ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfriota GIF version

Theorem nfriota 5883
Description: A variable not free in a wff remains so in a restricted iota descriptor. (Contributed by NM, 12-Oct-2011.)
Hypotheses
Ref Expression
nfriota.1 𝑥𝜑
nfriota.2 𝑥𝐴
Assertion
Ref Expression
nfriota 𝑥(𝑦𝐴 𝜑)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥,𝑦)

Proof of Theorem nfriota
StepHypRef Expression
1 nftru 1477 . . 3 𝑦
2 nfriota.1 . . . 4 𝑥𝜑
32a1i 9 . . 3 (⊤ → Ⅎ𝑥𝜑)
4 nfriota.2 . . . 4 𝑥𝐴
54a1i 9 . . 3 (⊤ → 𝑥𝐴)
61, 3, 5nfriotadxy 5882 . 2 (⊤ → 𝑥(𝑦𝐴 𝜑))
76mptru 1373 1 𝑥(𝑦𝐴 𝜑)
Colors of variables: wff set class
Syntax hints:  wtru 1365  wnf 1471  wnfc 2323  crio 5872
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-rex 2478  df-sn 3624  df-uni 3836  df-iota 5215  df-riota 5873
This theorem is referenced by:  csbriotag  5886  lble  8966
  Copyright terms: Public domain W3C validator