Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dfif3 | GIF version |
Description: Alternate definition of the conditional operator df-if 3506. Note that 𝜑 is independent of 𝑥 i.e. a constant true or false. (Contributed by NM, 25-Aug-2013.) (Revised by Mario Carneiro, 8-Sep-2013.) |
Ref | Expression |
---|---|
dfif3.1 | ⊢ 𝐶 = {𝑥 ∣ 𝜑} |
Ref | Expression |
---|---|
dfif3 | ⊢ if(𝜑, 𝐴, 𝐵) = ((𝐴 ∩ 𝐶) ∪ (𝐵 ∩ (V ∖ 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfif6 3507 | . 2 ⊢ if(𝜑, 𝐴, 𝐵) = ({𝑦 ∈ 𝐴 ∣ 𝜑} ∪ {𝑦 ∈ 𝐵 ∣ ¬ 𝜑}) | |
2 | dfif3.1 | . . . . . 6 ⊢ 𝐶 = {𝑥 ∣ 𝜑} | |
3 | biidd 171 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜑)) | |
4 | 3 | cbvabv 2282 | . . . . . 6 ⊢ {𝑥 ∣ 𝜑} = {𝑦 ∣ 𝜑} |
5 | 2, 4 | eqtri 2178 | . . . . 5 ⊢ 𝐶 = {𝑦 ∣ 𝜑} |
6 | 5 | ineq2i 3305 | . . . 4 ⊢ (𝐴 ∩ 𝐶) = (𝐴 ∩ {𝑦 ∣ 𝜑}) |
7 | dfrab3 3383 | . . . 4 ⊢ {𝑦 ∈ 𝐴 ∣ 𝜑} = (𝐴 ∩ {𝑦 ∣ 𝜑}) | |
8 | 6, 7 | eqtr4i 2181 | . . 3 ⊢ (𝐴 ∩ 𝐶) = {𝑦 ∈ 𝐴 ∣ 𝜑} |
9 | dfrab3 3383 | . . . 4 ⊢ {𝑦 ∈ 𝐵 ∣ ¬ 𝜑} = (𝐵 ∩ {𝑦 ∣ ¬ 𝜑}) | |
10 | notab 3377 | . . . . . 6 ⊢ {𝑦 ∣ ¬ 𝜑} = (V ∖ {𝑦 ∣ 𝜑}) | |
11 | 5 | difeq2i 3222 | . . . . . 6 ⊢ (V ∖ 𝐶) = (V ∖ {𝑦 ∣ 𝜑}) |
12 | 10, 11 | eqtr4i 2181 | . . . . 5 ⊢ {𝑦 ∣ ¬ 𝜑} = (V ∖ 𝐶) |
13 | 12 | ineq2i 3305 | . . . 4 ⊢ (𝐵 ∩ {𝑦 ∣ ¬ 𝜑}) = (𝐵 ∩ (V ∖ 𝐶)) |
14 | 9, 13 | eqtr2i 2179 | . . 3 ⊢ (𝐵 ∩ (V ∖ 𝐶)) = {𝑦 ∈ 𝐵 ∣ ¬ 𝜑} |
15 | 8, 14 | uneq12i 3259 | . 2 ⊢ ((𝐴 ∩ 𝐶) ∪ (𝐵 ∩ (V ∖ 𝐶))) = ({𝑦 ∈ 𝐴 ∣ 𝜑} ∪ {𝑦 ∈ 𝐵 ∣ ¬ 𝜑}) |
16 | 1, 15 | eqtr4i 2181 | 1 ⊢ if(𝜑, 𝐴, 𝐵) = ((𝐴 ∩ 𝐶) ∪ (𝐵 ∩ (V ∖ 𝐶))) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 = wceq 1335 {cab 2143 {crab 2439 Vcvv 2712 ∖ cdif 3099 ∪ cun 3100 ∩ cin 3101 ifcif 3505 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-rab 2444 df-v 2714 df-dif 3104 df-un 3106 df-in 3108 df-if 3506 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |