![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nfmpo | GIF version |
Description: Bound-variable hypothesis builder for the maps-to notation. (Contributed by NM, 20-Feb-2013.) |
Ref | Expression |
---|---|
nfmpo.1 | ⊢ Ⅎ𝑧𝐴 |
nfmpo.2 | ⊢ Ⅎ𝑧𝐵 |
nfmpo.3 | ⊢ Ⅎ𝑧𝐶 |
Ref | Expression |
---|---|
nfmpo | ⊢ Ⅎ𝑧(𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-mpo 5733 | . 2 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = {〈〈𝑥, 𝑦〉, 𝑤〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑤 = 𝐶)} | |
2 | nfmpo.1 | . . . . . 6 ⊢ Ⅎ𝑧𝐴 | |
3 | 2 | nfcri 2249 | . . . . 5 ⊢ Ⅎ𝑧 𝑥 ∈ 𝐴 |
4 | nfmpo.2 | . . . . . 6 ⊢ Ⅎ𝑧𝐵 | |
5 | 4 | nfcri 2249 | . . . . 5 ⊢ Ⅎ𝑧 𝑦 ∈ 𝐵 |
6 | 3, 5 | nfan 1527 | . . . 4 ⊢ Ⅎ𝑧(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) |
7 | nfmpo.3 | . . . . 5 ⊢ Ⅎ𝑧𝐶 | |
8 | 7 | nfeq2 2267 | . . . 4 ⊢ Ⅎ𝑧 𝑤 = 𝐶 |
9 | 6, 8 | nfan 1527 | . . 3 ⊢ Ⅎ𝑧((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑤 = 𝐶) |
10 | 9 | nfoprab 5777 | . 2 ⊢ Ⅎ𝑧{〈〈𝑥, 𝑦〉, 𝑤〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑤 = 𝐶)} |
11 | 1, 10 | nfcxfr 2252 | 1 ⊢ Ⅎ𝑧(𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 = wceq 1314 ∈ wcel 1463 Ⅎwnfc 2242 {coprab 5729 ∈ cmpo 5730 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 681 ax-5 1406 ax-7 1407 ax-gen 1408 ax-ie1 1452 ax-ie2 1453 ax-8 1465 ax-10 1466 ax-11 1467 ax-i12 1468 ax-bndl 1469 ax-4 1470 ax-17 1489 ax-i9 1493 ax-ial 1497 ax-i5r 1498 ax-ext 2097 |
This theorem depends on definitions: df-bi 116 df-tru 1317 df-nf 1420 df-sb 1719 df-clab 2102 df-cleq 2108 df-clel 2111 df-nfc 2244 df-oprab 5732 df-mpo 5733 |
This theorem is referenced by: nfof 5941 nfseq 10121 |
Copyright terms: Public domain | W3C validator |