Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > oddpwdclemndvds | GIF version |
Description: Lemma for oddpwdc 12128. A natural number is not divisible by one more than the highest power of two which divides it. (Contributed by Jim Kingdon, 17-Nov-2021.) |
Ref | Expression |
---|---|
oddpwdclemndvds | ⊢ (𝐴 ∈ ℕ → ¬ (2↑((℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)) + 1)) ∥ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pw2dvds 12120 | . 2 ⊢ (𝐴 ∈ ℕ → ∃𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)) | |
2 | nfv 1521 | . . 3 ⊢ Ⅎ𝑧 𝐴 ∈ ℕ | |
3 | nfcv 2312 | . . . . . 6 ⊢ Ⅎ𝑧2 | |
4 | nfcv 2312 | . . . . . 6 ⊢ Ⅎ𝑧↑ | |
5 | nfriota1 5816 | . . . . . . 7 ⊢ Ⅎ𝑧(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)) | |
6 | nfcv 2312 | . . . . . . 7 ⊢ Ⅎ𝑧 + | |
7 | nfcv 2312 | . . . . . . 7 ⊢ Ⅎ𝑧1 | |
8 | 5, 6, 7 | nfov 5883 | . . . . . 6 ⊢ Ⅎ𝑧((℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)) + 1) |
9 | 3, 4, 8 | nfov 5883 | . . . . 5 ⊢ Ⅎ𝑧(2↑((℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)) + 1)) |
10 | nfcv 2312 | . . . . 5 ⊢ Ⅎ𝑧 ∥ | |
11 | nfcv 2312 | . . . . 5 ⊢ Ⅎ𝑧𝐴 | |
12 | 9, 10, 11 | nfbr 4035 | . . . 4 ⊢ Ⅎ𝑧(2↑((℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)) + 1)) ∥ 𝐴 |
13 | 12 | nfn 1651 | . . 3 ⊢ Ⅎ𝑧 ¬ (2↑((℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)) + 1)) ∥ 𝐴 |
14 | simprrr 535 | . . . . 5 ⊢ ((𝐴 ∈ ℕ ∧ (𝑧 ∈ ℕ0 ∧ ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴))) → ¬ (2↑(𝑧 + 1)) ∥ 𝐴) | |
15 | pw2dvdseu 12122 | . . . . . . . . . 10 ⊢ (𝐴 ∈ ℕ → ∃!𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)) | |
16 | riota1 5827 | . . . . . . . . . 10 ⊢ (∃!𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴) → ((𝑧 ∈ ℕ0 ∧ ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)) ↔ (℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)) = 𝑧)) | |
17 | 15, 16 | syl 14 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℕ → ((𝑧 ∈ ℕ0 ∧ ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)) ↔ (℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)) = 𝑧)) |
18 | 17 | biimpa 294 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℕ ∧ (𝑧 ∈ ℕ0 ∧ ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴))) → (℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)) = 𝑧) |
19 | 18 | oveq1d 5868 | . . . . . . 7 ⊢ ((𝐴 ∈ ℕ ∧ (𝑧 ∈ ℕ0 ∧ ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴))) → ((℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)) + 1) = (𝑧 + 1)) |
20 | 19 | oveq2d 5869 | . . . . . 6 ⊢ ((𝐴 ∈ ℕ ∧ (𝑧 ∈ ℕ0 ∧ ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴))) → (2↑((℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)) + 1)) = (2↑(𝑧 + 1))) |
21 | 20 | breq1d 3999 | . . . . 5 ⊢ ((𝐴 ∈ ℕ ∧ (𝑧 ∈ ℕ0 ∧ ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴))) → ((2↑((℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)) + 1)) ∥ 𝐴 ↔ (2↑(𝑧 + 1)) ∥ 𝐴)) |
22 | 14, 21 | mtbird 668 | . . . 4 ⊢ ((𝐴 ∈ ℕ ∧ (𝑧 ∈ ℕ0 ∧ ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴))) → ¬ (2↑((℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)) + 1)) ∥ 𝐴) |
23 | 22 | exp32 363 | . . 3 ⊢ (𝐴 ∈ ℕ → (𝑧 ∈ ℕ0 → (((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴) → ¬ (2↑((℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)) + 1)) ∥ 𝐴))) |
24 | 2, 13, 23 | rexlimd 2584 | . 2 ⊢ (𝐴 ∈ ℕ → (∃𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴) → ¬ (2↑((℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)) + 1)) ∥ 𝐴)) |
25 | 1, 24 | mpd 13 | 1 ⊢ (𝐴 ∈ ℕ → ¬ (2↑((℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)) + 1)) ∥ 𝐴) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1348 ∈ wcel 2141 ∃wrex 2449 ∃!wreu 2450 class class class wbr 3989 ℩crio 5808 (class class class)co 5853 1c1 7775 + caddc 7777 ℕcn 8878 2c2 8929 ℕ0cn0 9135 ↑cexp 10475 ∥ cdvds 11749 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-mulrcl 7873 ax-addcom 7874 ax-mulcom 7875 ax-addass 7876 ax-mulass 7877 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-1rid 7881 ax-0id 7882 ax-rnegex 7883 ax-precex 7884 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-apti 7889 ax-pre-ltadd 7890 ax-pre-mulgt0 7891 ax-pre-mulext 7892 ax-arch 7893 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-if 3527 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-id 4278 df-po 4281 df-iso 4282 df-iord 4351 df-on 4353 df-ilim 4354 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-recs 6284 df-frec 6370 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-reap 8494 df-ap 8501 df-div 8590 df-inn 8879 df-2 8937 df-n0 9136 df-z 9213 df-uz 9488 df-q 9579 df-rp 9611 df-fz 9966 df-fl 10226 df-mod 10279 df-seqfrec 10402 df-exp 10476 df-dvds 11750 |
This theorem is referenced by: oddpwdclemodd 12126 |
Copyright terms: Public domain | W3C validator |