ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zsupcllemstep GIF version

Theorem zsupcllemstep 12085
Description: Lemma for zsupcl 12087. Induction step. (Contributed by Jim Kingdon, 7-Dec-2021.)
Hypothesis
Ref Expression
zsupcllemstep.dc ((𝜑𝑛 ∈ (ℤ𝑀)) → DECID 𝜓)
Assertion
Ref Expression
zsupcllemstep (𝐾 ∈ (ℤ𝑀) → (((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧))) → ((𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))))
Distinct variable groups:   𝑛,𝐾,𝑥,𝑦,𝑧   𝑛,𝑀,𝑦   𝜑,𝑛,𝑦   𝜓,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑧)   𝜓(𝑛)   𝑀(𝑥,𝑧)

Proof of Theorem zsupcllemstep
StepHypRef Expression
1 eluzelz 9604 . . . . 5 (𝐾 ∈ (ℤ𝑀) → 𝐾 ∈ ℤ)
21ad3antrrr 492 . . . 4 ((((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) ∧ [𝐾 / 𝑛]𝜓) → 𝐾 ∈ ℤ)
3 nfv 1539 . . . . . . . 8 𝑦 𝐾 ∈ (ℤ𝑀)
4 nfv 1539 . . . . . . . . 9 𝑦(𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓)
5 nfcv 2336 . . . . . . . . . 10 𝑦
6 nfra1 2525 . . . . . . . . . . 11 𝑦𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦
7 nfra1 2525 . . . . . . . . . . 11 𝑦𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)
86, 7nfan 1576 . . . . . . . . . 10 𝑦(∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧))
95, 8nfrexya 2535 . . . . . . . . 9 𝑦𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧))
104, 9nfim 1583 . . . . . . . 8 𝑦((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))
113, 10nfan 1576 . . . . . . 7 𝑦(𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧))))
12 nfv 1539 . . . . . . 7 𝑦(𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)
1311, 12nfan 1576 . . . . . 6 𝑦((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓))
14 nfv 1539 . . . . . 6 𝑦[𝐾 / 𝑛]𝜓
1513, 14nfan 1576 . . . . 5 𝑦(((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) ∧ [𝐾 / 𝑛]𝜓)
16 nfcv 2336 . . . . . . . . . . 11 𝑛
1716elrabsf 3025 . . . . . . . . . 10 (𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ↔ (𝑦 ∈ ℤ ∧ [𝑦 / 𝑛]𝜓))
1817simprbi 275 . . . . . . . . 9 (𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} → [𝑦 / 𝑛]𝜓)
19 sbsbc 2990 . . . . . . . . 9 ([𝑦 / 𝑛]𝜓[𝑦 / 𝑛]𝜓)
2018, 19sylibr 134 . . . . . . . 8 (𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} → [𝑦 / 𝑛]𝜓)
2120ad2antlr 489 . . . . . . 7 ((((((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) ∧ [𝐾 / 𝑛]𝜓) ∧ 𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓}) ∧ 𝐾 < 𝑦) → [𝑦 / 𝑛]𝜓)
22 elrabi 2914 . . . . . . . . . . 11 (𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} → 𝑦 ∈ ℤ)
23 zltp1le 9374 . . . . . . . . . . 11 ((𝐾 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝐾 < 𝑦 ↔ (𝐾 + 1) ≤ 𝑦))
242, 22, 23syl2an 289 . . . . . . . . . 10 (((((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) ∧ [𝐾 / 𝑛]𝜓) ∧ 𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓}) → (𝐾 < 𝑦 ↔ (𝐾 + 1) ≤ 𝑦))
2524biimpa 296 . . . . . . . . 9 ((((((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) ∧ [𝐾 / 𝑛]𝜓) ∧ 𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓}) ∧ 𝐾 < 𝑦) → (𝐾 + 1) ≤ 𝑦)
262peano2zd 9445 . . . . . . . . . . 11 ((((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) ∧ [𝐾 / 𝑛]𝜓) → (𝐾 + 1) ∈ ℤ)
27 eluz 9608 . . . . . . . . . . 11 (((𝐾 + 1) ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝑦 ∈ (ℤ‘(𝐾 + 1)) ↔ (𝐾 + 1) ≤ 𝑦))
