ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2sqpwodd GIF version

Theorem 2sqpwodd 12108
Description: The greatest power of two dividing twice the square of an integer is an odd power of two. (Contributed by Jim Kingdon, 17-Nov-2021.)
Hypotheses
Ref Expression
oddpwdc.j 𝐽 = {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}
oddpwdc.f 𝐹 = (𝑥𝐽, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥))
Assertion
Ref Expression
2sqpwodd (𝐴 ∈ ℕ → ¬ 2 ∥ (2nd ‘(𝐹‘(2 · (𝐴↑2)))))
Distinct variable groups:   𝑥,𝑦,𝑧   𝑥,𝐽,𝑦   𝑥,𝐴,𝑦,𝑧   𝑥,𝐹,𝑦,𝑧
Allowed substitution hint:   𝐽(𝑧)

Proof of Theorem 2sqpwodd
StepHypRef Expression
1 oddpwdc.j . . . . . . . . 9 𝐽 = {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}
2 oddpwdc.f . . . . . . . . 9 𝐹 = (𝑥𝐽, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥))
31, 2oddpwdc 12106 . . . . . . . 8 𝐹:(𝐽 × ℕ0)–1-1-onto→ℕ
4 f1ocnv 5445 . . . . . . . 8 (𝐹:(𝐽 × ℕ0)–1-1-onto→ℕ → 𝐹:ℕ–1-1-onto→(𝐽 × ℕ0))
5 f1of 5432 . . . . . . . 8 (𝐹:ℕ–1-1-onto→(𝐽 × ℕ0) → 𝐹:ℕ⟶(𝐽 × ℕ0))
63, 4, 5mp2b 8 . . . . . . 7 𝐹:ℕ⟶(𝐽 × ℕ0)
76ffvelrni 5619 . . . . . 6 (𝐴 ∈ ℕ → (𝐹𝐴) ∈ (𝐽 × ℕ0))
8 xp2nd 6134 . . . . . 6 ((𝐹𝐴) ∈ (𝐽 × ℕ0) → (2nd ‘(𝐹𝐴)) ∈ ℕ0)
97, 8syl 14 . . . . 5 (𝐴 ∈ ℕ → (2nd ‘(𝐹𝐴)) ∈ ℕ0)
109nn0zd 9311 . . . 4 (𝐴 ∈ ℕ → (2nd ‘(𝐹𝐴)) ∈ ℤ)
11 2nn 9018 . . . . . 6 2 ∈ ℕ
1211a1i 9 . . . . 5 (𝐴 ∈ ℕ → 2 ∈ ℕ)
1312nnzd 9312 . . . 4 (𝐴 ∈ ℕ → 2 ∈ ℤ)
1410, 13zmulcld 9319 . . 3 (𝐴 ∈ ℕ → ((2nd ‘(𝐹𝐴)) · 2) ∈ ℤ)
15 dvdsmul2 11754 . . . 4 (((2nd ‘(𝐹𝐴)) ∈ ℤ ∧ 2 ∈ ℤ) → 2 ∥ ((2nd ‘(𝐹𝐴)) · 2))
1610, 13, 15syl2anc 409 . . 3 (𝐴 ∈ ℕ → 2 ∥ ((2nd ‘(𝐹𝐴)) · 2))
17 oddp1even 11813 . . . . 5 (((2nd ‘(𝐹𝐴)) · 2) ∈ ℤ → (¬ 2 ∥ ((2nd ‘(𝐹𝐴)) · 2) ↔ 2 ∥ (((2nd ‘(𝐹𝐴)) · 2) + 1)))
