ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zsupcllemstep GIF version

Theorem zsupcllemstep 11900
Description: Lemma for zsupcl 11902. Induction step. (Contributed by Jim Kingdon, 7-Dec-2021.)
Hypothesis
Ref Expression
zsupcllemstep.dc ((𝜑𝑛 ∈ (ℤ𝑀)) → DECID 𝜓)
Assertion
Ref Expression
zsupcllemstep (𝐾 ∈ (ℤ𝑀) → (((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧))) → ((𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))))
Distinct variable groups:   𝑛,𝐾,𝑥,𝑦,𝑧   𝑛,𝑀,𝑦   𝜑,𝑛,𝑦   𝜓,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑧)   𝜓(𝑛)   𝑀(𝑥,𝑧)

Proof of Theorem zsupcllemstep
StepHypRef Expression
1 eluzelz 9496 . . . . 5 (𝐾 ∈ (ℤ𝑀) → 𝐾 ∈ ℤ)
21ad3antrrr 489 . . . 4 ((((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) ∧ [𝐾 / 𝑛]𝜓) → 𝐾 ∈ ℤ)
3 nfv 1521 . . . . . . . 8 𝑦 𝐾 ∈ (ℤ𝑀)
4 nfv 1521 . . . . . . . . 9 𝑦(𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓)
5 nfcv 2312 . . . . . . . . . 10 𝑦
6 nfra1 2501 . . . . . . . . . . 11 𝑦𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦
7 nfra1 2501 . . . . . . . . . . 11 𝑦𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)
86, 7nfan 1558 . . . . . . . . . 10 𝑦(∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧))
95, 8nfrexya 2511 . . . . . . . . 9 𝑦𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧))
104, 9nfim 1565 . . . . . . . 8 𝑦((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))
113, 10nfan 1558 . . . . . . 7 𝑦(𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧))))
12 nfv 1521 . . . . . . 7 𝑦(𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)
1311, 12nfan 1558 . . . . . 6 𝑦((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓))
14 nfv 1521 . . . . . 6 𝑦[𝐾 / 𝑛]𝜓
1513, 14nfan 1558 . . . . 5 𝑦(((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) ∧ [𝐾 / 𝑛]𝜓)
16 nfcv 2312 . . . . . . . . . . 11 𝑛
1716elrabsf 2993 . . . . . . . . . 10 (𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ↔ (𝑦 ∈ ℤ ∧ [𝑦 / 𝑛]𝜓))
1817simprbi 273 . . . . . . . . 9 (𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} → [𝑦 / 𝑛]𝜓)
19 sbsbc 2959 . . . . . . . . 9 ([𝑦 / 𝑛]𝜓[𝑦 / 𝑛]𝜓)
2018, 19sylibr 133 . . . . . . . 8 (𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} → [𝑦 / 𝑛]𝜓)
2120ad2antlr 486 . . . . . . 7 ((((((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) ∧ [𝐾 / 𝑛]𝜓) ∧ 𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓}) ∧ 𝐾 < 𝑦) → [𝑦 / 𝑛]𝜓)
22 elrabi 2883 . . . . . . . . . . 11 (𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} → 𝑦 ∈ ℤ)
23 zltp1le 9266 . . . . . . . . . . 11 ((𝐾 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝐾 < 𝑦 ↔ (𝐾 + 1) ≤ 𝑦))
242, 22, 23syl2an 287 . . . . . . . . . 10 (((((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) ∧ [𝐾 / 𝑛]𝜓) ∧ 𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓}) → (𝐾 < 𝑦 ↔ (𝐾 + 1) ≤ 𝑦))
2524biimpa 294 . . . . . . . . 9 ((((((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) ∧ [𝐾 / 𝑛]𝜓) ∧ 𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓}) ∧ 𝐾 < 𝑦) → (𝐾 + 1) ≤ 𝑦)
262peano2zd 9337 . . . . . . . . . . 11 ((((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) ∧ [𝐾 / 𝑛]𝜓) → (𝐾 + 1) ∈ ℤ)
27 eluz 9500 . . . . . . . . . . 11 (((𝐾 + 1) ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝑦 ∈ (ℤ‘(𝐾 + 1)) ↔ (𝐾 + 1) ≤ 𝑦))
