ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prmdvdsexp GIF version

Theorem prmdvdsexp 11753
Description: A prime divides a positive power of an integer iff it divides the integer. (Contributed by Mario Carneiro, 24-Feb-2014.) (Revised by Mario Carneiro, 17-Jul-2014.)
Assertion
Ref Expression
prmdvdsexp ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑃 ∥ (𝐴𝑁) ↔ 𝑃𝐴))

Proof of Theorem prmdvdsexp
Dummy variables 𝑚 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5750 . . . . . . 7 (𝑚 = 1 → (𝐴𝑚) = (𝐴↑1))
21breq2d 3911 . . . . . 6 (𝑚 = 1 → (𝑃 ∥ (𝐴𝑚) ↔ 𝑃 ∥ (𝐴↑1)))
32bibi1d 232 . . . . 5 (𝑚 = 1 → ((𝑃 ∥ (𝐴𝑚) ↔ 𝑃𝐴) ↔ (𝑃 ∥ (𝐴↑1) ↔ 𝑃𝐴)))
43imbi2d 229 . . . 4 (𝑚 = 1 → (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝑃 ∥ (𝐴𝑚) ↔ 𝑃𝐴)) ↔ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝑃 ∥ (𝐴↑1) ↔ 𝑃𝐴))))
5 oveq2 5750 . . . . . . 7 (𝑚 = 𝑘 → (𝐴𝑚) = (𝐴𝑘))
65breq2d 3911 . . . . . 6 (𝑚 = 𝑘 → (𝑃 ∥ (𝐴𝑚) ↔ 𝑃 ∥ (𝐴𝑘)))
76bibi1d 232 . . . . 5 (𝑚 = 𝑘 → ((𝑃 ∥ (𝐴𝑚) ↔ 𝑃𝐴) ↔ (𝑃 ∥ (𝐴𝑘) ↔ 𝑃𝐴)))
87imbi2d 229 . . . 4 (𝑚 = 𝑘 → (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝑃 ∥ (𝐴𝑚) ↔ 𝑃𝐴)) ↔ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝑃 ∥ (𝐴𝑘) ↔ 𝑃𝐴))))
9 oveq2 5750 . . . . . . 7 (𝑚 = (𝑘 + 1) → (𝐴𝑚) = (𝐴↑(𝑘 + 1)))
109breq2d 3911 . . . . . 6 (𝑚 = (𝑘 + 1) → (𝑃 ∥ (𝐴𝑚) ↔ 𝑃 ∥ (𝐴↑(𝑘 + 1))))
1110bibi1d 232 . . . . 5 (𝑚 = (𝑘 + 1) → ((𝑃 ∥ (𝐴𝑚) ↔ 𝑃𝐴) ↔ (𝑃 ∥ (𝐴↑(𝑘 + 1)) ↔ 𝑃𝐴)))
1211imbi2d 229 . . . 4 (𝑚 = (𝑘 + 1) → (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝑃 ∥ (𝐴𝑚) ↔ 𝑃𝐴)) ↔ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝑃 ∥ (𝐴↑(𝑘 + 1)) ↔ 𝑃𝐴))))
13 oveq2 5750 . . . . . . 7 (𝑚 = 𝑁 → (𝐴𝑚) = (𝐴𝑁))
1413breq2d 3911 . . . . . 6 (𝑚 = 𝑁 → (𝑃 ∥ (𝐴𝑚) ↔ 𝑃 ∥ (𝐴𝑁)))
1514bibi1d 232 . . . . 5 (𝑚 = 𝑁 → ((𝑃 ∥ (𝐴𝑚) ↔ 𝑃𝐴) ↔ (𝑃 ∥ (𝐴𝑁) ↔ 𝑃𝐴)))
1615imbi2d 229 . . . 4 (𝑚 = 𝑁 → (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝑃 ∥ (𝐴𝑚) ↔ 𝑃𝐴)) ↔ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝑃 ∥ (𝐴𝑁) ↔ 𝑃𝐴))))
17 zcn 9027 . . . . . . 7 (𝐴 ∈ ℤ → 𝐴 ∈ ℂ)
1817adantl 275 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → 𝐴 ∈ ℂ)
1918exp1d 10387 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝐴↑1) = 𝐴)
2019breq2d 3911 . . . 4 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝑃 ∥ (𝐴↑1) ↔ 𝑃𝐴))
21 nnnn0 8952 . . . . . . . . . 10 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
22 expp1 10268 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴↑(𝑘 + 1)) = ((𝐴𝑘) · 𝐴))
