 ((((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) ∧ ¬ [𝐾 / 𝑛]𝜓) → ∀𝑛 ∈ {𝐾} ¬ 𝜓)
66 simplrr 536 . . . . 5 ((((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) ∧ ¬ [𝐾 / 𝑛]𝜓) → ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)
67 uzid 9531 . . . . . . . . . . 11 (𝐾 ∈ ℤ → 𝐾 ∈ (ℤ𝐾))
68 peano2uz 9572 . . . . . . . . . . 11 (𝐾 ∈ (ℤ𝐾) → (𝐾 + 1) ∈ (ℤ𝐾))
6967, 68syl 14 . . . . . . . . . 10 (𝐾 ∈ ℤ → (𝐾 + 1) ∈ (ℤ𝐾))
70 fzouzsplit 10165 . . . . . . . . . 10 ((𝐾 + 1) ∈ (ℤ𝐾) → (ℤ𝐾) = ((𝐾..^(𝐾 + 1)) ∪ (ℤ‘(𝐾 + 1))))
711, 69, 703syl 17 . . . . . . . . 9 (𝐾 ∈ (ℤ𝑀) → (ℤ𝐾) = ((𝐾..^(𝐾 + 1)) ∪ (ℤ‘(𝐾 + 1))))
72 fzosn 10191 . . . . . . . . . . 11 (𝐾 ∈ ℤ → (𝐾..^(𝐾 + 1)) = {𝐾})
731, 72syl 14 . . . . . . . . . 10 (𝐾 ∈ (ℤ𝑀) → (𝐾..^(𝐾 + 1)) = {𝐾})
7473uneq1d 3288 . . . . . . . . 9 (𝐾 ∈ (ℤ𝑀) → ((𝐾..^(𝐾 + 1)) ∪ (ℤ‘(𝐾 + 1))) = ({𝐾} ∪ (ℤ‘(𝐾 + 1))))
7571, 74eqtrd 2210 . . . . . . . 8 (𝐾 ∈ (ℤ𝑀) → (ℤ𝐾) = ({𝐾} ∪ (ℤ‘(𝐾 + 1))))
7675raleqdv 2678 . . . . . . 7 (𝐾 ∈ (ℤ𝑀) → (∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓 ↔ ∀𝑛 ∈ ({𝐾} ∪ (ℤ‘(𝐾 + 1))) ¬ 𝜓))
77 ralunb 3316 . . . . . . 7 (∀𝑛 ∈ ({𝐾} ∪ (ℤ‘(𝐾 + 1))) ¬ 𝜓 ↔ (∀𝑛 ∈ {𝐾} ¬ 𝜓 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓))
7876, 77bitrdi 196 . . . . . 6 (𝐾 ∈ (ℤ𝑀) → (∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓 ↔ (∀𝑛 ∈ {𝐾} ¬ 𝜓 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)))
7978ad3antrrr 492 . . . . 5 ((((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) ∧ ¬ [𝐾 / 𝑛]𝜓) → (∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓 ↔ (∀𝑛 ∈ {𝐾} ¬ 𝜓 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)))
8065, 66, 79mpbir2and 944 . . . 4 ((((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) ∧ ¬ [𝐾 / 𝑛]𝜓) → ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓)
81 simprl 529 . . . . . 6 (((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) → 𝜑)
82 simplr 528 . . . . . 6 (((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) → ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧))))
8381, 82mpand 429 . . . . 5 (((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) → (∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓 → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧))))
8483adantr 276 . . . 4 ((((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) ∧ ¬ [𝐾 / 𝑛]𝜓) → (∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓 → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧))))
8580, 84mpd 13 . . 3 ((((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) ∧ ¬ [𝐾 / 𝑛]𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))
86 zsupcllemstep.dc . . . . . . 7 ((𝜑𝑛 ∈ (ℤ𝑀)) → DECID 𝜓)
8786ralrimiva 2550 . . . . . 6 (𝜑 → ∀𝑛 ∈ (ℤ𝑀)DECID 𝜓)
8881, 87syl 14 . . . . 5 (((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) → ∀𝑛 ∈ (ℤ𝑀)DECID 𝜓)
89 nfsbc1v 2981 . . . . . . . 8 𝑛[𝐾 / 𝑛]𝜓
9089nfdc 1659 . . . . . . 7 𝑛DECID [𝐾 / 𝑛]𝜓
91 sbceq1a 2972 . . . . . . . 8 (𝑛 = 𝐾 → (𝜓[𝐾 / 𝑛]𝜓))
9291dcbid 838 . . . . . . 7 (𝑛 = 𝐾 → (DECID 𝜓DECID [𝐾 / 𝑛]𝜓))
9390, 92rspc 2835 . . . . . 6 (𝐾 ∈ (ℤ𝑀) → (∀𝑛 ∈ (ℤ𝑀)DECID 𝜓DECID [𝐾 / 𝑛]𝜓))
9493ad2antrr 488 . . . . 5 (((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) → (∀𝑛 ∈ (ℤ𝑀)DECID 𝜓DECID [𝐾 / 𝑛]𝜓))
9588, 94mpd 13 . . . 4 (((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) → DECID [𝐾 / 𝑛]𝜓)
96 exmiddc 836 . . . 4 (DECID [𝐾 / 𝑛]𝜓 → ([𝐾 / 𝑛]𝜓 ∨ ¬ [𝐾 / 𝑛]𝜓))
9795, 96syl 14 . . 3 (((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) → ([𝐾 / 𝑛]𝜓 ∨ ¬ [𝐾 / 𝑛]𝜓))
9859, 85, 97mpjaodan 798 . 2 (((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))
9998exp31 364 1 (𝐾 ∈ (ℤ𝑀) → (((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧))) → ((𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 708  DECID wdc 834   = wceq 1353  [wsb 1762  wcel 2148  wral 2455  wrex 2456  {crab 2459  [wsbc 2962  cun 3127  {csn 3591   class class class wbr 4000  cfv 5212  (class class class)co 5869  cr 7801  1c1 7803   + caddc 7805   < clt 7982  cle 7983  cz 9242  cuz 9517  ..^cfzo 10128
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4118  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-addcom 7902  ax-addass 7904  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-0id 7910  ax-rnegex 7911  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-id 4290  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-fv 5220  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-inn 8909  df-n0 9166  df-z 9243  df-uz 9518  df-fz 9996  df-fzo 10129
This theorem is referenced by:  zsupcllemex  11930
  Copyright terms: Public domain W3C validator