ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prmdvdsexp GIF version

Theorem prmdvdsexp 12670
Description: A prime divides a positive power of an integer iff it divides the integer. (Contributed by Mario Carneiro, 24-Feb-2014.) (Revised by Mario Carneiro, 17-Jul-2014.)
Assertion
Ref Expression
prmdvdsexp ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑃 ∥ (𝐴𝑁) ↔ 𝑃𝐴))

Proof of Theorem prmdvdsexp
Dummy variables 𝑚 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6009 . . . . . . 7 (𝑚 = 1 → (𝐴𝑚) = (𝐴↑1))
21breq2d 4095 . . . . . 6 (𝑚 = 1 → (𝑃 ∥ (𝐴𝑚) ↔ 𝑃 ∥ (𝐴↑1)))
32bibi1d 233 . . . . 5 (𝑚 = 1 → ((𝑃 ∥ (𝐴𝑚) ↔ 𝑃𝐴) ↔ (𝑃 ∥ (𝐴↑1) ↔ 𝑃𝐴)))
43imbi2d 230 . . . 4 (𝑚 = 1 → (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝑃 ∥ (𝐴𝑚) ↔ 𝑃𝐴)) ↔ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝑃 ∥ (𝐴↑1) ↔ 𝑃𝐴))))
5 oveq2 6009 . . . . . . 7 (𝑚 = 𝑘 → (𝐴𝑚) = (𝐴𝑘))
65breq2d 4095 . . . . . 6 (𝑚 = 𝑘 → (𝑃 ∥ (𝐴𝑚) ↔ 𝑃 ∥ (𝐴𝑘)))
76bibi1d 233 . . . . 5 (𝑚 = 𝑘 → ((𝑃 ∥ (𝐴𝑚) ↔ 𝑃𝐴) ↔ (𝑃 ∥ (𝐴𝑘) ↔ 𝑃𝐴)))
87imbi2d 230 . . . 4 (𝑚 = 𝑘 → (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝑃 ∥ (𝐴𝑚) ↔ 𝑃𝐴)) ↔ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝑃 ∥ (𝐴𝑘) ↔ 𝑃𝐴))))
9 oveq2 6009 . . . . . . 7 (𝑚 = (𝑘 + 1) → (𝐴𝑚) = (𝐴↑(𝑘 + 1)))
109breq2d 4095 . . . . . 6 (𝑚 = (𝑘 + 1) → (𝑃 ∥ (𝐴𝑚) ↔ 𝑃 ∥ (𝐴↑(𝑘 + 1))))
1110bibi1d 233 . . . . 5 (𝑚 = (𝑘 + 1) → ((𝑃 ∥ (𝐴𝑚) ↔ 𝑃𝐴) ↔ (𝑃 ∥ (𝐴↑(𝑘 + 1)) ↔ 𝑃𝐴)))
1211imbi2d 230 . . . 4 (𝑚 = (𝑘 + 1) → (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝑃 ∥ (𝐴𝑚) ↔ 𝑃𝐴)) ↔ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝑃 ∥ (𝐴↑(𝑘 + 1)) ↔ 𝑃𝐴))))
13 oveq2 6009 . . . . . . 7 (𝑚 = 𝑁 → (𝐴𝑚) = (𝐴𝑁))
1413breq2d 4095 . . . . . 6 (𝑚 = 𝑁 → (𝑃 ∥ (𝐴𝑚) ↔ 𝑃 ∥ (𝐴𝑁)))
1514bibi1d 233 . . . . 5 (𝑚 = 𝑁 → ((𝑃 ∥ (𝐴𝑚) ↔ 𝑃𝐴) ↔ (𝑃 ∥ (𝐴𝑁) ↔ 𝑃𝐴)))
1615imbi2d 230 . . . 4 (𝑚 = 𝑁 → (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝑃 ∥ (𝐴𝑚) ↔ 𝑃𝐴)) ↔ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝑃 ∥ (𝐴𝑁) ↔ 𝑃𝐴))))
17 zcn 9451 . . . . . . 7 (𝐴 ∈ ℤ → 𝐴 ∈ ℂ)
1817adantl 277 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → 𝐴 ∈ ℂ)
1918exp1d 10890 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝐴↑1) = 𝐴)
2019breq2d 4095 . . . 4 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝑃 ∥ (𝐴↑1) ↔ 𝑃𝐴))
21 nnnn0 9376 . . . . . . . . . 10 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
22 expp1 10768 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴↑(𝑘 + 1)) = ((𝐴𝑘) · 𝐴))
2318, 21, 22syl2an 289 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) ∧ 𝑘 ∈ ℕ) → (𝐴↑(𝑘 + 1)) = ((𝐴𝑘) · 𝐴))
2423breq2d 4095 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) ∧ 𝑘 ∈ ℕ) → (𝑃 ∥ (𝐴↑(𝑘 + 1)) ↔ 𝑃 ∥ ((𝐴𝑘) · 𝐴)))
25 simpll 527 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) ∧ 𝑘 ∈ ℕ) → 𝑃 ∈ ℙ)
26 simpr 110 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → 𝐴 ∈ ℤ)
27 zexpcl 10776 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℤ)
2826, 21, 27syl2an 289 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) ∧ 𝑘 ∈ ℕ) → (𝐴𝑘) ∈ ℤ)
