ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2sqpwodd GIF version

Theorem 2sqpwodd 12041
Description: The greatest power of two dividing twice the square of an integer is an odd power of two. (Contributed by Jim Kingdon, 17-Nov-2021.)
Hypotheses
Ref Expression
oddpwdc.j 𝐽 = {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}
oddpwdc.f 𝐹 = (𝑥𝐽, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥))
Assertion
Ref Expression
2sqpwodd (𝐴 ∈ ℕ → ¬ 2 ∥ (2nd ‘(𝐹‘(2 · (𝐴↑2)))))
Distinct variable groups:   𝑥,𝑦,𝑧   𝑥,𝐽,𝑦   𝑥,𝐴,𝑦,𝑧   𝑥,𝐹,𝑦,𝑧
Allowed substitution hint:   𝐽(𝑧)

Proof of Theorem 2sqpwodd
StepHypRef Expression
1 oddpwdc.j . . . . . . . . 9 𝐽 = {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}
2 oddpwdc.f . . . . . . . . 9 𝐹 = (𝑥𝐽, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥))
31, 2oddpwdc 12039 . . . . . . . 8 𝐹:(𝐽 × ℕ0)–1-1-onto→ℕ
4 f1ocnv 5426 . . . . . . . 8 (𝐹:(𝐽 × ℕ0)–1-1-onto→ℕ → 𝐹:ℕ–1-1-onto→(𝐽 × ℕ0))
5 f1of 5413 . . . . . . . 8 (𝐹:ℕ–1-1-onto→(𝐽 × ℕ0) → 𝐹:ℕ⟶(𝐽 × ℕ0))
63, 4, 5mp2b 8 . . . . . . 7 𝐹:ℕ⟶(𝐽 × ℕ0)
76ffvelrni 5600 . . . . . 6 (𝐴 ∈ ℕ → (𝐹𝐴) ∈ (𝐽 × ℕ0))
8 xp2nd 6111 . . . . . 6 ((𝐹𝐴) ∈ (𝐽 × ℕ0) → (2nd ‘(𝐹𝐴)) ∈ ℕ0)
97, 8syl 14 . . . . 5 (𝐴 ∈ ℕ → (2nd ‘(𝐹𝐴)) ∈ ℕ0)
109nn0zd 9278 . . . 4 (𝐴 ∈ ℕ → (2nd ‘(𝐹𝐴)) ∈ ℤ)
11 2nn 8988 . . . . . 6 2 ∈ ℕ
1211a1i 9 . . . . 5 (𝐴 ∈ ℕ → 2 ∈ ℕ)
1312nnzd 9279 . . . 4 (𝐴 ∈ ℕ → 2 ∈ ℤ)
1410, 13zmulcld 9286 . . 3 (𝐴 ∈ ℕ → ((2nd ‘(𝐹𝐴)) · 2) ∈ ℤ)
15 dvdsmul2 11702 . . . 4 (((2nd ‘(𝐹𝐴)) ∈ ℤ ∧ 2 ∈ ℤ) → 2 ∥ ((2nd ‘(𝐹𝐴)) · 2))
1610, 13, 15syl2anc 409 . . 3 (𝐴 ∈ ℕ → 2 ∥ ((2nd ‘(𝐹𝐴)) · 2))
17 oddp1even 11759 . . . . 5 (((2nd ‘(𝐹𝐴)) · 2) ∈ ℤ → (¬ 2 ∥ ((2nd ‘(𝐹𝐴)) · 2) ↔ 2 ∥ (((2nd ‘(𝐹𝐴)) · 2) + 1)))
1817biimprd 157 . . . 4 (((2nd ‘(𝐹𝐴)) · 2) ∈ ℤ → (2 ∥ (((2nd ‘(𝐹𝐴)) · 2) + 1) → ¬ 2 ∥ ((2nd ‘(𝐹𝐴)) · 2)))
