Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > oddpwdclemndvds | GIF version |
Description: Lemma for oddpwdc 12106. A natural number is not divisible by one more than the highest power of two which divides it. (Contributed by Jim Kingdon, 17-Nov-2021.) |
Ref | Expression |
---|---|
oddpwdclemndvds | ⊢ (𝐴 ∈ ℕ → ¬ (2↑((℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)) + 1)) ∥ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pw2dvds 12098 | . 2 ⊢ (𝐴 ∈ ℕ → ∃𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)) | |
2 | nfv 1516 | . . 3 ⊢ Ⅎ𝑧 𝐴 ∈ ℕ | |
3 | nfcv 2308 | . . . . . 6 ⊢ Ⅎ𝑧2 | |
4 | nfcv 2308 | . . . . . 6 ⊢ Ⅎ𝑧↑ | |
5 | nfriota1 5805 | . . . . . . 7 ⊢ Ⅎ𝑧(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)) | |
6 | nfcv 2308 | . . . . . . 7 ⊢ Ⅎ𝑧 + | |
7 | nfcv 2308 | . . . . . . 7 ⊢ Ⅎ𝑧1 | |
8 | 5, 6, 7 | nfov 5872 | . . . . . 6 ⊢ Ⅎ𝑧((℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)) + 1) |
9 | 3, 4, 8 | nfov 5872 | . . . . 5 ⊢ Ⅎ𝑧(2↑((℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)) + 1)) |
10 | nfcv 2308 | . . . . 5 ⊢ Ⅎ𝑧 ∥ | |
11 | nfcv 2308 | . . . . 5 ⊢ Ⅎ𝑧𝐴 | |
12 | 9, 10, 11 | nfbr 4028 | . . . 4 ⊢ Ⅎ𝑧(2↑((℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)) + 1)) ∥ 𝐴 |
13 | 12 | nfn 1646 | . . 3 ⊢ Ⅎ𝑧 ¬ (2↑((℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)) + 1)) ∥ 𝐴 |
14 | simprrr 530 | . . . . 5 ⊢ ((𝐴 ∈ ℕ ∧ (𝑧 ∈ ℕ0 ∧ ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴))) → ¬ (2↑(𝑧 + 1)) ∥ 𝐴) | |
15 | pw2dvdseu 12100 | . . . . . . . . . 10 ⊢ (𝐴 ∈ ℕ → ∃!𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)) | |
16 | riota1 5816 | . . . . . . . . . 10 ⊢ (∃!𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴) → ((𝑧 ∈ ℕ0 ∧ ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)) ↔ (℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)) = 𝑧)) | |
17 | 15, 16 | syl 14 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℕ → ((𝑧 ∈ ℕ0 ∧ ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)) ↔ (℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)) = 𝑧)) |
18 | 17 | biimpa 294 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℕ ∧ (𝑧 ∈ ℕ0 ∧ ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴))) → (℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)) = 𝑧) |
19 | 18 | oveq1d 5857 | . . . . . . 7 ⊢ ((𝐴 ∈ ℕ ∧ (𝑧 ∈ ℕ0 ∧ ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴))) → ((℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)) + 1) = (𝑧 + 1)) |
20 | 19 | oveq2d 5858 | . . . . . 6 ⊢ ((𝐴 ∈ ℕ ∧ (𝑧 ∈ ℕ0 ∧ ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴))) → (2↑((℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)) + 1)) = (2↑(𝑧 + 1))) |
21 | 20 | breq1d 3992 | . . . . 5 ⊢ ((𝐴 ∈ ℕ ∧ (𝑧 ∈ ℕ0 ∧ ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴))) → ((2↑((℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)) + 1)) ∥ 𝐴 ↔ (2↑(𝑧 + 1)) ∥ 𝐴)) |
22 | 14, 21 | mtbird 663 | . . . 4 ⊢ ((𝐴 ∈ ℕ ∧ (𝑧 ∈ ℕ0 ∧ ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴))) → ¬ (2↑((℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)) + 1)) ∥ 𝐴) |
23 | 22 | exp32 363 | . . 3 ⊢ (𝐴 ∈ ℕ → (𝑧 ∈ ℕ0 → (((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴) → ¬ (2↑((℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)) + 1)) ∥ 𝐴))) |
24 | 2, 13, 23 | rexlimd 2580 | . 2 ⊢ (𝐴 ∈ ℕ → (∃𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴) → ¬ (2↑((℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)) + 1)) ∥ 𝐴)) |
25 | 1, 24 | mpd 13 | 1 ⊢ (𝐴 ∈ ℕ → ¬ (2↑((℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)) + 1)) ∥ 𝐴) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1343 ∈ wcel 2136 ∃wrex 2445 ∃!wreu 2446 class class class wbr 3982 ℩crio 5797 (class class class)co 5842 1c1 7754 + caddc 7756 ℕcn 8857 2c2 8908 ℕ0cn0 9114 ↑cexp 10454 ∥ cdvds 11727 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-mulrcl 7852 ax-addcom 7853 ax-mulcom 7854 ax-addass 7855 ax-mulass 7856 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-1rid 7860 ax-0id 7861 ax-rnegex 7862 ax-precex 7863 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-apti 7868 ax-pre-ltadd 7869 ax-pre-mulgt0 7870 ax-pre-mulext 7871 ax-arch 7872 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rmo 2452 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-if 3521 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-po 4274 df-iso 4275 df-iord 4344 df-on 4346 df-ilim 4347 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-recs 6273 df-frec 6359 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-reap 8473 df-ap 8480 df-div 8569 df-inn 8858 df-2 8916 df-n0 9115 df-z 9192 df-uz 9467 df-q 9558 df-rp 9590 df-fz 9945 df-fl 10205 df-mod 10258 df-seqfrec 10381 df-exp 10455 df-dvds 11728 |
This theorem is referenced by: oddpwdclemodd 12104 |
Copyright terms: Public domain | W3C validator |