Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dfif3 | GIF version |
Description: Alternate definition of the conditional operator df-if 3521. Note that 𝜑 is independent of 𝑥 i.e. a constant true or false. (Contributed by NM, 25-Aug-2013.) (Revised by Mario Carneiro, 8-Sep-2013.) |
Ref | Expression |
---|---|
dfif3.1 | ⊢ 𝐶 = {𝑥 ∣ 𝜑} |
Ref | Expression |
---|---|
dfif3 | ⊢ if(𝜑, 𝐴, 𝐵) = ((𝐴 ∩ 𝐶) ∪ (𝐵 ∩ (V ∖ 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfif6 3522 | . 2 ⊢ if(𝜑, 𝐴, 𝐵) = ({𝑦 ∈ 𝐴 ∣ 𝜑} ∪ {𝑦 ∈ 𝐵 ∣ ¬ 𝜑}) | |
2 | dfif3.1 | . . . . . 6 ⊢ 𝐶 = {𝑥 ∣ 𝜑} | |
3 | biidd 171 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜑)) | |
4 | 3 | cbvabv 2291 | . . . . . 6 ⊢ {𝑥 ∣ 𝜑} = {𝑦 ∣ 𝜑} |
5 | 2, 4 | eqtri 2186 | . . . . 5 ⊢ 𝐶 = {𝑦 ∣ 𝜑} |
6 | 5 | ineq2i 3320 | . . . 4 ⊢ (𝐴 ∩ 𝐶) = (𝐴 ∩ {𝑦 ∣ 𝜑}) |
7 | dfrab3 3398 | . . . 4 ⊢ {𝑦 ∈ 𝐴 ∣ 𝜑} = (𝐴 ∩ {𝑦 ∣ 𝜑}) | |
8 | 6, 7 | eqtr4i 2189 | . . 3 ⊢ (𝐴 ∩ 𝐶) = {𝑦 ∈ 𝐴 ∣ 𝜑} |
9 | dfrab3 3398 | . . . 4 ⊢ {𝑦 ∈ 𝐵 ∣ ¬ 𝜑} = (𝐵 ∩ {𝑦 ∣ ¬ 𝜑}) | |
10 | notab 3392 | . . . . . 6 ⊢ {𝑦 ∣ ¬ 𝜑} = (V ∖ {𝑦 ∣ 𝜑}) | |
11 | 5 | difeq2i 3237 | . . . . . 6 ⊢ (V ∖ 𝐶) = (V ∖ {𝑦 ∣ 𝜑}) |
12 | 10, 11 | eqtr4i 2189 | . . . . 5 ⊢ {𝑦 ∣ ¬ 𝜑} = (V ∖ 𝐶) |
13 | 12 | ineq2i 3320 | . . . 4 ⊢ (𝐵 ∩ {𝑦 ∣ ¬ 𝜑}) = (𝐵 ∩ (V ∖ 𝐶)) |
14 | 9, 13 | eqtr2i 2187 | . . 3 ⊢ (𝐵 ∩ (V ∖ 𝐶)) = {𝑦 ∈ 𝐵 ∣ ¬ 𝜑} |
15 | 8, 14 | uneq12i 3274 | . 2 ⊢ ((𝐴 ∩ 𝐶) ∪ (𝐵 ∩ (V ∖ 𝐶))) = ({𝑦 ∈ 𝐴 ∣ 𝜑} ∪ {𝑦 ∈ 𝐵 ∣ ¬ 𝜑}) |
16 | 1, 15 | eqtr4i 2189 | 1 ⊢ if(𝜑, 𝐴, 𝐵) = ((𝐴 ∩ 𝐶) ∪ (𝐵 ∩ (V ∖ 𝐶))) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 = wceq 1343 {cab 2151 {crab 2448 Vcvv 2726 ∖ cdif 3113 ∪ cun 3114 ∩ cin 3115 ifcif 3520 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rab 2453 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-if 3521 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |