| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfmpo | GIF version | ||
| Description: Bound-variable hypothesis builder for the maps-to notation. (Contributed by NM, 20-Feb-2013.) |
| Ref | Expression |
|---|---|
| nfmpo.1 | ⊢ Ⅎ𝑧𝐴 |
| nfmpo.2 | ⊢ Ⅎ𝑧𝐵 |
| nfmpo.3 | ⊢ Ⅎ𝑧𝐶 |
| Ref | Expression |
|---|---|
| nfmpo | ⊢ Ⅎ𝑧(𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-mpo 5972 | . 2 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = {〈〈𝑥, 𝑦〉, 𝑤〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑤 = 𝐶)} | |
| 2 | nfmpo.1 | . . . . . 6 ⊢ Ⅎ𝑧𝐴 | |
| 3 | 2 | nfcri 2344 | . . . . 5 ⊢ Ⅎ𝑧 𝑥 ∈ 𝐴 |
| 4 | nfmpo.2 | . . . . . 6 ⊢ Ⅎ𝑧𝐵 | |
| 5 | 4 | nfcri 2344 | . . . . 5 ⊢ Ⅎ𝑧 𝑦 ∈ 𝐵 |
| 6 | 3, 5 | nfan 1589 | . . . 4 ⊢ Ⅎ𝑧(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) |
| 7 | nfmpo.3 | . . . . 5 ⊢ Ⅎ𝑧𝐶 | |
| 8 | 7 | nfeq2 2362 | . . . 4 ⊢ Ⅎ𝑧 𝑤 = 𝐶 |
| 9 | 6, 8 | nfan 1589 | . . 3 ⊢ Ⅎ𝑧((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑤 = 𝐶) |
| 10 | 9 | nfoprab 6020 | . 2 ⊢ Ⅎ𝑧{〈〈𝑥, 𝑦〉, 𝑤〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑤 = 𝐶)} |
| 11 | 1, 10 | nfcxfr 2347 | 1 ⊢ Ⅎ𝑧(𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 = wceq 1373 ∈ wcel 2178 Ⅎwnfc 2337 {coprab 5968 ∈ cmpo 5969 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-oprab 5971 df-mpo 5972 |
| This theorem is referenced by: nfof 6187 nfseq 10639 |
| Copyright terms: Public domain | W3C validator |