ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfmpo GIF version

Theorem nfmpo 6013
Description: Bound-variable hypothesis builder for the maps-to notation. (Contributed by NM, 20-Feb-2013.)
Hypotheses
Ref Expression
nfmpo.1 𝑧𝐴
nfmpo.2 𝑧𝐵
nfmpo.3 𝑧𝐶
Assertion
Ref Expression
nfmpo 𝑧(𝑥𝐴, 𝑦𝐵𝐶)
Distinct variable groups:   𝑥,𝑧   𝑦,𝑧
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑧)   𝐵(𝑥,𝑦,𝑧)   𝐶(𝑥,𝑦,𝑧)

Proof of Theorem nfmpo
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 df-mpo 5948 . 2 (𝑥𝐴, 𝑦𝐵𝐶) = {⟨⟨𝑥, 𝑦⟩, 𝑤⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑤 = 𝐶)}
2 nfmpo.1 . . . . . 6 𝑧𝐴
32nfcri 2341 . . . . 5 𝑧 𝑥𝐴
4 nfmpo.2 . . . . . 6 𝑧𝐵
54nfcri 2341 . . . . 5 𝑧 𝑦𝐵
63, 5nfan 1587 . . . 4 𝑧(𝑥𝐴𝑦𝐵)
7 nfmpo.3 . . . . 5 𝑧𝐶
87nfeq2 2359 . . . 4 𝑧 𝑤 = 𝐶
96, 8nfan 1587 . . 3 𝑧((𝑥𝐴𝑦𝐵) ∧ 𝑤 = 𝐶)
109nfoprab 5996 . 2 𝑧{⟨⟨𝑥, 𝑦⟩, 𝑤⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑤 = 𝐶)}
111, 10nfcxfr 2344 1 𝑧(𝑥𝐴, 𝑦𝐵𝐶)
Colors of variables: wff set class
Syntax hints:  wa 104   = wceq 1372  wcel 2175  wnfc 2334  {coprab 5944  cmpo 5945
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-oprab 5947  df-mpo 5948
This theorem is referenced by:  nfof  6163  nfseq  10600
  Copyright terms: Public domain W3C validator