1817biimprd 157 . . . 4 (((2nd ‘(𝐹𝐴)) · 2) ∈ ℤ → (2 ∥ (((2nd ‘(𝐹𝐴)) · 2) + 1) → ¬ 2 ∥ ((2nd ‘(𝐹𝐴)) · 2)))
1918con2d 614 . . 3 (((2nd ‘(𝐹𝐴)) · 2) ∈ ℤ → (2 ∥ ((2nd ‘(𝐹𝐴)) · 2) → ¬ 2 ∥ (((2nd ‘(𝐹𝐴)) · 2) + 1)))
2014, 16, 19sylc 62 . 2 (𝐴 ∈ ℕ → ¬ 2 ∥ (((2nd ‘(𝐹𝐴)) · 2) + 1))
21 xp1st 6133 . . . . . . . . . . 11 ((𝐹𝐴) ∈ (𝐽 × ℕ0) → (1st ‘(𝐹𝐴)) ∈ 𝐽)
227, 21syl 14 . . . . . . . . . 10 (𝐴 ∈ ℕ → (1st ‘(𝐹𝐴)) ∈ 𝐽)
23 breq2 3986 . . . . . . . . . . . . 13 (𝑧 = (1st ‘(𝐹𝐴)) → (2 ∥ 𝑧 ↔ 2 ∥ (1st ‘(𝐹𝐴))))
2423notbid 657 . . . . . . . . . . . 12 (𝑧 = (1st ‘(𝐹𝐴)) → (¬ 2 ∥ 𝑧 ↔ ¬ 2 ∥ (1st ‘(𝐹𝐴))))
2524, 1elrab2 2885 . . . . . . . . . . 11 ((1st ‘(𝐹𝐴)) ∈ 𝐽 ↔ ((1st ‘(𝐹𝐴)) ∈ ℕ ∧ ¬ 2 ∥ (1st ‘(𝐹𝐴))))
2625simplbi 272 . . . . . . . . . 10 ((1st ‘(𝐹𝐴)) ∈ 𝐽 → (1st ‘(𝐹𝐴)) ∈ ℕ)
2722, 26syl 14 . . . . . . . . 9 (𝐴 ∈ ℕ → (1st ‘(𝐹𝐴)) ∈ ℕ)
2827nnsqcld 10609 . . . . . . . 8 (𝐴 ∈ ℕ → ((1st ‘(𝐹𝐴))↑2) ∈ ℕ)
2925simprbi 273 . . . . . . . . . . 11 ((1st ‘(𝐹𝐴)) ∈ 𝐽 → ¬ 2 ∥ (1st ‘(𝐹𝐴)))
3022, 29syl 14 . . . . . . . . . 10 (𝐴 ∈ ℕ → ¬ 2 ∥ (1st ‘(𝐹𝐴)))
31 2prm 12059 . . . . . . . . . . 11 2 ∈ ℙ
3227nnzd 9312 . . . . . . . . . . 11 (𝐴 ∈ ℕ → (1st ‘(𝐹𝐴)) ∈ ℤ)
33 euclemma 12078 . . . . . . . . . . . 12 ((2 ∈ ℙ ∧ (1st ‘(𝐹𝐴)) ∈ ℤ ∧ (1st ‘(𝐹𝐴)) ∈ ℤ) → (2 ∥ ((1st ‘(𝐹𝐴)) · (1st ‘(𝐹𝐴))) ↔ (2 ∥ (1st ‘(𝐹𝐴)) ∨ 2 ∥ (1st ‘(𝐹𝐴)))))
34 oridm 747 . . . . . . . . . . . 12 ((2 ∥ (1st ‘(𝐹𝐴)) ∨ 2 ∥ (1st ‘(𝐹𝐴))) ↔ 2 ∥ (1st ‘(𝐹𝐴)))
3533, 34bitrdi 195 . . . . . . . . . . 11 ((2 ∈ ℙ ∧ (1st ‘(𝐹𝐴)) ∈ ℤ ∧ (1st ‘(𝐹𝐴)) ∈ ℤ) → (2 ∥ ((1st ‘(𝐹𝐴)) · (1st ‘(𝐹𝐴))) ↔ 2 ∥ (1st ‘(𝐹𝐴))))
3631, 32, 32, 35mp3an2i 1332 . . . . . . . . . 10 (𝐴 ∈ ℕ → (2 ∥ ((1st ‘(𝐹𝐴)) · (1st ‘(𝐹𝐴))) ↔ 2 ∥ (1st ‘(𝐹𝐴))))