1918con2d 614 . . 3 (((2nd ‘(𝐹𝐴)) · 2) ∈ ℤ → (2 ∥ ((2nd ‘(𝐹𝐴)) · 2) → ¬ 2 ∥ (((2nd ‘(𝐹𝐴)) · 2) + 1)))
2014, 16, 19sylc 62 . 2 (𝐴 ∈ ℕ → ¬ 2 ∥ (((2nd ‘(𝐹𝐴)) · 2) + 1))
21 xp1st 6110 . . . . . . . . . . 11 ((𝐹𝐴) ∈ (𝐽 × ℕ0) → (1st ‘(𝐹𝐴)) ∈ 𝐽)
227, 21syl 14 . . . . . . . . . 10 (𝐴 ∈ ℕ → (1st ‘(𝐹𝐴)) ∈ 𝐽)
23 breq2 3969 . . . . . . . . . . . . 13 (𝑧 = (1st ‘(𝐹𝐴)) → (2 ∥ 𝑧 ↔ 2 ∥ (1st ‘(𝐹𝐴))))
2423notbid 657 . . . . . . . . . . . 12 (𝑧 = (1st ‘(𝐹𝐴)) → (¬ 2 ∥ 𝑧 ↔ ¬ 2 ∥ (1st ‘(𝐹𝐴))))
2524, 1elrab2 2871 . . . . . . . . . . 11 ((1st ‘(𝐹𝐴)) ∈ 𝐽 ↔ ((1st ‘(𝐹𝐴)) ∈ ℕ ∧ ¬ 2 ∥ (1st ‘(𝐹𝐴))))
2625simplbi 272 . . . . . . . . . 10 ((1st ‘(𝐹𝐴)) ∈ 𝐽 → (1st ‘(𝐹𝐴)) ∈ ℕ)
2722, 26syl 14 . . . . . . . . 9 (𝐴 ∈ ℕ → (1st ‘(𝐹𝐴)) ∈ ℕ)
2827nnsqcld 10565 . . . . . . . 8 (𝐴 ∈ ℕ → ((1st ‘(𝐹𝐴))↑2) ∈ ℕ)
2925simprbi 273 . . . . . . . . . . 11 ((1st ‘(𝐹𝐴)) ∈ 𝐽 → ¬ 2 ∥ (1st ‘(𝐹𝐴)))
3022, 29syl 14 . . . . . . . . . 10 (𝐴 ∈ ℕ → ¬ 2 ∥ (1st ‘(𝐹𝐴)))
31 2prm 11995 . . . . . . . . . . 11 2 ∈ ℙ
3227nnzd 9279 . . . . . . . . . . 11 (𝐴 ∈ ℕ → (1st ‘(𝐹𝐴)) ∈ ℤ)
33 euclemma 12011 . . . . . . . . . . . 12 ((2 ∈ ℙ ∧ (1st ‘(𝐹𝐴)) ∈ ℤ ∧ (1st ‘(𝐹𝐴)) ∈ ℤ) → (2 ∥ ((1st ‘(𝐹𝐴)) · (1st ‘(𝐹𝐴))) ↔ (2 ∥ (1st ‘(𝐹𝐴)) ∨ 2 ∥ (1st ‘(𝐹𝐴)))))
34 oridm 747 . . . . . . . . . . . 12 ((2 ∥ (1st ‘(𝐹𝐴)) ∨ 2 ∥ (1st ‘(𝐹𝐴))) ↔ 2 ∥ (1st ‘(𝐹𝐴)))
3533, 34bitrdi 195 . . . . . . . . . . 11 ((2 ∈ ℙ ∧ (1st ‘(𝐹𝐴)) ∈ ℤ ∧ (1st ‘(𝐹𝐴)) ∈ ℤ) → (2 ∥ ((1st ‘(𝐹𝐴)) · (1st ‘(𝐹𝐴))) ↔ 2 ∥ (1st ‘(𝐹𝐴))))
3631, 32, 32, 35mp3an2i 1324 . . . . . . . . . 10 (𝐴 ∈ ℕ → (2 ∥ ((1st ‘(𝐹𝐴)) · (1st ‘(𝐹𝐴))) ↔ 2 ∥ (1st ‘(𝐹𝐴))))
3730, 36mtbird 663 . . . . . . . . 9 (𝐴 ∈ ℕ → ¬ 2 ∥ ((1st ‘(𝐹𝐴)) · (1st ‘(𝐹𝐴))))
3827nncnd 8841 . . . . . . . . . . 11 (𝐴 ∈ ℕ → (1st ‘(𝐹𝐴)) ∈ ℂ)
3938sqvald 10541 . . . . . . . . . 10 (𝐴 ∈ ℕ → ((1st ‘(𝐹𝐴))↑2) = ((1st ‘(𝐹𝐴)) · (1st ‘(𝐹𝐴))))