2826, 22, 27syl2an 289 . . . . . . . . . 10 (((((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) ∧ [𝐾 / 𝑛]𝜓) ∧ 𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓}) → (𝑦 ∈ (ℤ‘(𝐾 + 1)) ↔ (𝐾 + 1) ≤ 𝑦))
2928adantr 276 . . . . . . . . 9 ((((((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) ∧ [𝐾 / 𝑛]𝜓) ∧ 𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓}) ∧ 𝐾 < 𝑦) → (𝑦 ∈ (ℤ‘(𝐾 + 1)) ↔ (𝐾 + 1) ≤ 𝑦))
3025, 29mpbird 167 . . . . . . . 8 ((((((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) ∧ [𝐾 / 𝑛]𝜓) ∧ 𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓}) ∧ 𝐾 < 𝑦) → 𝑦 ∈ (ℤ‘(𝐾 + 1)))
31 simprr 531 . . . . . . . . 9 (((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) → ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)
3231ad3antrrr 492 . . . . . . . 8 ((((((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) ∧ [𝐾 / 𝑛]𝜓) ∧ 𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓}) ∧ 𝐾 < 𝑦) → ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)
33 nfs1v 1955 . . . . . . . . . 10 𝑛[𝑦 / 𝑛]𝜓
3433nfn 1669 . . . . . . . . 9 𝑛 ¬ [𝑦 / 𝑛]𝜓
35 sbequ12 1782 . . . . . . . . . 10 (𝑛 = 𝑦 → (𝜓 ↔ [𝑦 / 𝑛]𝜓))
3635notbid 668 . . . . . . . . 9 (𝑛 = 𝑦 → (¬ 𝜓 ↔ ¬ [𝑦 / 𝑛]𝜓))
3734, 36rspc 2859 . . . . . . . 8 (𝑦 ∈ (ℤ‘(𝐾 + 1)) → (∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓 → ¬ [𝑦 / 𝑛]𝜓))
3830, 32, 37sylc 62 . . . . . . 7 ((((((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) ∧ [𝐾 / 𝑛]𝜓) ∧ 𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓}) ∧ 𝐾 < 𝑦) → ¬ [𝑦 / 𝑛]𝜓)
3921, 38pm2.65da 662 . . . . . 6 (((((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) ∧ [𝐾 / 𝑛]𝜓) ∧ 𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓}) → ¬ 𝐾 < 𝑦)
4039ex 115 . . . . 5 ((((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) ∧ [𝐾 / 𝑛]𝜓) → (𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} → ¬ 𝐾 < 𝑦))
4115, 40ralrimi 2565 . . . 4 ((((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) ∧ [𝐾 / 𝑛]𝜓) → ∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝐾 < 𝑦)
422ad2antrr 488 . . . . . . . 8 ((((((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) ∧ [𝐾 / 𝑛]𝜓) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < 𝐾) → 𝐾 ∈ ℤ)
43 simpllr 534 . . . . . . . 8 ((((((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) ∧ [𝐾 / 𝑛]𝜓) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < 𝐾) → [𝐾 / 𝑛]𝜓)
4416elrabsf 3025 . . . . . . . 8 (𝐾 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ↔ (𝐾 ∈ ℤ ∧ [𝐾 / 𝑛]𝜓))
4542, 43, 44sylanbrc 417 . . . . . . 7 ((((((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) ∧ [𝐾 / 𝑛]𝜓) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < 𝐾) → 𝐾 ∈ {𝑛 ∈ ℤ ∣ 𝜓})
46 breq2 4034 . . . . . . . 8 (𝑧 = 𝐾 → (𝑦 < 𝑧𝑦 < 𝐾))
4746rspcev 2865 . . . . . . 7 ((𝐾 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ∧ 𝑦 < 𝐾) → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)
4845, 47sylancom 420 . . . . . 6 ((((((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) ∧ [𝐾 / 𝑛]𝜓) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < 𝐾) → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)
4948exp31 364 . . . . 5 ((((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) ∧ [𝐾 / 𝑛]𝜓) → (𝑦 ∈ ℝ → (𝑦 < 𝐾 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))