3730, 36mtbird 663 . . . . . . . . 9 (𝐴 ∈ ℕ → ¬ 2 ∥ ((1st ‘(𝐹𝐴)) · (1st ‘(𝐹𝐴))))
3827nncnd 8871 . . . . . . . . . . 11 (𝐴 ∈ ℕ → (1st ‘(𝐹𝐴)) ∈ ℂ)
3938sqvald 10585 . . . . . . . . . 10 (𝐴 ∈ ℕ → ((1st ‘(𝐹𝐴))↑2) = ((1st ‘(𝐹𝐴)) · (1st ‘(𝐹𝐴))))
4039breq2d 3994 . . . . . . . . 9 (𝐴 ∈ ℕ → (2 ∥ ((1st ‘(𝐹𝐴))↑2) ↔ 2 ∥ ((1st ‘(𝐹𝐴)) · (1st ‘(𝐹𝐴)))))
4137, 40mtbird 663 . . . . . . . 8 (𝐴 ∈ ℕ → ¬ 2 ∥ ((1st ‘(𝐹𝐴))↑2))
42 breq2 3986 . . . . . . . . . 10 (𝑧 = ((1st ‘(𝐹𝐴))↑2) → (2 ∥ 𝑧 ↔ 2 ∥ ((1st ‘(𝐹𝐴))↑2)))
4342notbid 657 . . . . . . . . 9 (𝑧 = ((1st ‘(𝐹𝐴))↑2) → (¬ 2 ∥ 𝑧 ↔ ¬ 2 ∥ ((1st ‘(𝐹𝐴))↑2)))
4443, 1elrab2 2885 . . . . . . . 8 (((1st ‘(𝐹𝐴))↑2) ∈ 𝐽 ↔ (((1st ‘(𝐹𝐴))↑2) ∈ ℕ ∧ ¬ 2 ∥ ((1st ‘(𝐹𝐴))↑2)))
4528, 41, 44sylanbrc 414 . . . . . . 7 (𝐴 ∈ ℕ → ((1st ‘(𝐹𝐴))↑2) ∈ 𝐽)
4612nnnn0d 9167 . . . . . . . . 9 (𝐴 ∈ ℕ → 2 ∈ ℕ0)
479, 46nn0mulcld 9172 . . . . . . . 8 (𝐴 ∈ ℕ → ((2nd ‘(𝐹𝐴)) · 2) ∈ ℕ0)
48 peano2nn0 9154 . . . . . . . 8 (((2nd ‘(𝐹𝐴)) · 2) ∈ ℕ0 → (((2nd ‘(𝐹𝐴)) · 2) + 1) ∈ ℕ0)
4947, 48syl 14 . . . . . . 7 (𝐴 ∈ ℕ → (((2nd ‘(𝐹𝐴)) · 2) + 1) ∈ ℕ0)
50 opelxp 4634 . . . . . . 7 (⟨((1st ‘(𝐹𝐴))↑2), (((2nd ‘(𝐹𝐴)) · 2) + 1)⟩ ∈ (𝐽 × ℕ0) ↔ (((1st ‘(𝐹𝐴))↑2) ∈ 𝐽 ∧ (((2nd ‘(𝐹𝐴)) · 2) + 1) ∈ ℕ0))
5145, 49, 50sylanbrc 414 . . . . . 6 (𝐴 ∈ ℕ → ⟨((1st ‘(𝐹𝐴))↑2), (((2nd ‘(𝐹𝐴)) · 2) + 1)⟩ ∈ (𝐽 × ℕ0))
5212nncnd 8871 . . . . . . . . . . 11 (𝐴 ∈ ℕ → 2 ∈ ℂ)
5352, 47expp1d 10589 . . . . . . . . . 10 (𝐴 ∈ ℕ → (2↑(((2nd ‘(𝐹𝐴)) · 2) + 1)) = ((2↑((2nd ‘(𝐹𝐴)) · 2)) · 2))
5452, 47expcld 10588 . . . . . . . . . . 11 (𝐴 ∈ ℕ → (2↑((2nd ‘(𝐹𝐴)) · 2)) ∈ ℂ)
5554, 52mulcomd 7920 . . . . . . . . . 10 (𝐴 ∈ ℕ → ((2↑((2nd ‘(𝐹𝐴)) · 2)) · 2) = (2 · (2↑((2nd ‘(𝐹𝐴)) · 2))))
