ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lble GIF version

Theorem lble 8875
Description: If a set of reals contains a lower bound, the lower bound is less than or equal to all members of the set. (Contributed by NM, 9-Oct-2005.) (Proof shortened by Mario Carneiro, 24-Dec-2016.)
Assertion
Ref Expression
lble ((𝑆 ⊆ ℝ ∧ ∃𝑥𝑆𝑦𝑆 𝑥𝑦𝐴𝑆) → (𝑥𝑆𝑦𝑆 𝑥𝑦) ≤ 𝐴)
Distinct variable groups:   𝑥,𝑦,𝑆   𝑦,𝐴
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem lble
StepHypRef Expression
1 lbreu 8873 . . . . 5 ((𝑆 ⊆ ℝ ∧ ∃𝑥𝑆𝑦𝑆 𝑥𝑦) → ∃!𝑥𝑆𝑦𝑆 𝑥𝑦)
2 nfcv 2317 . . . . . . 7 𝑥𝑆
3 nfriota1 5828 . . . . . . . 8 𝑥(𝑥𝑆𝑦𝑆 𝑥𝑦)
4 nfcv 2317 . . . . . . . 8 𝑥
5 nfcv 2317 . . . . . . . 8 𝑥𝑦
63, 4, 5nfbr 4044 . . . . . . 7 𝑥(𝑥𝑆𝑦𝑆 𝑥𝑦) ≤ 𝑦
72, 6nfralxy 2513 . . . . . 6 𝑥𝑦𝑆 (𝑥𝑆𝑦𝑆 𝑥𝑦) ≤ 𝑦
8 eqid 2175 . . . . . 6 (𝑥𝑆𝑦𝑆 𝑥𝑦) = (𝑥𝑆𝑦𝑆 𝑥𝑦)
9 nfra1 2506 . . . . . . . . 9 𝑦𝑦𝑆 𝑥𝑦
10 nfcv 2317 . . . . . . . . 9 𝑦𝑆
119, 10nfriota 5830 . . . . . . . 8 𝑦(𝑥𝑆𝑦𝑆 𝑥𝑦)
1211nfeq2 2329 . . . . . . 7 𝑦 𝑥 = (𝑥𝑆𝑦𝑆 𝑥𝑦)
13 breq1 4001 . . . . . . 7 (𝑥 = (𝑥𝑆𝑦𝑆 𝑥𝑦) → (𝑥𝑦 ↔ (𝑥𝑆𝑦𝑆 𝑥𝑦) ≤ 𝑦))
1412, 13ralbid 2473 . . . . . 6 (𝑥 = (𝑥𝑆𝑦𝑆 𝑥𝑦) → (∀𝑦𝑆 𝑥𝑦 ↔ ∀𝑦𝑆 (𝑥𝑆𝑦𝑆 𝑥𝑦) ≤ 𝑦))
157, 8, 14riotaprop 5844 . . . . 5 (∃!𝑥𝑆𝑦𝑆 𝑥𝑦 → ((𝑥𝑆𝑦𝑆 𝑥𝑦) ∈ 𝑆 ∧ ∀𝑦𝑆 (𝑥𝑆𝑦𝑆 𝑥𝑦) ≤ 𝑦))
161, 15syl 14 . . . 4 ((𝑆 ⊆ ℝ ∧ ∃𝑥𝑆𝑦𝑆 𝑥𝑦) → ((𝑥𝑆𝑦𝑆 𝑥𝑦) ∈ 𝑆 ∧ ∀𝑦𝑆 (𝑥𝑆𝑦𝑆 𝑥𝑦) ≤ 𝑦))
1716simprd 114 . . 3 ((𝑆 ⊆ ℝ ∧ ∃𝑥𝑆𝑦𝑆 𝑥𝑦) → ∀𝑦𝑆 (𝑥𝑆𝑦𝑆 𝑥𝑦) ≤ 𝑦)
18 nfcv 2317 . . . . 5 𝑦
19 nfcv 2317 . . . . 5 𝑦𝐴
2011, 18, 19nfbr 4044 . . . 4 𝑦(𝑥𝑆𝑦𝑆 𝑥𝑦) ≤ 𝐴
21 breq2 4002 . . . 4 (𝑦 = 𝐴 → ((𝑥𝑆𝑦𝑆 𝑥𝑦) ≤ 𝑦 ↔ (𝑥𝑆𝑦𝑆 𝑥𝑦) ≤ 𝐴))
2220, 21rspc 2833 . . 3 (𝐴𝑆 → (∀𝑦𝑆 (𝑥𝑆𝑦𝑆 𝑥𝑦) ≤ 𝑦 → (𝑥𝑆𝑦𝑆 𝑥𝑦) ≤ 𝐴))
2317, 22mpan9 281 . 2 (((𝑆 ⊆ ℝ ∧ ∃𝑥𝑆𝑦𝑆 𝑥𝑦) ∧ 𝐴𝑆) → (𝑥𝑆𝑦𝑆 𝑥𝑦) ≤ 𝐴)
24233impa 1194 1 ((𝑆 ⊆ ℝ ∧ ∃𝑥𝑆𝑦𝑆 𝑥𝑦𝐴𝑆) → (𝑥𝑆𝑦𝑆 𝑥𝑦) ≤ 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 978   = wceq 1353  wcel 2146  wral 2453  wrex 2454  ∃!wreu 2455  wss 3127   class class class wbr 3998  crio 5820  cr 7785  cle 7967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-setind 4530  ax-cnex 7877  ax-resscn 7878  ax-pre-ltirr 7898  ax-pre-apti 7901
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-nel 2441  df-ral 2458  df-rex 2459  df-reu 2460  df-rmo 2461  df-rab 2462  df-v 2737  df-sbc 2961  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-br 3999  df-opab 4060  df-xp 4626  df-cnv 4628  df-iota 5170  df-riota 5821  df-pnf 7968  df-mnf 7969  df-xr 7970  df-ltxr 7971  df-le 7972
This theorem is referenced by:  lbinf  8876  lbinfle  8878
  Copyright terms: Public domain W3C validator