![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > lble | GIF version |
Description: If a set of reals contains a lower bound, the lower bound is less than or equal to all members of the set. (Contributed by NM, 9-Oct-2005.) (Proof shortened by Mario Carneiro, 24-Dec-2016.) |
Ref | Expression |
---|---|
lble | ⊢ ((𝑆 ⊆ ℝ ∧ ∃𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ 𝐴 ∈ 𝑆) → (℩𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦) ≤ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lbreu 8916 | . . . . 5 ⊢ ((𝑆 ⊆ ℝ ∧ ∃𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦) → ∃!𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦) | |
2 | nfcv 2329 | . . . . . . 7 ⊢ Ⅎ𝑥𝑆 | |
3 | nfriota1 5851 | . . . . . . . 8 ⊢ Ⅎ𝑥(℩𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦) | |
4 | nfcv 2329 | . . . . . . . 8 ⊢ Ⅎ𝑥 ≤ | |
5 | nfcv 2329 | . . . . . . . 8 ⊢ Ⅎ𝑥𝑦 | |
6 | 3, 4, 5 | nfbr 4061 | . . . . . . 7 ⊢ Ⅎ𝑥(℩𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦) ≤ 𝑦 |
7 | 2, 6 | nfralxy 2525 | . . . . . 6 ⊢ Ⅎ𝑥∀𝑦 ∈ 𝑆 (℩𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦) ≤ 𝑦 |
8 | eqid 2187 | . . . . . 6 ⊢ (℩𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦) = (℩𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦) | |
9 | nfra1 2518 | . . . . . . . . 9 ⊢ Ⅎ𝑦∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 | |
10 | nfcv 2329 | . . . . . . . . 9 ⊢ Ⅎ𝑦𝑆 | |
11 | 9, 10 | nfriota 5853 | . . . . . . . 8 ⊢ Ⅎ𝑦(℩𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦) |
12 | 11 | nfeq2 2341 | . . . . . . 7 ⊢ Ⅎ𝑦 𝑥 = (℩𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦) |
13 | breq1 4018 | . . . . . . 7 ⊢ (𝑥 = (℩𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦) → (𝑥 ≤ 𝑦 ↔ (℩𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦) ≤ 𝑦)) | |
14 | 12, 13 | ralbid 2485 | . . . . . 6 ⊢ (𝑥 = (℩𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦) → (∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ↔ ∀𝑦 ∈ 𝑆 (℩𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦) ≤ 𝑦)) |
15 | 7, 8, 14 | riotaprop 5867 | . . . . 5 ⊢ (∃!𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 → ((℩𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦) ∈ 𝑆 ∧ ∀𝑦 ∈ 𝑆 (℩𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦) ≤ 𝑦)) |
16 | 1, 15 | syl 14 | . . . 4 ⊢ ((𝑆 ⊆ ℝ ∧ ∃𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦) → ((℩𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦) ∈ 𝑆 ∧ ∀𝑦 ∈ 𝑆 (℩𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦) ≤ 𝑦)) |
17 | 16 | simprd 114 | . . 3 ⊢ ((𝑆 ⊆ ℝ ∧ ∃𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦) → ∀𝑦 ∈ 𝑆 (℩𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦) ≤ 𝑦) |
18 | nfcv 2329 | . . . . 5 ⊢ Ⅎ𝑦 ≤ | |
19 | nfcv 2329 | . . . . 5 ⊢ Ⅎ𝑦𝐴 | |
20 | 11, 18, 19 | nfbr 4061 | . . . 4 ⊢ Ⅎ𝑦(℩𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦) ≤ 𝐴 |
21 | breq2 4019 | . . . 4 ⊢ (𝑦 = 𝐴 → ((℩𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦) ≤ 𝑦 ↔ (℩𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦) ≤ 𝐴)) | |
22 | 20, 21 | rspc 2847 | . . 3 ⊢ (𝐴 ∈ 𝑆 → (∀𝑦 ∈ 𝑆 (℩𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦) ≤ 𝑦 → (℩𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦) ≤ 𝐴)) |
23 | 17, 22 | mpan9 281 | . 2 ⊢ (((𝑆 ⊆ ℝ ∧ ∃𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦) ∧ 𝐴 ∈ 𝑆) → (℩𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦) ≤ 𝐴) |
24 | 23 | 3impa 1195 | 1 ⊢ ((𝑆 ⊆ ℝ ∧ ∃𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ 𝐴 ∈ 𝑆) → (℩𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦) ≤ 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 979 = wceq 1363 ∈ wcel 2158 ∀wral 2465 ∃wrex 2466 ∃!wreu 2467 ⊆ wss 3141 class class class wbr 4015 ℩crio 5843 ℝcr 7824 ≤ cle 8007 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-13 2160 ax-14 2161 ax-ext 2169 ax-sep 4133 ax-pow 4186 ax-pr 4221 ax-un 4445 ax-setind 4548 ax-cnex 7916 ax-resscn 7917 ax-pre-ltirr 7937 ax-pre-apti 7940 |
This theorem depends on definitions: df-bi 117 df-3an 981 df-tru 1366 df-fal 1369 df-nf 1471 df-sb 1773 df-eu 2039 df-mo 2040 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-ne 2358 df-nel 2453 df-ral 2470 df-rex 2471 df-reu 2472 df-rmo 2473 df-rab 2474 df-v 2751 df-sbc 2975 df-dif 3143 df-un 3145 df-in 3147 df-ss 3154 df-pw 3589 df-sn 3610 df-pr 3611 df-op 3613 df-uni 3822 df-br 4016 df-opab 4077 df-xp 4644 df-cnv 4646 df-iota 5190 df-riota 5844 df-pnf 8008 df-mnf 8009 df-xr 8010 df-ltxr 8011 df-le 8012 |
This theorem is referenced by: lbinf 8919 lbinfle 8921 |
Copyright terms: Public domain | W3C validator |