5652, 46, 9expmuld 10591 . . . . . . . . . . 11 (𝐴 ∈ ℕ → (2↑((2nd ‘(𝐹𝐴)) · 2)) = ((2↑(2nd ‘(𝐹𝐴)))↑2))
5756oveq2d 5858 . . . . . . . . . 10 (𝐴 ∈ ℕ → (2 · (2↑((2nd ‘(𝐹𝐴)) · 2))) = (2 · ((2↑(2nd ‘(𝐹𝐴)))↑2)))
5853, 55, 573eqtrd 2202 . . . . . . . . 9 (𝐴 ∈ ℕ → (2↑(((2nd ‘(𝐹𝐴)) · 2) + 1)) = (2 · ((2↑(2nd ‘(𝐹𝐴)))↑2)))
5958oveq1d 5857 . . . . . . . 8 (𝐴 ∈ ℕ → ((2↑(((2nd ‘(𝐹𝐴)) · 2) + 1)) · ((1st ‘(𝐹𝐴))↑2)) = ((2 · ((2↑(2nd ‘(𝐹𝐴)))↑2)) · ((1st ‘(𝐹𝐴))↑2)))
6012, 49nnexpcld 10610 . . . . . . . . . 10 (𝐴 ∈ ℕ → (2↑(((2nd ‘(𝐹𝐴)) · 2) + 1)) ∈ ℕ)
6160, 28nnmulcld 8906 . . . . . . . . 9 (𝐴 ∈ ℕ → ((2↑(((2nd ‘(𝐹𝐴)) · 2) + 1)) · ((1st ‘(𝐹𝐴))↑2)) ∈ ℕ)
62 oveq2 5850 . . . . . . . . . 10 (𝑥 = ((1st ‘(𝐹𝐴))↑2) → ((2↑𝑦) · 𝑥) = ((2↑𝑦) · ((1st ‘(𝐹𝐴))↑2)))
63 oveq2 5850 . . . . . . . . . . 11 (𝑦 = (((2nd ‘(𝐹𝐴)) · 2) + 1) → (2↑𝑦) = (2↑(((2nd ‘(𝐹𝐴)) · 2) + 1)))
6463oveq1d 5857 . . . . . . . . . 10 (𝑦 = (((2nd ‘(𝐹𝐴)) · 2) + 1) → ((2↑𝑦) · ((1st ‘(𝐹𝐴))↑2)) = ((2↑(((2nd ‘(𝐹𝐴)) · 2) + 1)) · ((1st ‘(𝐹𝐴))↑2)))
6562, 64, 2ovmpog 5976 . . . . . . . . 9 ((((1st ‘(𝐹𝐴))↑2) ∈ 𝐽 ∧ (((2nd ‘(𝐹𝐴)) · 2) + 1) ∈ ℕ0 ∧ ((2↑(((2nd ‘(𝐹𝐴)) · 2) + 1)) · ((1st ‘(𝐹𝐴))↑2)) ∈ ℕ) → (((1st ‘(𝐹𝐴))↑2)𝐹(((2nd ‘(𝐹𝐴)) · 2) + 1)) = ((2↑(((2nd ‘(𝐹𝐴)) · 2) + 1)) · ((1st ‘(𝐹𝐴))↑2)))
6645, 49, 61, 65syl3anc 1228 . . . . . . . 8 (𝐴 ∈ ℕ → (((1st ‘(𝐹𝐴))↑2)𝐹(((2nd ‘(𝐹𝐴)) · 2) + 1)) = ((2↑(((2nd ‘(𝐹𝐴)) · 2) + 1)) · ((1st ‘(𝐹𝐴))↑2)))
67 f1ocnvfv2 5746 . . . . . . . . . . . . . . . 16 ((𝐹:(𝐽 × ℕ0)–1-1-onto→ℕ ∧ 𝐴 ∈ ℕ) → (𝐹‘(𝐹𝐴)) = 𝐴)
683, 67mpan 421 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℕ → (𝐹‘(𝐹𝐴)) = 𝐴)
69 1st2nd2 6143 . . . . . . . . . . . . . . . . 17 ((𝐹𝐴) ∈ (𝐽 × ℕ0) → (𝐹𝐴) = ⟨(1st ‘(𝐹𝐴)), (2nd ‘(𝐹𝐴))⟩)