2318, 21, 22syl2an 287 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) ∧ 𝑘 ∈ ℕ) → (𝐴↑(𝑘 + 1)) = ((𝐴𝑘) · 𝐴))
2423breq2d 3911 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) ∧ 𝑘 ∈ ℕ) → (𝑃 ∥ (𝐴↑(𝑘 + 1)) ↔ 𝑃 ∥ ((𝐴𝑘) · 𝐴)))
25 simpll 503 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) ∧ 𝑘 ∈ ℕ) → 𝑃 ∈ ℙ)
26 simpr 109 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → 𝐴 ∈ ℤ)
27 zexpcl 10276 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℤ)
2826, 21, 27syl2an 287 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) ∧ 𝑘 ∈ ℕ) → (𝐴𝑘) ∈ ℤ)
29 simplr 504 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) ∧ 𝑘 ∈ ℕ) → 𝐴 ∈ ℤ)
30 euclemma 11751 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ (𝐴𝑘) ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝑃 ∥ ((𝐴𝑘) · 𝐴) ↔ (𝑃 ∥ (𝐴𝑘) ∨ 𝑃𝐴)))
3125, 28, 29, 30syl3anc 1201 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) ∧ 𝑘 ∈ ℕ) → (𝑃 ∥ ((𝐴𝑘) · 𝐴) ↔ (𝑃 ∥ (𝐴𝑘) ∨ 𝑃𝐴)))
3224, 31bitrd 187 . . . . . . 7 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) ∧ 𝑘 ∈ ℕ) → (𝑃 ∥ (𝐴↑(𝑘 + 1)) ↔ (𝑃 ∥ (𝐴𝑘) ∨ 𝑃𝐴)))
33 orbi1 766 . . . . . . . . 9 ((𝑃 ∥ (𝐴𝑘) ↔ 𝑃𝐴) → ((𝑃 ∥ (𝐴𝑘) ∨ 𝑃𝐴) ↔ (𝑃𝐴𝑃𝐴)))
34 oridm 731 . . . . . . . . 9 ((𝑃𝐴𝑃𝐴) ↔ 𝑃𝐴)
3533, 34syl6bb 195 . . . . . . . 8 ((𝑃 ∥ (𝐴𝑘) ↔ 𝑃𝐴) → ((𝑃 ∥ (𝐴𝑘) ∨ 𝑃𝐴) ↔ 𝑃𝐴))
3635bibi2d 231 . . . . . . 7 ((𝑃 ∥ (𝐴𝑘) ↔ 𝑃𝐴) → ((𝑃 ∥ (𝐴↑(𝑘 + 1)) ↔ (𝑃 ∥ (𝐴𝑘) ∨ 𝑃𝐴)) ↔ (𝑃 ∥ (𝐴↑(𝑘 + 1)) ↔ 𝑃𝐴)))
3732, 36syl5ibcom 154 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) ∧ 𝑘 ∈ ℕ) → ((𝑃 ∥ (𝐴𝑘) ↔ 𝑃𝐴) → (𝑃 ∥ (𝐴↑(𝑘 + 1)) ↔ 𝑃𝐴)))
3837expcom 115 . . . . 5 (𝑘 ∈ ℕ → ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → ((𝑃 ∥ (𝐴𝑘) ↔ 𝑃𝐴) → (𝑃 ∥ (𝐴↑(𝑘 + 1)) ↔ 𝑃𝐴))))
3938a2d 26 . . . 4 (𝑘 ∈ ℕ → (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝑃 ∥ (𝐴𝑘) ↔ 𝑃𝐴)) → ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝑃 ∥ (𝐴↑(𝑘 + 1)) ↔ 𝑃𝐴))))
404, 8, 12, 16, 20, 39nnind 8704 . . 3 (𝑁 ∈ ℕ → ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝑃 ∥ (𝐴𝑁) ↔ 𝑃𝐴)))
4140impcom 124 . 2 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) ∧ 𝑁 ∈ ℕ) → (𝑃 ∥ (𝐴𝑁) ↔ 𝑃𝐴))
42413impa 1161 1 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑃 ∥ (𝐴𝑁) ↔ 𝑃𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wo 682  w3a 947   = wceq 1316  wcel 1465   class class class wbr 3899  (class class class)co 5742  cc 7586  1c1 7589   + caddc 7591   · cmul 7593  cn 8688  0cn0 8945  cz 9022  cexp 10260  cdvds 11420  cprime 11715