5015, 49ralrimi 2565 . . . 4 ((((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) ∧ [𝐾 / 𝑛]𝜓) → ∀𝑦 ∈ ℝ (𝑦 < 𝐾 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧))
51 breq1 4033 . . . . . . . 8 (𝑥 = 𝐾 → (𝑥 < 𝑦𝐾 < 𝑦))
5251notbid 668 . . . . . . 7 (𝑥 = 𝐾 → (¬ 𝑥 < 𝑦 ↔ ¬ 𝐾 < 𝑦))
5352ralbidv 2494 . . . . . 6 (𝑥 = 𝐾 → (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ↔ ∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝐾 < 𝑦))
54 breq2 4034 . . . . . . . 8 (𝑥 = 𝐾 → (𝑦 < 𝑥𝑦 < 𝐾))
5554imbi1d 231 . . . . . . 7 (𝑥 = 𝐾 → ((𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧) ↔ (𝑦 < 𝐾 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))
5655ralbidv 2494 . . . . . 6 (𝑥 = 𝐾 → (∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧) ↔ ∀𝑦 ∈ ℝ (𝑦 < 𝐾 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))
5753, 56anbi12d 473 . . . . 5 (𝑥 = 𝐾 → ((∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)) ↔ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝐾 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝐾 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧))))
5857rspcev 2865 . . . 4 ((𝐾 ∈ ℤ ∧ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝐾 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝐾 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧))) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))
592, 41, 50, 58syl12anc 1247 . . 3 ((((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) ∧ [𝐾 / 𝑛]𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))
60 sbcng 3027 . . . . . . . 8 (𝐾 ∈ (ℤ𝑀) → ([𝐾 / 𝑛] ¬ 𝜓 ↔ ¬ [𝐾 / 𝑛]𝜓))
6160ad2antrr 488 . . . . . . 7 (((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) → ([𝐾 / 𝑛] ¬ 𝜓 ↔ ¬ [𝐾 / 𝑛]𝜓))
6261biimpar 297 . . . . . 6 ((((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) ∧ ¬ [𝐾 / 𝑛]𝜓) → [𝐾 / 𝑛] ¬ 𝜓)
63 sbcsng 3678 . . . . . . 7 (𝐾 ∈ (ℤ𝑀) → ([𝐾 / 𝑛] ¬ 𝜓 ↔ ∀𝑛 ∈ {𝐾} ¬ 𝜓))
6463ad3antrrr 492 . . . . . 6 ((((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) ∧ ¬ [𝐾 / 𝑛]𝜓) → ([𝐾 / 𝑛] ¬ 𝜓 ↔ ∀𝑛 ∈ {𝐾} ¬ 𝜓))
6562, 64mpbid 147 . . . . 5 ((((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) ∧ ¬ [𝐾 / 𝑛]𝜓) → ∀𝑛 ∈ {𝐾} ¬ 𝜓)
66 simplrr 536 . . . . 5 ((((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) ∧ ¬ [𝐾 / 𝑛]𝜓) → ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)
67 uzid 9609 . . . . . . . . . . 11 (𝐾 ∈ ℤ → 𝐾 ∈ (ℤ𝐾))
68 peano2uz 9651 . . . . . . . . . . 11 (𝐾 ∈ (ℤ𝐾) → (𝐾 + 1) ∈ (ℤ𝐾))
6967, 68syl 14 . . . . . . . . . 10 (𝐾 ∈ ℤ → (𝐾 + 1) ∈ (ℤ𝐾))
70 fzouzsplit 10249 . . . . . . . . . 10 ((𝐾 + 1) ∈ (ℤ𝐾) → (ℤ𝐾) = ((𝐾..^(𝐾 + 1)) ∪ (ℤ‘(𝐾 + 1))))
711, 69, 703syl 17 . . . . . . . . 9 (𝐾 ∈ (ℤ𝑀) → (ℤ𝐾) = ((𝐾..^(𝐾 + 1)) ∪ (ℤ‘(𝐾 + 1))))
72 fzosn 10275 . . . . . . . . . . 11 (𝐾 ∈ ℤ → (𝐾..^(𝐾 + 1)) = {𝐾})
731, 72syl 14 . . . . . . . . . 10 (𝐾 ∈ (ℤ𝑀) → (𝐾..^(𝐾 + 1)) = {𝐾})
7473uneq1d 3313 . . . . . . . . 9 (𝐾 ∈ (ℤ𝑀) → ((𝐾..^(𝐾 + 1)) ∪ (ℤ‘(𝐾 + 1))) = ({𝐾} ∪ (ℤ‘(𝐾 + 1))))
7571, 74eqtrd 2226 . . . . . . . 8 (𝐾 ∈ (ℤ𝑀) → (ℤ𝐾) = ({𝐾} ∪ (ℤ‘(𝐾 + 1))))
7675raleqdv 2696 . . . . . . 7 (𝐾 ∈ (ℤ𝑀) → (∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓 ↔ ∀𝑛 ∈ ({𝐾} ∪ (ℤ‘(𝐾 + 1))) ¬ 𝜓))
77 ralunb 3341 . . . . . . 7 (∀𝑛 ∈ ({𝐾} ∪ (ℤ‘(𝐾 + 1))) ¬ 𝜓 ↔ (∀𝑛 ∈ {𝐾} ¬ 𝜓 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓))