707, 69syl 14 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℕ → (𝐹𝐴) = ⟨(1st ‘(𝐹𝐴)), (2nd ‘(𝐹𝐴))⟩)
7170fveq2d 5490 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℕ → (𝐹‘(𝐹𝐴)) = (𝐹‘⟨(1st ‘(𝐹𝐴)), (2nd ‘(𝐹𝐴))⟩))
7268, 71eqtr3d 2200 . . . . . . . . . . . . . 14 (𝐴 ∈ ℕ → 𝐴 = (𝐹‘⟨(1st ‘(𝐹𝐴)), (2nd ‘(𝐹𝐴))⟩))
73 df-ov 5845 . . . . . . . . . . . . . 14 ((1st ‘(𝐹𝐴))𝐹(2nd ‘(𝐹𝐴))) = (𝐹‘⟨(1st ‘(𝐹𝐴)), (2nd ‘(𝐹𝐴))⟩)
7472, 73eqtr4di 2217 . . . . . . . . . . . . 13 (𝐴 ∈ ℕ → 𝐴 = ((1st ‘(𝐹𝐴))𝐹(2nd ‘(𝐹𝐴))))
7512, 9nnexpcld 10610 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℕ → (2↑(2nd ‘(𝐹𝐴))) ∈ ℕ)
7675, 27nnmulcld 8906 . . . . . . . . . . . . . 14 (𝐴 ∈ ℕ → ((2↑(2nd ‘(𝐹𝐴))) · (1st ‘(𝐹𝐴))) ∈ ℕ)
77 oveq2 5850 . . . . . . . . . . . . . . 15 (𝑥 = (1st ‘(𝐹𝐴)) → ((2↑𝑦) · 𝑥) = ((2↑𝑦) · (1st ‘(𝐹𝐴))))
78 oveq2 5850 . . . . . . . . . . . . . . . 16 (𝑦 = (2nd ‘(𝐹𝐴)) → (2↑𝑦) = (2↑(2nd ‘(𝐹𝐴))))
7978oveq1d 5857 . . . . . . . . . . . . . . 15 (𝑦 = (2nd ‘(𝐹𝐴)) → ((2↑𝑦) · (1st ‘(𝐹𝐴))) = ((2↑(2nd ‘(𝐹𝐴))) · (1st ‘(𝐹𝐴))))
8077, 79, 2ovmpog 5976 . . . . . . . . . . . . . 14 (((1st ‘(𝐹𝐴)) ∈ 𝐽 ∧ (2nd ‘(𝐹𝐴)) ∈ ℕ0 ∧ ((2↑(2nd ‘(𝐹𝐴))) · (1st ‘(𝐹𝐴))) ∈ ℕ) → ((1st ‘(𝐹𝐴))𝐹(2nd ‘(𝐹𝐴))) = ((2↑(2nd ‘(𝐹𝐴))) · (1st ‘(𝐹𝐴))))
8122, 9, 76, 80syl3anc 1228 . . . . . . . . . . . . 13 (𝐴 ∈ ℕ → ((1st ‘(𝐹𝐴))𝐹(2nd ‘(𝐹𝐴))) = ((2↑(2nd ‘(𝐹𝐴))) · (1st ‘(𝐹𝐴))))
8274, 81eqtrd 2198 . . . . . . . . . . . 12 (𝐴 ∈ ℕ → 𝐴 = ((2↑(2nd ‘(𝐹𝐴))) · (1st ‘(𝐹𝐴))))
8382oveq1d 5857 . . . . . . . . . . 11 (𝐴 ∈ ℕ → (𝐴↑2) = (((2↑(2nd ‘(𝐹𝐴))) · (1st ‘(𝐹𝐴)))↑2))
8475nncnd 8871 . . . . . . . . . . . 12 (𝐴 ∈ ℕ → (2↑(2nd ‘(𝐹𝐴))) ∈ ℂ)