2826, 22, 27syl2an 287 . . . . . . . . . 10 (((((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) ∧ [𝐾 / 𝑛]𝜓) ∧ 𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓}) → (𝑦 ∈ (ℤ‘(𝐾 + 1)) ↔ (𝐾 + 1) ≤ 𝑦))
2928adantr 274 . . . . . . . . 9 ((((((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) ∧ [𝐾 / 𝑛]𝜓) ∧ 𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓}) ∧ 𝐾 < 𝑦) → (𝑦 ∈ (ℤ‘(𝐾 + 1)) ↔ (𝐾 + 1) ≤ 𝑦))
3025, 29mpbird 166 . . . . . . . 8 ((((((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) ∧ [𝐾 / 𝑛]𝜓) ∧ 𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓}) ∧ 𝐾 < 𝑦) → 𝑦 ∈ (ℤ‘(𝐾 + 1)))
31 simprr 527 . . . . . . . . 9 (((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) → ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)
3231ad3antrrr 489 . . . . . . . 8 ((((((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) ∧ [𝐾 / 𝑛]𝜓) ∧ 𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓}) ∧ 𝐾 < 𝑦) → ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)
33 nfs1v 1932 . . . . . . . . . 10 𝑛[𝑦 / 𝑛]𝜓
3433nfn 1651 . . . . . . . . 9 𝑛 ¬ [𝑦 / 𝑛]𝜓
35 sbequ12 1764 . . . . . . . . . 10 (𝑛 = 𝑦 → (𝜓 ↔ [𝑦 / 𝑛]𝜓))
3635notbid 662 . . . . . . . . 9 (𝑛 = 𝑦 → (¬ 𝜓 ↔ ¬ [𝑦 / 𝑛]𝜓))
3734, 36rspc 2828 . . . . . . . 8 (𝑦 ∈ (ℤ‘(𝐾 + 1)) → (∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓 → ¬ [𝑦 / 𝑛]𝜓))
3830, 32, 37sylc 62 . . . . . . 7 ((((((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) ∧ [𝐾 / 𝑛]𝜓) ∧ 𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓}) ∧ 𝐾 < 𝑦) → ¬ [𝑦 / 𝑛]𝜓)
3921, 38pm2.65da 656 . . . . . 6 (((((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) ∧ [𝐾 / 𝑛]𝜓) ∧ 𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓}) → ¬ 𝐾 < 𝑦)
4039ex 114 . . . . 5 ((((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) ∧ [𝐾 / 𝑛]𝜓) → (𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} → ¬ 𝐾 < 𝑦))
4115, 40ralrimi 2541 . . . 4 ((((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) ∧ [𝐾 / 𝑛]𝜓) → ∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝐾 < 𝑦)
422ad2antrr 485 . . . . . . . 8 ((((((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) ∧ [𝐾 / 𝑛]𝜓) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < 𝐾) → 𝐾 ∈ ℤ)
43 simpllr 529 . . . . . . . 8 ((((((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) ∧ [𝐾 / 𝑛]𝜓) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < 𝐾) → [𝐾 / 𝑛]𝜓)
4416elrabsf 2993 . . . . . . . 8 (𝐾 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ↔ (𝐾 ∈ ℤ ∧ [𝐾 / 𝑛]𝜓))
4542, 43, 44sylanbrc 415 . . . . . . 7 ((((((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) ∧ [𝐾 / 𝑛]𝜓) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < 𝐾) → 𝐾 ∈ {𝑛 ∈ ℤ ∣ 𝜓})
46 breq2 3993 . . . . . . . 8 (𝑧 = 𝐾 → (𝑦 < 𝑧𝑦 < 𝐾))
4746rspcev 2834 . . . . . . 7 ((𝐾 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ∧ 𝑦 < 𝐾) → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)
4845, 47sylancom 418 . . . . . 6 ((((((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) ∧ [𝐾 / 𝑛]𝜓) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < 𝐾) → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)
4948exp31 362 . . . . 5 ((((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) ∧ [𝐾 / 𝑛]𝜓) → (𝑦 ∈ ℝ → (𝑦 < 𝐾 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))