4039breq2d 3977 . . . . . . . . 9 (𝐴 ∈ ℕ → (2 ∥ ((1st ‘(𝐹𝐴))↑2) ↔ 2 ∥ ((1st ‘(𝐹𝐴)) · (1st ‘(𝐹𝐴)))))
4137, 40mtbird 663 . . . . . . . 8 (𝐴 ∈ ℕ → ¬ 2 ∥ ((1st ‘(𝐹𝐴))↑2))
42 breq2 3969 . . . . . . . . . 10 (𝑧 = ((1st ‘(𝐹𝐴))↑2) → (2 ∥ 𝑧 ↔ 2 ∥ ((1st ‘(𝐹𝐴))↑2)))
4342notbid 657 . . . . . . . . 9 (𝑧 = ((1st ‘(𝐹𝐴))↑2) → (¬ 2 ∥ 𝑧 ↔ ¬ 2 ∥ ((1st ‘(𝐹𝐴))↑2)))
4443, 1elrab2 2871 . . . . . . . 8 (((1st ‘(𝐹𝐴))↑2) ∈ 𝐽 ↔ (((1st ‘(𝐹𝐴))↑2) ∈ ℕ ∧ ¬ 2 ∥ ((1st ‘(𝐹𝐴))↑2)))
4528, 41, 44sylanbrc 414 . . . . . . 7 (𝐴 ∈ ℕ → ((1st ‘(𝐹𝐴))↑2) ∈ 𝐽)
4612nnnn0d 9137 . . . . . . . . 9 (𝐴 ∈ ℕ → 2 ∈ ℕ0)
479, 46nn0mulcld 9142 . . . . . . . 8 (𝐴 ∈ ℕ → ((2nd ‘(𝐹𝐴)) · 2) ∈ ℕ0)
48 peano2nn0 9124 . . . . . . . 8 (((2nd ‘(𝐹𝐴)) · 2) ∈ ℕ0 → (((2nd ‘(𝐹𝐴)) · 2) + 1) ∈ ℕ0)
4947, 48syl 14 . . . . . . 7 (𝐴 ∈ ℕ → (((2nd ‘(𝐹𝐴)) · 2) + 1) ∈ ℕ0)
50 opelxp 4615 . . . . . . 7 (⟨((1st ‘(𝐹𝐴))↑2), (((2nd ‘(𝐹𝐴)) · 2) + 1)⟩ ∈ (𝐽 × ℕ0) ↔ (((1st ‘(𝐹𝐴))↑2) ∈ 𝐽 ∧ (((2nd ‘(𝐹𝐴)) · 2) + 1) ∈ ℕ0))
5145, 49, 50sylanbrc 414 . . . . . 6 (𝐴 ∈ ℕ → ⟨((1st ‘(𝐹𝐴))↑2), (((2nd ‘(𝐹𝐴)) · 2) + 1)⟩ ∈ (𝐽 × ℕ0))
5212nncnd 8841 . . . . . . . . . . 11 (𝐴 ∈ ℕ → 2 ∈ ℂ)
5352, 47expp1d 10545 . . . . . . . . . 10 (𝐴 ∈ ℕ → (2↑(((2nd ‘(𝐹𝐴)) · 2) + 1)) = ((2↑((2nd ‘(𝐹𝐴)) · 2)) · 2))
5452, 47expcld 10544 . . . . . . . . . . 11 (𝐴 ∈ ℕ → (2↑((2nd ‘(𝐹𝐴)) · 2)) ∈ ℂ)
5554, 52mulcomd 7893 . . . . . . . . . 10 (𝐴 ∈ ℕ → ((2↑((2nd ‘(𝐹𝐴)) · 2)) · 2) = (2 · (2↑((2nd ‘(𝐹𝐴)) · 2))))
5652, 46, 9expmuld 10547 . . . . . . . . . . 11 (𝐴 ∈ ℕ → (2↑((2nd ‘(𝐹𝐴)) · 2)) = ((2↑(2nd ‘(𝐹𝐴)))↑2))
5756oveq2d 5837 . . . . . . . . . 10 (𝐴 ∈ ℕ → (2 · (2↑((2nd ‘(𝐹𝐴)) · 2))) = (2 · ((2↑(2nd ‘(𝐹𝐴)))↑2)))
5853, 55, 573eqtrd 2194 . . . . . . . . 9 (𝐴 ∈ ℕ → (2↑(((2nd ‘(𝐹𝐴)) · 2) + 1)) = (2 · ((2↑(2nd ‘(𝐹𝐴)))↑2)))
5958oveq1d 5836 . . . . . . . 8 (𝐴 ∈ ℕ → ((2↑(((2nd ‘(𝐹𝐴)) · 2) + 1)) · ((1st ‘(𝐹𝐴))↑2)) = ((2 · ((2↑(2nd ‘(𝐹𝐴)))↑2)) · ((1st ‘(𝐹𝐴))↑2)))
