| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfmpo | GIF version | ||
| Description: Bound-variable hypothesis builder for the maps-to notation. (Contributed by NM, 20-Feb-2013.) |
| Ref | Expression |
|---|---|
| nfmpo.1 | ⊢ Ⅎ𝑧𝐴 |
| nfmpo.2 | ⊢ Ⅎ𝑧𝐵 |
| nfmpo.3 | ⊢ Ⅎ𝑧𝐶 |
| Ref | Expression |
|---|---|
| nfmpo | ⊢ Ⅎ𝑧(𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-mpo 5949 | . 2 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = {〈〈𝑥, 𝑦〉, 𝑤〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑤 = 𝐶)} | |
| 2 | nfmpo.1 | . . . . . 6 ⊢ Ⅎ𝑧𝐴 | |
| 3 | 2 | nfcri 2342 | . . . . 5 ⊢ Ⅎ𝑧 𝑥 ∈ 𝐴 |
| 4 | nfmpo.2 | . . . . . 6 ⊢ Ⅎ𝑧𝐵 | |
| 5 | 4 | nfcri 2342 | . . . . 5 ⊢ Ⅎ𝑧 𝑦 ∈ 𝐵 |
| 6 | 3, 5 | nfan 1588 | . . . 4 ⊢ Ⅎ𝑧(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) |
| 7 | nfmpo.3 | . . . . 5 ⊢ Ⅎ𝑧𝐶 | |
| 8 | 7 | nfeq2 2360 | . . . 4 ⊢ Ⅎ𝑧 𝑤 = 𝐶 |
| 9 | 6, 8 | nfan 1588 | . . 3 ⊢ Ⅎ𝑧((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑤 = 𝐶) |
| 10 | 9 | nfoprab 5997 | . 2 ⊢ Ⅎ𝑧{〈〈𝑥, 𝑦〉, 𝑤〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑤 = 𝐶)} |
| 11 | 1, 10 | nfcxfr 2345 | 1 ⊢ Ⅎ𝑧(𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 = wceq 1373 ∈ wcel 2176 Ⅎwnfc 2335 {coprab 5945 ∈ cmpo 5946 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-oprab 5948 df-mpo 5949 |
| This theorem is referenced by: nfof 6164 nfseq 10602 |
| Copyright terms: Public domain | W3C validator |