5015, 49ralrimi 2541 . . . 4 ((((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) ∧ [𝐾 / 𝑛]𝜓) → ∀𝑦 ∈ ℝ (𝑦 < 𝐾 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧))
51 breq1 3992 . . . . . . . 8 (𝑥 = 𝐾 → (𝑥 < 𝑦𝐾 < 𝑦))
5251notbid 662 . . . . . . 7 (𝑥 = 𝐾 → (¬ 𝑥 < 𝑦 ↔ ¬ 𝐾 < 𝑦))
5352ralbidv 2470 . . . . . 6 (𝑥 = 𝐾 → (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ↔ ∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝐾 < 𝑦))
54 breq2 3993 . . . . . . . 8 (𝑥 = 𝐾 → (𝑦 < 𝑥𝑦 < 𝐾))
5554imbi1d 230 . . . . . . 7 (𝑥 = 𝐾 → ((𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧) ↔ (𝑦 < 𝐾 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))
5655ralbidv 2470 . . . . . 6 (𝑥 = 𝐾 → (∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧) ↔ ∀𝑦 ∈ ℝ (𝑦 < 𝐾 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))
5753, 56anbi12d 470 . . . . 5 (𝑥 = 𝐾 → ((∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)) ↔ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝐾 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝐾 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧))))
5857rspcev 2834 . . . 4 ((𝐾 ∈ ℤ ∧ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝐾 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝐾 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧))) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))
592, 41, 50, 58syl12anc 1231 . . 3 ((((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) ∧ [𝐾 / 𝑛]𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))
60 sbcng 2995 . . . . . . . 8 (𝐾 ∈ (ℤ𝑀) → ([𝐾 / 𝑛] ¬ 𝜓 ↔ ¬ [𝐾 / 𝑛]𝜓))
6160ad2antrr 485 . . . . . . 7 (((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) → ([𝐾 / 𝑛] ¬ 𝜓 ↔ ¬ [𝐾 / 𝑛]𝜓))
6261biimpar 295 . . . . . 6 ((((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) ∧ ¬ [𝐾 / 𝑛]𝜓) → [𝐾 / 𝑛] ¬ 𝜓)
63 sbcsng 3642 . . . . . . 7 (𝐾 ∈ (ℤ𝑀) → ([𝐾 / 𝑛] ¬ 𝜓 ↔ ∀𝑛 ∈ {𝐾} ¬ 𝜓))
6463ad3antrrr 489 . . . . . 6 ((((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) ∧ ¬ [𝐾 / 𝑛]𝜓) → ([𝐾 / 𝑛] ¬ 𝜓 ↔ ∀𝑛 ∈ {𝐾} ¬ 𝜓))
6562, 64mpbid 146 . . . . 5 ((((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) ∧ ¬ [𝐾 / 𝑛]𝜓) → ∀𝑛 ∈ {𝐾} ¬ 𝜓)
66 simplrr 531 . . . . 5 ((((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) ∧ ¬ [𝐾 / 𝑛]𝜓) → ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)
67 uzid 9501 . . . . . . . . . . 11 (𝐾 ∈ ℤ → 𝐾 ∈ (ℤ𝐾))
68 peano2uz 9542 . . . . . . . . . . 11 (𝐾 ∈ (ℤ𝐾) → (𝐾 + 1) ∈ (ℤ𝐾))
6967, 68syl 14 . . . . . . . . . 10 (𝐾 ∈ ℤ → (𝐾 + 1) ∈ (ℤ𝐾))
70 fzouzsplit 10135 . . . . . . . . . 10 ((𝐾 + 1) ∈ (ℤ𝐾) → (ℤ𝐾) = ((𝐾..^(𝐾 + 1)) ∪ (ℤ‘(𝐾 + 1))))
711, 69, 703syl 17 . . . . . . . . 9 (𝐾 ∈ (ℤ𝑀) → (ℤ𝐾) = ((𝐾..^(𝐾 + 1)) ∪ (ℤ‘(𝐾 + 1))))
72 fzosn 10161 . . . . . . . . . . 11 (𝐾 ∈ ℤ → (𝐾..^(𝐾 + 1)) = {𝐾})
731, 72syl 14 . . . . . . . . . 10 (𝐾 ∈ (ℤ𝑀) → (𝐾..^(𝐾 + 1)) = {𝐾})
7473uneq1d 3280 . . . . . . . . 9 (𝐾 ∈ (ℤ𝑀) → ((𝐾..^(𝐾 + 1)) ∪ (ℤ‘(𝐾 + 1))) = ({𝐾} ∪ (ℤ‘(𝐾 + 1))))
7571, 74eqtrd 2203 . . . . . . . 8 (𝐾 ∈ (ℤ𝑀) → (ℤ𝐾) = ({𝐾} ∪ (ℤ‘(𝐾 + 1))))
7675raleqdv 2671 . . . . . . 7 (𝐾 ∈ (ℤ𝑀) → (∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓 ↔ ∀𝑛 ∈ ({𝐾} ∪ (ℤ‘(𝐾 + 1))) ¬ 𝜓))