6012, 49nnexpcld 10566 . . . . . . . . . 10 (𝐴 ∈ ℕ → (2↑(((2nd ‘(𝐹𝐴)) · 2) + 1)) ∈ ℕ)
6160, 28nnmulcld 8876 . . . . . . . . 9 (𝐴 ∈ ℕ → ((2↑(((2nd ‘(𝐹𝐴)) · 2) + 1)) · ((1st ‘(𝐹𝐴))↑2)) ∈ ℕ)
62 oveq2 5829 . . . . . . . . . 10 (𝑥 = ((1st ‘(𝐹𝐴))↑2) → ((2↑𝑦) · 𝑥) = ((2↑𝑦) · ((1st ‘(𝐹𝐴))↑2)))
63 oveq2 5829 . . . . . . . . . . 11 (𝑦 = (((2nd ‘(𝐹𝐴)) · 2) + 1) → (2↑𝑦) = (2↑(((2nd ‘(𝐹𝐴)) · 2) + 1)))
6463oveq1d 5836 . . . . . . . . . 10 (𝑦 = (((2nd ‘(𝐹𝐴)) · 2) + 1) → ((2↑𝑦) · ((1st ‘(𝐹𝐴))↑2)) = ((2↑(((2nd ‘(𝐹𝐴)) · 2) + 1)) · ((1st ‘(𝐹𝐴))↑2)))
6562, 64, 2ovmpog 5952 . . . . . . . . 9 ((((1st ‘(𝐹𝐴))↑2) ∈ 𝐽 ∧ (((2nd ‘(𝐹𝐴)) · 2) + 1) ∈ ℕ0 ∧ ((2↑(((2nd ‘(𝐹𝐴)) · 2) + 1)) · ((1st ‘(𝐹𝐴))↑2)) ∈ ℕ) → (((1st ‘(𝐹𝐴))↑2)𝐹(((2nd ‘(𝐹𝐴)) · 2) + 1)) = ((2↑(((2nd ‘(𝐹𝐴)) · 2) + 1)) · ((1st ‘(𝐹𝐴))↑2)))
6645, 49, 61, 65syl3anc 1220 . . . . . . . 8 (𝐴 ∈ ℕ → (((1st ‘(𝐹𝐴))↑2)𝐹(((2nd ‘(𝐹𝐴)) · 2) + 1)) = ((2↑(((2nd ‘(𝐹𝐴)) · 2) + 1)) · ((1st ‘(𝐹𝐴))↑2)))
67 f1ocnvfv2 5725 . . . . . . . . . . . . . . . 16 ((𝐹:(𝐽 × ℕ0)–1-1-onto→ℕ ∧ 𝐴 ∈ ℕ) → (𝐹‘(𝐹𝐴)) = 𝐴)
683, 67mpan 421 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℕ → (𝐹‘(𝐹𝐴)) = 𝐴)
69 1st2nd2 6120 . . . . . . . . . . . . . . . . 17 ((𝐹𝐴) ∈ (𝐽 × ℕ0) → (𝐹𝐴) = ⟨(1st ‘(𝐹𝐴)), (2nd ‘(𝐹𝐴))⟩)
707, 69syl 14 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℕ → (𝐹𝐴) = ⟨(1st ‘(𝐹𝐴)), (2nd ‘(𝐹𝐴))⟩)
7170fveq2d 5471 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℕ → (𝐹‘(𝐹𝐴)) = (𝐹‘⟨(1st ‘(𝐹𝐴)), (2nd ‘(𝐹𝐴))⟩))
7268, 71eqtr3d 2192 . . . . . . . . . . . . . 14 (𝐴 ∈ ℕ → 𝐴 = (𝐹‘⟨(1st ‘(𝐹𝐴)), (2nd ‘(𝐹𝐴))⟩))
73 df-ov 5824 . . . . . . . . . . . . . 14 ((1st ‘(𝐹𝐴))𝐹(2nd ‘(𝐹𝐴))) = (𝐹‘⟨(1st ‘(𝐹𝐴)), (2nd ‘(𝐹𝐴))⟩)
7472, 73eqtr4di 2208 . . . . . . . . . . . . 13 (𝐴 ∈ ℕ → 𝐴 = ((1st ‘(𝐹𝐴))𝐹(2nd ‘(𝐹𝐴))))
7512, 9nnexpcld 10566 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℕ → (2↑(2nd ‘(𝐹𝐴))) ∈ ℕ)
