ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unrab GIF version

Theorem unrab 3286
Description: Union of two restricted class abstractions. (Contributed by NM, 25-Mar-2004.)
Assertion
Ref Expression
unrab ({𝑥𝐴𝜑} ∪ {𝑥𝐴𝜓}) = {𝑥𝐴 ∣ (𝜑𝜓)}

Proof of Theorem unrab
StepHypRef Expression
1 df-rab 2379 . . 3 {𝑥𝐴𝜑} = {𝑥 ∣ (𝑥𝐴𝜑)}
2 df-rab 2379 . . 3 {𝑥𝐴𝜓} = {𝑥 ∣ (𝑥𝐴𝜓)}
31, 2uneq12i 3167 . 2 ({𝑥𝐴𝜑} ∪ {𝑥𝐴𝜓}) = ({𝑥 ∣ (𝑥𝐴𝜑)} ∪ {𝑥 ∣ (𝑥𝐴𝜓)})
4 df-rab 2379 . . 3 {𝑥𝐴 ∣ (𝜑𝜓)} = {𝑥 ∣ (𝑥𝐴 ∧ (𝜑𝜓))}
5 unab 3282 . . . 4 ({𝑥 ∣ (𝑥𝐴𝜑)} ∪ {𝑥 ∣ (𝑥𝐴𝜓)}) = {𝑥 ∣ ((𝑥𝐴𝜑) ∨ (𝑥𝐴𝜓))}
6 andi 770 . . . . 5 ((𝑥𝐴 ∧ (𝜑𝜓)) ↔ ((𝑥𝐴𝜑) ∨ (𝑥𝐴𝜓)))
76abbii 2210 . . . 4 {𝑥 ∣ (𝑥𝐴 ∧ (𝜑𝜓))} = {𝑥 ∣ ((𝑥𝐴𝜑) ∨ (𝑥𝐴𝜓))}
85, 7eqtr4i 2118 . . 3 ({𝑥 ∣ (𝑥𝐴𝜑)} ∪ {𝑥 ∣ (𝑥𝐴𝜓)}) = {𝑥 ∣ (𝑥𝐴 ∧ (𝜑𝜓))}
94, 8eqtr4i 2118 . 2 {𝑥𝐴 ∣ (𝜑𝜓)} = ({𝑥 ∣ (𝑥𝐴𝜑)} ∪ {𝑥 ∣ (𝑥𝐴𝜓)})
103, 9eqtr4i 2118 1 ({𝑥𝐴𝜑} ∪ {𝑥𝐴𝜓}) = {𝑥𝐴 ∣ (𝜑𝜓)}
Colors of variables: wff set class
Syntax hints:  wa 103  wo 667   = wceq 1296  wcel 1445  {cab 2081  {crab 2374  cun 3011
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077
This theorem depends on definitions:  df-bi 116  df-tru 1299  df-nf 1402  df-sb 1700  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-rab 2379  df-v 2635  df-un 3017
This theorem is referenced by:  rabxmdc  3333  phiprmpw  11640  unennn  11652  znnen  11653
  Copyright terms: Public domain W3C validator