77 ralunb 3308 . . . . . . 7 (∀𝑛 ∈ ({𝐾} ∪ (ℤ‘(𝐾 + 1))) ¬ 𝜓 ↔ (∀𝑛 ∈ {𝐾} ¬ 𝜓 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓))
7876, 77bitrdi 195 . . . . . 6 (𝐾 ∈ (ℤ𝑀) → (∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓 ↔ (∀𝑛 ∈ {𝐾} ¬ 𝜓 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)))
7978ad3antrrr 489 . . . . 5 ((((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) ∧ ¬ [𝐾 / 𝑛]𝜓) → (∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓 ↔ (∀𝑛 ∈ {𝐾} ¬ 𝜓 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)))
8065, 66, 79mpbir2and 939 . . . 4 ((((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) ∧ ¬ [𝐾 / 𝑛]𝜓) → ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓)
81 simprl 526 . . . . . 6 (((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) → 𝜑)
82 simplr 525 . . . . . 6 (((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) → ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧))))
8381, 82mpand 427 . . . . 5 (((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) → (∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓 → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧))))
8483adantr 274 . . . 4 ((((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) ∧ ¬ [𝐾 / 𝑛]𝜓) → (∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓 → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧))))
8580, 84mpd 13 . . 3 ((((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) ∧ ¬ [𝐾 / 𝑛]𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))
86 zsupcllemstep.dc . . . . . . 7 ((𝜑𝑛 ∈ (ℤ𝑀)) → DECID 𝜓)
8786ralrimiva 2543 . . . . . 6 (𝜑 → ∀𝑛 ∈ (ℤ𝑀)DECID 𝜓)
8881, 87syl 14 . . . . 5 (((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) → ∀𝑛 ∈ (ℤ𝑀)DECID 𝜓)
89 nfsbc1v 2973 . . . . . . . 8 𝑛[𝐾 / 𝑛]𝜓
9089nfdc 1652 . . . . . . 7 𝑛DECID [𝐾 / 𝑛]𝜓
91 sbceq1a 2964 . . . . . . . 8 (𝑛 = 𝐾 → (𝜓[𝐾 / 𝑛]𝜓))
9291dcbid 833 . . . . . . 7 (𝑛 = 𝐾 → (DECID 𝜓DECID [𝐾 / 𝑛]𝜓))
9390, 92rspc 2828 . . . . . 6 (𝐾 ∈ (ℤ𝑀) → (∀𝑛 ∈ (ℤ𝑀)DECID 𝜓DECID [𝐾 / 𝑛]𝜓))
9493ad2antrr 485 . . . . 5 (((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) → (∀𝑛 ∈ (ℤ𝑀)DECID 𝜓DECID [𝐾 / 𝑛]𝜓))
9588, 94mpd 13 . . . 4 (((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) → DECID [𝐾 / 𝑛]𝜓)
96 exmiddc 831 . . . 4 (DECID [𝐾 / 𝑛]𝜓 → ([𝐾 / 𝑛]𝜓 ∨ ¬ [𝐾 / 𝑛]𝜓))
9795, 96syl 14 . . 3 (((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) → ([𝐾 / 𝑛]𝜓 ∨ ¬ [𝐾 / 𝑛]𝜓))
9859, 85, 97mpjaodan 793 . 2 (((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))
9998exp31 362 1 (𝐾 ∈ (ℤ𝑀) → (((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧))) → ((𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 703  DECID wdc 829   = wceq 1348  [wsb 1755  wcel 2141  wral 2448  wrex 2449  {crab 2452  [wsbc 2955  cun 3119  {csn 3583   class class class wbr 3989  cfv 5198  (class class class)co 5853  cr 7773  1c1 7775   + caddc 7777   < clt 7954  cle 7955  cz 9212  cuz 9487  ..^cfzo 10098
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-addcom 7874  ax-addass 7876  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-0id 7882  ax-rnegex 7883  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-inn 8879  df-n0 9136  df-z 9213  df-uz 9488  df-fz 9966  df-fzo 10099
This theorem is referenced by:  zsupcllemex  11901
  Copyright terms: Public domain W3C validator