8584, 38sqmuld 10600 . . . . . . . . . . 11 (𝐴 ∈ ℕ → (((2↑(2nd ‘(𝐹𝐴))) · (1st ‘(𝐹𝐴)))↑2) = (((2↑(2nd ‘(𝐹𝐴)))↑2) · ((1st ‘(𝐹𝐴))↑2)))
8683, 85eqtrd 2198 . . . . . . . . . 10 (𝐴 ∈ ℕ → (𝐴↑2) = (((2↑(2nd ‘(𝐹𝐴)))↑2) · ((1st ‘(𝐹𝐴))↑2)))
8786oveq2d 5858 . . . . . . . . 9 (𝐴 ∈ ℕ → (2 · (𝐴↑2)) = (2 · (((2↑(2nd ‘(𝐹𝐴)))↑2) · ((1st ‘(𝐹𝐴))↑2))))
8856, 54eqeltrrd 2244 . . . . . . . . . 10 (𝐴 ∈ ℕ → ((2↑(2nd ‘(𝐹𝐴)))↑2) ∈ ℂ)
8928nncnd 8871 . . . . . . . . . 10 (𝐴 ∈ ℕ → ((1st ‘(𝐹𝐴))↑2) ∈ ℂ)
9052, 88, 89mulassd 7922 . . . . . . . . 9 (𝐴 ∈ ℕ → ((2 · ((2↑(2nd ‘(𝐹𝐴)))↑2)) · ((1st ‘(𝐹𝐴))↑2)) = (2 · (((2↑(2nd ‘(𝐹𝐴)))↑2) · ((1st ‘(𝐹𝐴))↑2))))
9187, 90eqtr4d 2201 . . . . . . . 8 (𝐴 ∈ ℕ → (2 · (𝐴↑2)) = ((2 · ((2↑(2nd ‘(𝐹𝐴)))↑2)) · ((1st ‘(𝐹𝐴))↑2)))
9259, 66, 913eqtr4rd 2209 . . . . . . 7 (𝐴 ∈ ℕ → (2 · (𝐴↑2)) = (((1st ‘(𝐹𝐴))↑2)𝐹(((2nd ‘(𝐹𝐴)) · 2) + 1)))
93 df-ov 5845 . . . . . . 7 (((1st ‘(𝐹𝐴))↑2)𝐹(((2nd ‘(𝐹𝐴)) · 2) + 1)) = (𝐹‘⟨((1st ‘(𝐹𝐴))↑2), (((2nd ‘(𝐹𝐴)) · 2) + 1)⟩)
9492, 93eqtr2di 2216 . . . . . 6 (𝐴 ∈ ℕ → (𝐹‘⟨((1st ‘(𝐹𝐴))↑2), (((2nd ‘(𝐹𝐴)) · 2) + 1)⟩) = (2 · (𝐴↑2)))
95 f1ocnvfv 5747 . . . . . . 7 ((𝐹:(𝐽 × ℕ0)–1-1-onto→ℕ ∧ ⟨((1st ‘(𝐹𝐴))↑2), (((2nd ‘(𝐹𝐴)) · 2) + 1)⟩ ∈ (𝐽 × ℕ0)) → ((𝐹‘⟨((1st ‘(𝐹𝐴))↑2), (((2nd ‘(𝐹𝐴)) · 2) + 1)⟩) = (2 · (𝐴↑2)) → (𝐹‘(2 · (𝐴↑2))) = ⟨((1st ‘(𝐹𝐴))↑2), (((2nd ‘(𝐹𝐴)) · 2) + 1)⟩))
963, 95mpan 421 . . . . . 6 (⟨((1st ‘(𝐹𝐴))↑2), (((2nd ‘(𝐹𝐴)) · 2) + 1)⟩ ∈ (𝐽 × ℕ0) → ((𝐹‘⟨((1st ‘(𝐹𝐴))↑2), (((2nd ‘(𝐹𝐴)) · 2) + 1)⟩) = (2 · (𝐴↑2)) → (𝐹‘(2 · (𝐴↑2))) = ⟨((1st ‘(𝐹𝐴))↑2), (((2nd ‘(𝐹𝐴)) · 2) + 1)⟩))
9751, 94, 96sylc 62 . . . . 5 (𝐴 ∈ ℕ → (𝐹‘(2 · (𝐴↑2))) = ⟨((1st ‘(𝐹𝐴))↑2), (((2nd ‘(𝐹𝐴)) · 2) + 1)⟩)
9897fveq2d 5490 . . . 4 (𝐴 ∈ ℕ → (2nd ‘(𝐹‘(2 · (𝐴↑2)))) = (2nd ‘⟨((1st ‘(𝐹𝐴))↑2), (((2nd ‘(𝐹𝐴)) · 2) + 1)⟩))