7876, 77bitrdi 196 . . . . . 6 (𝐾 ∈ (ℤ𝑀) → (∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓 ↔ (∀𝑛 ∈ {𝐾} ¬ 𝜓 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)))
7978ad3antrrr 492 . . . . 5 ((((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) ∧ ¬ [𝐾 / 𝑛]𝜓) → (∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓 ↔ (∀𝑛 ∈ {𝐾} ¬ 𝜓 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)))
8065, 66, 79mpbir2and 946 . . . 4 ((((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) ∧ ¬ [𝐾 / 𝑛]𝜓) → ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓)
81 simprl 529 . . . . . 6 (((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) → 𝜑)
82 simplr 528 . . . . . 6 (((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) → ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧))))
8381, 82mpand 429 . . . . 5 (((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) → (∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓 → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧))))
8483adantr 276 . . . 4 ((((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) ∧ ¬ [𝐾 / 𝑛]𝜓) → (∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓 → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧))))
8580, 84mpd 13 . . 3 ((((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) ∧ ¬ [𝐾 / 𝑛]𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))
86 zsupcllemstep.dc . . . . . . 7 ((𝜑𝑛 ∈ (ℤ𝑀)) → DECID 𝜓)
8786ralrimiva 2567 . . . . . 6 (𝜑 → ∀𝑛 ∈ (ℤ𝑀)DECID 𝜓)
8881, 87syl 14 . . . . 5 (((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) → ∀𝑛 ∈ (ℤ𝑀)DECID 𝜓)
89 nfsbc1v 3005 . . . . . . . 8 𝑛[𝐾 / 𝑛]𝜓
9089nfdc 1670 . . . . . . 7 𝑛DECID [𝐾 / 𝑛]𝜓
91 sbceq1a 2996 . . . . . . . 8 (𝑛 = 𝐾 → (𝜓[𝐾 / 𝑛]𝜓))
9291dcbid 839 . . . . . . 7 (𝑛 = 𝐾 → (DECID 𝜓DECID [𝐾 / 𝑛]𝜓))
9390, 92rspc 2859 . . . . . 6 (𝐾 ∈ (ℤ𝑀) → (∀𝑛 ∈ (ℤ𝑀)DECID 𝜓DECID [𝐾 / 𝑛]𝜓))
9493ad2antrr 488 . . . . 5 (((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) → (∀𝑛 ∈ (ℤ𝑀)DECID 𝜓DECID [𝐾 / 𝑛]𝜓))
9588, 94mpd 13 . . . 4 (((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) → DECID [𝐾 / 𝑛]𝜓)
96 exmiddc 837 . . . 4 (DECID [𝐾 / 𝑛]𝜓 → ([𝐾 / 𝑛]𝜓 ∨ ¬ [𝐾 / 𝑛]𝜓))
9795, 96syl 14 . . 3 (((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) → ([𝐾 / 𝑛]𝜓 ∨ ¬ [𝐾 / 𝑛]𝜓))
9859, 85, 97mpjaodan 799 . 2 (((𝐾 ∈ (ℤ𝑀) ∧ ((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))) ∧ (𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓)) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))
9998exp31 364 1 (𝐾 ∈ (ℤ𝑀) → (((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧))) → ((𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709  DECID wdc 835   = wceq 1364  [wsb 1773  wcel 2164  wral 2472  wrex 2473  {crab 2476  [wsbc 2986  cun 3152  {csn 3619   class class class wbr 4030  cfv 5255  (class class class)co 5919  cr 7873  1c1 7875   + caddc 7877   < clt 8056  cle 8057  cz 9320  cuz 9595  ..^cfzo 10211
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-addass 7976  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-0id 7982  ax-rnegex 7983  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-inn 8985  df-n0 9244  df-z 9321  df-uz 9596  df-fz 10078  df-fzo 10212
This theorem is referenced by:  zsupcllemex  12086
  Copyright terms: Public domain W3C validator