![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nfriota | GIF version |
Description: A variable not free in a wff remains so in a restricted iota descriptor. (Contributed by NM, 12-Oct-2011.) |
Ref | Expression |
---|---|
nfriota.1 | ⊢ Ⅎ𝑥𝜑 |
nfriota.2 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
nfriota | ⊢ Ⅎ𝑥(℩𝑦 ∈ 𝐴 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nftru 1477 | . . 3 ⊢ Ⅎ𝑦⊤ | |
2 | nfriota.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
3 | 2 | a1i 9 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝜑) |
4 | nfriota.2 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
5 | 4 | a1i 9 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝐴) |
6 | 1, 3, 5 | nfriotadxy 5882 | . 2 ⊢ (⊤ → Ⅎ𝑥(℩𝑦 ∈ 𝐴 𝜑)) |
7 | 6 | mptru 1373 | 1 ⊢ Ⅎ𝑥(℩𝑦 ∈ 𝐴 𝜑) |
Colors of variables: wff set class |
Syntax hints: ⊤wtru 1365 Ⅎwnf 1471 Ⅎwnfc 2323 ℩crio 5872 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-rex 2478 df-sn 3624 df-uni 3836 df-iota 5215 df-riota 5873 |
This theorem is referenced by: csbriotag 5886 lble 8966 |
Copyright terms: Public domain | W3C validator |