7675, 27nnmulcld 8876 . . . . . . . . . . . . . 14 (𝐴 ∈ ℕ → ((2↑(2nd ‘(𝐹𝐴))) · (1st ‘(𝐹𝐴))) ∈ ℕ)
77 oveq2 5829 . . . . . . . . . . . . . . 15 (𝑥 = (1st ‘(𝐹𝐴)) → ((2↑𝑦) · 𝑥) = ((2↑𝑦) · (1st ‘(𝐹𝐴))))
78 oveq2 5829 . . . . . . . . . . . . . . . 16 (𝑦 = (2nd ‘(𝐹𝐴)) → (2↑𝑦) = (2↑(2nd ‘(𝐹𝐴))))
7978oveq1d 5836 . . . . . . . . . . . . . . 15 (𝑦 = (2nd ‘(𝐹𝐴)) → ((2↑𝑦) · (1st ‘(𝐹𝐴))) = ((2↑(2nd ‘(𝐹𝐴))) · (1st ‘(𝐹𝐴))))
8077, 79, 2ovmpog 5952 . . . . . . . . . . . . . 14 (((1st ‘(𝐹𝐴)) ∈ 𝐽 ∧ (2nd ‘(𝐹𝐴)) ∈ ℕ0 ∧ ((2↑(2nd ‘(𝐹𝐴))) · (1st ‘(𝐹𝐴))) ∈ ℕ) → ((1st ‘(𝐹𝐴))𝐹(2nd ‘(𝐹𝐴))) = ((2↑(2nd ‘(𝐹𝐴))) · (1st ‘(𝐹𝐴))))
8122, 9, 76, 80syl3anc 1220 . . . . . . . . . . . . 13 (𝐴 ∈ ℕ → ((1st ‘(𝐹𝐴))𝐹(2nd ‘(𝐹𝐴))) = ((2↑(2nd ‘(𝐹𝐴))) · (1st ‘(𝐹𝐴))))
8274, 81eqtrd 2190 . . . . . . . . . . . 12 (𝐴 ∈ ℕ → 𝐴 = ((2↑(2nd ‘(𝐹𝐴))) · (1st ‘(𝐹𝐴))))
8382oveq1d 5836 . . . . . . . . . . 11 (𝐴 ∈ ℕ → (𝐴↑2) = (((2↑(2nd ‘(𝐹𝐴))) · (1st ‘(𝐹𝐴)))↑2))
8475nncnd 8841 . . . . . . . . . . . 12 (𝐴 ∈ ℕ → (2↑(2nd ‘(𝐹𝐴))) ∈ ℂ)
8584, 38sqmuld 10556 . . . . . . . . . . 11 (𝐴 ∈ ℕ → (((2↑(2nd ‘(𝐹𝐴))) · (1st ‘(𝐹𝐴)))↑2) = (((2↑(2nd ‘(𝐹𝐴)))↑2) · ((1st ‘(𝐹𝐴))↑2)))
8683, 85eqtrd 2190 . . . . . . . . . 10 (𝐴 ∈ ℕ → (𝐴↑2) = (((2↑(2nd ‘(𝐹𝐴)))↑2) · ((1st ‘(𝐹𝐴))↑2)))
8786oveq2d 5837 . . . . . . . . 9 (𝐴 ∈ ℕ → (2 · (𝐴↑2)) = (2 · (((2↑(2nd ‘(𝐹𝐴)))↑2) · ((1st ‘(𝐹𝐴))↑2))))
8856, 54eqeltrrd 2235 . . . . . . . . . 10 (𝐴 ∈ ℕ → ((2↑(2nd ‘(𝐹𝐴)))↑2) ∈ ℂ)
8928nncnd 8841 . . . . . . . . . 10 (𝐴 ∈ ℕ → ((1st ‘(𝐹𝐴))↑2) ∈ ℂ)
9052, 88, 89mulassd 7895 . . . . . . . . 9 (𝐴 ∈ ℕ → ((2 · ((2↑(2nd ‘(𝐹𝐴)))↑2)) · ((1st ‘(𝐹𝐴))↑2)) = (2 · (((2↑(2nd ‘(𝐹𝐴)))↑2) · ((1st ‘(𝐹𝐴))↑2))))
9187, 90eqtr4d 2193 . . . . . . . 8 (𝐴 ∈ ℕ → (2 · (𝐴↑2)) = ((2 · ((2↑(2nd ‘(𝐹𝐴)))↑2)) · ((1st ‘(𝐹𝐴))↑2)))
9259, 66, 913eqtr4rd 2201 . . . . . . 7 (𝐴 ∈ ℕ → (2 · (𝐴↑2)) = (((1st ‘(𝐹𝐴))↑2)𝐹(((2nd ‘(𝐹𝐴)) · 2) + 1)))