99 op2ndg 6119 . . . . 5 ((((1st ‘(𝐹𝐴))↑2) ∈ 𝐽 ∧ (((2nd ‘(𝐹𝐴)) · 2) + 1) ∈ ℕ0) → (2nd ‘⟨((1st ‘(𝐹𝐴))↑2), (((2nd ‘(𝐹𝐴)) · 2) + 1)⟩) = (((2nd ‘(𝐹𝐴)) · 2) + 1))
10045, 49, 99syl2anc 409 . . . 4 (𝐴 ∈ ℕ → (2nd ‘⟨((1st ‘(𝐹𝐴))↑2), (((2nd ‘(𝐹𝐴)) · 2) + 1)⟩) = (((2nd ‘(𝐹𝐴)) · 2) + 1))
10198, 100eqtrd 2198 . . 3 (𝐴 ∈ ℕ → (2nd ‘(𝐹‘(2 · (𝐴↑2)))) = (((2nd ‘(𝐹𝐴)) · 2) + 1))
102101breq2d 3994 . 2 (𝐴 ∈ ℕ → (2 ∥ (2nd ‘(𝐹‘(2 · (𝐴↑2)))) ↔ 2 ∥ (((2nd ‘(𝐹𝐴)) · 2) + 1)))
10320, 102mtbird 663 1 (𝐴 ∈ ℕ → ¬ 2 ∥ (2nd ‘(𝐹‘(2 · (𝐴↑2)))))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wb 104  wo 698  w3a 968   = wceq 1343  wcel 2136  {crab 2448  cop 3579   class class class wbr 3982   × cxp 4602  ccnv 4603  wf 5184  1-1-ontowf1o 5187  cfv 5188  (class class class)co 5842  cmpo 5844  1st c1st 6106  2nd c2nd 6107  cc 7751  1c1 7754   + caddc 7756   · cmul 7758  cn 8857  2c2 8908  0cn0 9114  cz 9191  cexp 10454  cdvds 11727  cprime 12039
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872  ax-caucvg 7873
This theorem depends on definitions:  df-bi 116  df-stab 821  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-xor 1366  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-frec 6359  df-1o 6384  df-2o 6385  df-er 6501  df-en 6707  df-sup 6949  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-n0 9115  df-z 9192  df-uz 9467  df-q 9558  df-rp 9590  df-fz 9945  df-fzo 10078  df-fl 10205  df-mod 10258  df-seqfrec 10381  df-exp 10455  df-cj 10784  df-re 10785  df-im 10786  df-rsqrt 10940  df-abs 10941  df-dvds 11728  df-gcd 11876  df-prm 12040
This theorem is referenced by:  sqne2sq  12109
  Copyright terms: Public domain W3C validator