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 588  ax-in2 589  ax-io 683  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-10 1468  ax-11 1469  ax-i12 1470  ax-bndl 1471  ax-4 1472  ax-13 1476  ax-14 1477  ax-17 1491  ax-i9 1495  ax-ial 1499  ax-i5r 1500  ax-ext 2099  ax-coll 4013  ax-sep 4016  ax-nul 4024  ax-pow 4068  ax-pr 4101  ax-un 4325  ax-setind 4422  ax-iinf 4472  ax-cnex 7679  ax-resscn 7680  ax-1cn 7681  ax-1re 7682  ax-icn 7683  ax-addcl 7684  ax-addrcl 7685  ax-mulcl 7686  ax-mulrcl 7687  ax-addcom 7688  ax-mulcom 7689  ax-addass 7690  ax-mulass 7691  ax-distr 7692  ax-i2m1 7693  ax-0lt1 7694  ax-1rid 7695  ax-0id 7696  ax-rnegex 7697  ax-precex 7698  ax-cnre 7699  ax-pre-ltirr 7700  ax-pre-ltwlin 7701  ax-pre-lttrn 7702  ax-pre-apti 7703  ax-pre-ltadd 7704  ax-pre-mulgt0 7705  ax-pre-mulext 7706  ax-arch 7707  ax-caucvg 7708
This theorem depends on definitions:  df-bi 116  df-dc 805  df-3or 948  df-3an 949  df-tru 1319  df-fal 1322  df-nf 1422  df-sb 1721  df-eu 1980  df-mo 1981  df-clab 2104  df-cleq 2110  df-clel 2113  df-nfc 2247  df-ne 2286  df-nel 2381  df-ral 2398  df-rex 2399  df-reu 2400  df-rmo 2401  df-rab 2402  df-v 2662  df-sbc 2883  df-csb 2976  df-dif 3043  df-un 3045  df-in 3047  df-ss 3054  df-nul 3334  df-if 3445  df-pw 3482  df-sn 3503  df-pr 3504  df-op 3506  df-uni 3707  df-int 3742  df-iun 3785  df-br 3900  df-opab 3960  df-mpt 3961  df-tr 3997  df-id 4185  df-po 4188  df-iso 4189  df-iord 4258  df-on 4260  df-ilim 4261  df-suc 4263  df-iom 4475  df-xp 4515  df-rel 4516  df-cnv 4517  df-co 4518  df-dm 4519  df-rn 4520  df-res 4521  df-ima 4522  df-iota 5058  df-fun 5095  df-fn 5096  df-f 5097  df-f1 5098  df-fo 5099  df-f1o 5100  df-fv 5101  df-riota 5698  df-ov 5745  df-oprab 5746  df-mpo 5747  df-1st 6006  df-2nd 6007  df-recs 6170  df-frec 6256  df-1o 6281  df-2o 6282  df-er 6397  df-en 6603  df-sup 6839  df-pnf 7770  df-mnf 7771  df-xr 7772  df-ltxr 7773  df-le 7774  df-sub 7903  df-neg 7904  df-reap 8305  df-ap 8312  df-div 8401  df-inn 8689  df-2 8747  df-3 8748  df-4 8749  df-n0 8946  df-z 9023  df-uz 9295  df-q 9380  df-rp 9410  df-fz 9759  df-fzo 9888  df-fl 10011  df-mod 10064  df-seqfrec 10187  df-exp 10261  df-cj 10582  df-re 10583  df-im 10584  df-rsqrt 10738  df-abs 10739  df-dvds 11421  df-gcd 11563  df-prm 11716
This theorem is referenced by:  prmdvdsexpb  11754  rpexp  11758
  Copyright terms: Public domain W3C validator