29 simplr 528 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) ∧ 𝑘 ∈ ℕ) → 𝐴 ∈ ℤ)
30 euclemma 12668 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ (𝐴𝑘) ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝑃 ∥ ((𝐴𝑘) · 𝐴) ↔ (𝑃 ∥ (𝐴𝑘) ∨ 𝑃𝐴)))
3125, 28, 29, 30syl3anc 1271 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) ∧ 𝑘 ∈ ℕ) → (𝑃 ∥ ((𝐴𝑘) · 𝐴) ↔ (𝑃 ∥ (𝐴𝑘) ∨ 𝑃𝐴)))
3224, 31bitrd 188 . . . . . . 7 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) ∧ 𝑘 ∈ ℕ) → (𝑃 ∥ (𝐴↑(𝑘 + 1)) ↔ (𝑃 ∥ (𝐴𝑘) ∨ 𝑃𝐴)))
33 orbi1 797 . . . . . . . . 9 ((𝑃 ∥ (𝐴𝑘) ↔ 𝑃𝐴) → ((𝑃 ∥ (𝐴𝑘) ∨ 𝑃𝐴) ↔ (𝑃𝐴𝑃𝐴)))
34 oridm 762 . . . . . . . . 9 ((𝑃𝐴𝑃𝐴) ↔ 𝑃𝐴)
3533, 34bitrdi 196 . . . . . . . 8 ((𝑃 ∥ (𝐴𝑘) ↔ 𝑃𝐴) → ((𝑃 ∥ (𝐴𝑘) ∨ 𝑃𝐴) ↔ 𝑃𝐴))
3635bibi2d 232 . . . . . . 7 ((𝑃 ∥ (𝐴𝑘) ↔ 𝑃𝐴) → ((𝑃 ∥ (𝐴↑(𝑘 + 1)) ↔ (𝑃 ∥ (𝐴𝑘) ∨ 𝑃𝐴)) ↔ (𝑃 ∥ (𝐴↑(𝑘 + 1)) ↔ 𝑃𝐴)))
3732, 36syl5ibcom 155 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) ∧ 𝑘 ∈ ℕ) → ((𝑃 ∥ (𝐴𝑘) ↔ 𝑃𝐴) → (𝑃 ∥ (𝐴↑(𝑘 + 1)) ↔ 𝑃𝐴)))
3837expcom 116 . . . . 5 (𝑘 ∈ ℕ → ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → ((𝑃 ∥ (𝐴𝑘) ↔ 𝑃𝐴) → (𝑃 ∥ (𝐴↑(𝑘 + 1)) ↔ 𝑃𝐴))))
3938a2d 26 . . . 4 (𝑘 ∈ ℕ → (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝑃 ∥ (𝐴𝑘) ↔ 𝑃𝐴)) → ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝑃 ∥ (𝐴↑(𝑘 + 1)) ↔ 𝑃𝐴))))
404, 8, 12, 16, 20, 39nnind 9126 . . 3 (𝑁 ∈ ℕ → ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝑃 ∥ (𝐴𝑁) ↔ 𝑃𝐴)))
4140impcom 125 . 2 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) ∧ 𝑁 ∈ ℕ) → (𝑃 ∥ (𝐴𝑁) ↔ 𝑃𝐴))
42413impa 1218 1 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑃 ∥ (𝐴𝑁) ↔ 𝑃𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 713  w3a 1002   = wceq 1395  wcel 2200   class class class wbr 4083  (class class class)co 6001  cc 7997  1c1 8000   + caddc 8002   · cmul 8004  cn 9110  0cn0 9369  cz 9446  cexp 10760  cdvds 12298  cprime 12629
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-mulrcl 8098  ax-addcom 8099  ax-mulcom 8100  ax-addass 8101  ax-mulass 8102  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-1rid 8106  ax-0id 8107  ax-rnegex 8108  ax-precex 8109  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-apti 8114  ax-pre-ltadd 8115  ax-pre-mulgt0 8116  ax-pre-mulext 8117  ax-arch 8118  ax-caucvg 8119
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-recs 6451  df-frec 6537  df-1o 6562  df-2o 6563  df-er 6680  df-en 6888  df-sup 7151  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-reap 8722  df-ap 8729  df-div 8820  df-inn 9111  df-2 9169  df-3 9170  df-4 9171  df-n0 9370  df-z 9447  df-uz 9723  df-q 9815  df-rp 9850  df-fz 10205  df-fzo 10339  df-fl 10490  df-mod 10545  df-seqfrec 10670  df-exp 10761  df-cj 11353  df-re 11354  df-im 11355  df-rsqrt 11509  df-abs 11510  df-dvds 12299  df-gcd 12475  df-prm 12630
This theorem is referenced by:  prmdvdsexpb  12671  rpexp  12675  pythagtriplem4  12791  lgslem4  15682  2sqlem3  15796
  Copyright terms: Public domain W3C validator