93 df-ov 5824 . . . . . . 7 (((1st ‘(𝐹𝐴))↑2)𝐹(((2nd ‘(𝐹𝐴)) · 2) + 1)) = (𝐹‘⟨((1st ‘(𝐹𝐴))↑2), (((2nd ‘(𝐹𝐴)) · 2) + 1)⟩)
9492, 93eqtr2di 2207 . . . . . 6 (𝐴 ∈ ℕ → (𝐹‘⟨((1st ‘(𝐹𝐴))↑2), (((2nd ‘(𝐹𝐴)) · 2) + 1)⟩) = (2 · (𝐴↑2)))
95 f1ocnvfv 5726 . . . . . . 7 ((𝐹:(𝐽 × ℕ0)–1-1-onto→ℕ ∧ ⟨((1st ‘(𝐹𝐴))↑2), (((2nd ‘(𝐹𝐴)) · 2) + 1)⟩ ∈ (𝐽 × ℕ0)) → ((𝐹‘⟨((1st ‘(𝐹𝐴))↑2), (((2nd ‘(𝐹𝐴)) · 2) + 1)⟩) = (2 · (𝐴↑2)) → (𝐹‘(2 · (𝐴↑2))) = ⟨((1st ‘(𝐹𝐴))↑2), (((2nd ‘(𝐹𝐴)) · 2) + 1)⟩))
963, 95mpan 421 . . . . . 6 (⟨((1st ‘(𝐹𝐴))↑2), (((2nd ‘(𝐹𝐴)) · 2) + 1)⟩ ∈ (𝐽 × ℕ0) → ((𝐹‘⟨((1st ‘(𝐹𝐴))↑2), (((2nd ‘(𝐹𝐴)) · 2) + 1)⟩) = (2 · (𝐴↑2)) → (𝐹‘(2 · (𝐴↑2))) = ⟨((1st ‘(𝐹𝐴))↑2), (((2nd ‘(𝐹𝐴)) · 2) + 1)⟩))
9751, 94, 96sylc 62 . . . . 5 (𝐴 ∈ ℕ → (𝐹‘(2 · (𝐴↑2))) = ⟨((1st ‘(𝐹𝐴))↑2), (((2nd ‘(𝐹𝐴)) · 2) + 1)⟩)
9897fveq2d 5471 . . . 4 (𝐴 ∈ ℕ → (2nd ‘(𝐹‘(2 · (𝐴↑2)))) = (2nd ‘⟨((1st ‘(𝐹𝐴))↑2), (((2nd ‘(𝐹𝐴)) · 2) + 1)⟩))
99 op2ndg 6096 . . . . 5 ((((1st ‘(𝐹𝐴))↑2) ∈ 𝐽 ∧ (((2nd ‘(𝐹𝐴)) · 2) + 1) ∈ ℕ0) → (2nd ‘⟨((1st ‘(𝐹𝐴))↑2), (((2nd ‘(𝐹𝐴)) · 2) + 1)⟩) = (((2nd ‘(𝐹𝐴)) · 2) + 1))
10045, 49, 99syl2anc 409 . . . 4 (𝐴 ∈ ℕ → (2nd ‘⟨((1st ‘(𝐹𝐴))↑2), (((2nd ‘(𝐹𝐴)) · 2) + 1)⟩) = (((2nd ‘(𝐹𝐴)) · 2) + 1))
10198, 100eqtrd 2190 . . 3 (𝐴 ∈ ℕ → (2nd ‘(𝐹‘(2 · (𝐴↑2)))) = (((2nd ‘(𝐹𝐴)) · 2) + 1))
102101breq2d 3977 . 2 (𝐴 ∈ ℕ → (2 ∥ (2nd ‘(𝐹‘(2 · (𝐴↑2)))) ↔ 2 ∥ (((2nd ‘(𝐹𝐴)) · 2) + 1)))
10320, 102mtbird 663 1 (𝐴 ∈ ℕ → ¬ 2 ∥ (2nd ‘(𝐹‘(2 · (𝐴↑2)))))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wb 104  wo 698  w3a 963   = wceq 1335  wcel 2128  {crab 2439  cop 3563   class class class wbr 3965   × cxp 4583  ccnv 4584  wf 5165  1-1-ontowf1o 5168  cfv 5169  (class class class)co 5821  cmpo 5823  1st c1st 6083  2nd c2nd 6084  cc 7724  1c1 7727   + caddc 7729   · cmul 7731  cn 8827  2c2 8878  0cn0 9084  cz 9161  cexp 10411  cdvds 11676  cprime 11975
