ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfif3 GIF version

Theorem dfif3 3570
Description: Alternate definition of the conditional operator df-if 3558. Note that 𝜑 is independent of 𝑥 i.e. a constant true or false. (Contributed by NM, 25-Aug-2013.) (Revised by Mario Carneiro, 8-Sep-2013.)
Hypothesis
Ref Expression
dfif3.1 𝐶 = {𝑥𝜑}
Assertion
Ref Expression
dfif3 if(𝜑, 𝐴, 𝐵) = ((𝐴𝐶) ∪ (𝐵 ∩ (V ∖ 𝐶)))
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐶(𝑥)

Proof of Theorem dfif3
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dfif6 3559 . 2 if(𝜑, 𝐴, 𝐵) = ({𝑦𝐴𝜑} ∪ {𝑦𝐵 ∣ ¬ 𝜑})
2 dfif3.1 . . . . . 6 𝐶 = {𝑥𝜑}
3 biidd 172 . . . . . . 7 (𝑥 = 𝑦 → (𝜑𝜑))
43cbvabv 2318 . . . . . 6 {𝑥𝜑} = {𝑦𝜑}
52, 4eqtri 2214 . . . . 5 𝐶 = {𝑦𝜑}
65ineq2i 3357 . . . 4 (𝐴𝐶) = (𝐴 ∩ {𝑦𝜑})
7 dfrab3 3435 . . . 4 {𝑦𝐴𝜑} = (𝐴 ∩ {𝑦𝜑})
86, 7eqtr4i 2217 . . 3 (𝐴𝐶) = {𝑦𝐴𝜑}
9 dfrab3 3435 . . . 4 {𝑦𝐵 ∣ ¬ 𝜑} = (𝐵 ∩ {𝑦 ∣ ¬ 𝜑})
10 notab 3429 . . . . . 6 {𝑦 ∣ ¬ 𝜑} = (V ∖ {𝑦𝜑})
115difeq2i 3274 . . . . . 6 (V ∖ 𝐶) = (V ∖ {𝑦𝜑})
1210, 11eqtr4i 2217 . . . . 5 {𝑦 ∣ ¬ 𝜑} = (V ∖ 𝐶)
1312ineq2i 3357 . . . 4 (𝐵 ∩ {𝑦 ∣ ¬ 𝜑}) = (𝐵 ∩ (V ∖ 𝐶))
149, 13eqtr2i 2215 . . 3 (𝐵 ∩ (V ∖ 𝐶)) = {𝑦𝐵 ∣ ¬ 𝜑}
158, 14uneq12i 3311 . 2 ((𝐴𝐶) ∪ (𝐵 ∩ (V ∖ 𝐶))) = ({𝑦𝐴𝜑} ∪ {𝑦𝐵 ∣ ¬ 𝜑})
161, 15eqtr4i 2217 1 if(𝜑, 𝐴, 𝐵) = ((𝐴𝐶) ∪ (𝐵 ∩ (V ∖ 𝐶)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3   = wceq 1364  {cab 2179  {crab 2476  Vcvv 2760  cdif 3150  cun 3151  cin 3152  ifcif 3557
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rab 2481  df-v 2762  df-dif 3155  df-un 3157  df-in 3159  df-if 3558
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator