| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > dfif3 | GIF version | ||
| Description: Alternate definition of the conditional operator df-if 3562. Note that 𝜑 is independent of 𝑥 i.e. a constant true or false. (Contributed by NM, 25-Aug-2013.) (Revised by Mario Carneiro, 8-Sep-2013.) | 
| Ref | Expression | 
|---|---|
| dfif3.1 | ⊢ 𝐶 = {𝑥 ∣ 𝜑} | 
| Ref | Expression | 
|---|---|
| dfif3 | ⊢ if(𝜑, 𝐴, 𝐵) = ((𝐴 ∩ 𝐶) ∪ (𝐵 ∩ (V ∖ 𝐶))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | dfif6 3563 | . 2 ⊢ if(𝜑, 𝐴, 𝐵) = ({𝑦 ∈ 𝐴 ∣ 𝜑} ∪ {𝑦 ∈ 𝐵 ∣ ¬ 𝜑}) | |
| 2 | dfif3.1 | . . . . . 6 ⊢ 𝐶 = {𝑥 ∣ 𝜑} | |
| 3 | biidd 172 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜑)) | |
| 4 | 3 | cbvabv 2321 | . . . . . 6 ⊢ {𝑥 ∣ 𝜑} = {𝑦 ∣ 𝜑} | 
| 5 | 2, 4 | eqtri 2217 | . . . . 5 ⊢ 𝐶 = {𝑦 ∣ 𝜑} | 
| 6 | 5 | ineq2i 3361 | . . . 4 ⊢ (𝐴 ∩ 𝐶) = (𝐴 ∩ {𝑦 ∣ 𝜑}) | 
| 7 | dfrab3 3439 | . . . 4 ⊢ {𝑦 ∈ 𝐴 ∣ 𝜑} = (𝐴 ∩ {𝑦 ∣ 𝜑}) | |
| 8 | 6, 7 | eqtr4i 2220 | . . 3 ⊢ (𝐴 ∩ 𝐶) = {𝑦 ∈ 𝐴 ∣ 𝜑} | 
| 9 | dfrab3 3439 | . . . 4 ⊢ {𝑦 ∈ 𝐵 ∣ ¬ 𝜑} = (𝐵 ∩ {𝑦 ∣ ¬ 𝜑}) | |
| 10 | notab 3433 | . . . . . 6 ⊢ {𝑦 ∣ ¬ 𝜑} = (V ∖ {𝑦 ∣ 𝜑}) | |
| 11 | 5 | difeq2i 3278 | . . . . . 6 ⊢ (V ∖ 𝐶) = (V ∖ {𝑦 ∣ 𝜑}) | 
| 12 | 10, 11 | eqtr4i 2220 | . . . . 5 ⊢ {𝑦 ∣ ¬ 𝜑} = (V ∖ 𝐶) | 
| 13 | 12 | ineq2i 3361 | . . . 4 ⊢ (𝐵 ∩ {𝑦 ∣ ¬ 𝜑}) = (𝐵 ∩ (V ∖ 𝐶)) | 
| 14 | 9, 13 | eqtr2i 2218 | . . 3 ⊢ (𝐵 ∩ (V ∖ 𝐶)) = {𝑦 ∈ 𝐵 ∣ ¬ 𝜑} | 
| 15 | 8, 14 | uneq12i 3315 | . 2 ⊢ ((𝐴 ∩ 𝐶) ∪ (𝐵 ∩ (V ∖ 𝐶))) = ({𝑦 ∈ 𝐴 ∣ 𝜑} ∪ {𝑦 ∈ 𝐵 ∣ ¬ 𝜑}) | 
| 16 | 1, 15 | eqtr4i 2220 | 1 ⊢ if(𝜑, 𝐴, 𝐵) = ((𝐴 ∩ 𝐶) ∪ (𝐵 ∩ (V ∖ 𝐶))) | 
| Colors of variables: wff set class | 
| Syntax hints: ¬ wn 3 = wceq 1364 {cab 2182 {crab 2479 Vcvv 2763 ∖ cdif 3154 ∪ cun 3155 ∩ cin 3156 ifcif 3561 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rab 2484 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-if 3562 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |