![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > oddpwdclemndvds | GIF version |
Description: Lemma for oddpwdc 12315. A natural number is not divisible by one more than the highest power of two which divides it. (Contributed by Jim Kingdon, 17-Nov-2021.) |
Ref | Expression |
---|---|
oddpwdclemndvds | ⊢ (𝐴 ∈ ℕ → ¬ (2↑((℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)) + 1)) ∥ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pw2dvds 12307 | . 2 ⊢ (𝐴 ∈ ℕ → ∃𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)) | |
2 | nfv 1539 | . . 3 ⊢ Ⅎ𝑧 𝐴 ∈ ℕ | |
3 | nfcv 2336 | . . . . . 6 ⊢ Ⅎ𝑧2 | |
4 | nfcv 2336 | . . . . . 6 ⊢ Ⅎ𝑧↑ | |
5 | nfriota1 5882 | . . . . . . 7 ⊢ Ⅎ𝑧(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)) | |
6 | nfcv 2336 | . . . . . . 7 ⊢ Ⅎ𝑧 + | |
7 | nfcv 2336 | . . . . . . 7 ⊢ Ⅎ𝑧1 | |
8 | 5, 6, 7 | nfov 5949 | . . . . . 6 ⊢ Ⅎ𝑧((℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)) + 1) |
9 | 3, 4, 8 | nfov 5949 | . . . . 5 ⊢ Ⅎ𝑧(2↑((℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)) + 1)) |
10 | nfcv 2336 | . . . . 5 ⊢ Ⅎ𝑧 ∥ | |
11 | nfcv 2336 | . . . . 5 ⊢ Ⅎ𝑧𝐴 | |
12 | 9, 10, 11 | nfbr 4076 | . . . 4 ⊢ Ⅎ𝑧(2↑((℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)) + 1)) ∥ 𝐴 |
13 | 12 | nfn 1669 | . . 3 ⊢ Ⅎ𝑧 ¬ (2↑((℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)) + 1)) ∥ 𝐴 |
14 | simprrr 540 | . . . . 5 ⊢ ((𝐴 ∈ ℕ ∧ (𝑧 ∈ ℕ0 ∧ ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴))) → ¬ (2↑(𝑧 + 1)) ∥ 𝐴) | |
15 | pw2dvdseu 12309 | . . . . . . . . . 10 ⊢ (𝐴 ∈ ℕ → ∃!𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)) | |
16 | riota1 5893 | . . . . . . . . . 10 ⊢ (∃!𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴) → ((𝑧 ∈ ℕ0 ∧ ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)) ↔ (℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)) = 𝑧)) | |
17 | 15, 16 | syl 14 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℕ → ((𝑧 ∈ ℕ0 ∧ ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)) ↔ (℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)) = 𝑧)) |
18 | 17 | biimpa 296 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℕ ∧ (𝑧 ∈ ℕ0 ∧ ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴))) → (℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)) = 𝑧) |
19 | 18 | oveq1d 5934 | . . . . . . 7 ⊢ ((𝐴 ∈ ℕ ∧ (𝑧 ∈ ℕ0 ∧ ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴))) → ((℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)) + 1) = (𝑧 + 1)) |
20 | 19 | oveq2d 5935 | . . . . . 6 ⊢ ((𝐴 ∈ ℕ ∧ (𝑧 ∈ ℕ0 ∧ ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴))) → (2↑((℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)) + 1)) = (2↑(𝑧 + 1))) |
21 | 20 | breq1d 4040 | . . . . 5 ⊢ ((𝐴 ∈ ℕ ∧ (𝑧 ∈ ℕ0 ∧ ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴))) → ((2↑((℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)) + 1)) ∥ 𝐴 ↔ (2↑(𝑧 + 1)) ∥ 𝐴)) |
22 | 14, 21 | mtbird 674 | . . . 4 ⊢ ((𝐴 ∈ ℕ ∧ (𝑧 ∈ ℕ0 ∧ ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴))) → ¬ (2↑((℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)) + 1)) ∥ 𝐴) |
23 | 22 | exp32 365 | . . 3 ⊢ (𝐴 ∈ ℕ → (𝑧 ∈ ℕ0 → (((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴) → ¬ (2↑((℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)) + 1)) ∥ 𝐴))) |
24 | 2, 13, 23 | rexlimd 2608 | . 2 ⊢ (𝐴 ∈ ℕ → (∃𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴) → ¬ (2↑((℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)) + 1)) ∥ 𝐴)) |
25 | 1, 24 | mpd 13 | 1 ⊢ (𝐴 ∈ ℕ → ¬ (2↑((℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)) + 1)) ∥ 𝐴) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2164 ∃wrex 2473 ∃!wreu 2474 class class class wbr 4030 ℩crio 5873 (class class class)co 5919 1c1 7875 + caddc 7877 ℕcn 8984 2c2 9035 ℕ0cn0 9243 ↑cexp 10612 ∥ cdvds 11933 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4145 ax-sep 4148 ax-nul 4156 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-iinf 4621 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-mulrcl 7973 ax-addcom 7974 ax-mulcom 7975 ax-addass 7976 ax-mulass 7977 ax-distr 7978 ax-i2m1 7979 ax-0lt1 7980 ax-1rid 7981 ax-0id 7982 ax-rnegex 7983 ax-precex 7984 ax-cnre 7985 ax-pre-ltirr 7986 ax-pre-ltwlin 7987 ax-pre-lttrn 7988 ax-pre-apti 7989 ax-pre-ltadd 7990 ax-pre-mulgt0 7991 ax-pre-mulext 7992 ax-arch 7993 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-if 3559 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-tr 4129 df-id 4325 df-po 4328 df-iso 4329 df-iord 4398 df-on 4400 df-ilim 4401 df-suc 4403 df-iom 4624 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-1st 6195 df-2nd 6196 df-recs 6360 df-frec 6446 df-pnf 8058 df-mnf 8059 df-xr 8060 df-ltxr 8061 df-le 8062 df-sub 8194 df-neg 8195 df-reap 8596 df-ap 8603 df-div 8694 df-inn 8985 df-2 9043 df-n0 9244 df-z 9321 df-uz 9596 df-q 9688 df-rp 9723 df-fz 10078 df-fl 10342 df-mod 10397 df-seqfrec 10522 df-exp 10613 df-dvds 11934 |
This theorem is referenced by: oddpwdclemodd 12313 |
Copyright terms: Public domain | W3C validator |