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4079  ax-sep 4082  ax-nul 4090  ax-pow 4135  ax-pr 4169  ax-un 4393  ax-setind 4495  ax-iinf 4546  ax-cnex 7817  ax-resscn 7818  ax-1cn 7819  ax-1re 7820  ax-icn 7821  ax-addcl 7822  ax-addrcl 7823  ax-mulcl 7824  ax-mulrcl 7825  ax-addcom 7826  ax-mulcom 7827  ax-addass 7828  ax-mulass 7829  ax-distr 7830  ax-i2m1 7831  ax-0lt1 7832  ax-1rid 7833  ax-0id 7834  ax-rnegex 7835  ax-precex 7836  ax-cnre 7837  ax-pre-ltirr 7838  ax-pre-ltwlin 7839  ax-pre-lttrn 7840  ax-pre-apti 7841  ax-pre-ltadd 7842  ax-pre-mulgt0 7843  ax-pre-mulext 7844  ax-arch 7845  ax-caucvg 7846
This theorem depends on definitions:  df-bi 116  df-stab 817  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-xor 1358  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rmo 2443  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-if 3506  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-int 3808  df-iun 3851  df-br 3966  df-opab 4026  df-mpt 4027  df-tr 4063  df-id 4253  df-po 4256  df-iso 4257  df-iord 4326  df-on 4328  df-ilim 4329  df-suc 4331  df-iom 4549  df-xp 4591  df-rel 4592  df-cnv 4593  df-co 4594  df-dm 4595  df-rn 4596  df-res 4597  df-ima 4598  df-iota 5134  df-fun 5171  df-fn 5172  df-f 5173  df-f1 5174  df-fo 5175  df-f1o 5176  df-fv 5177  df-riota 5777  df-ov 5824  df-oprab 5825  df-mpo 5826  df-1st 6085  df-2nd 6086  df-recs 6249  df-frec 6335  df-1o 6360  df-2o 6361  df-er 6477  df-en 6683  df-sup 6924  df-pnf 7908  df-mnf 7909  df-xr 7910  df-ltxr 7911  df-le 7912  df-sub 8042  df-neg 8043  df-reap 8444  df-ap 8451  df-div 8540  df-inn 8828  df-2 8886  df-3 8887  df-4 8888  df-n0 9085  df-z 9162  df-uz 9434  df-q 9522  df-rp 9554  df-fz 9906  df-fzo 10035  df-fl 10162  df-mod 10215  df-seqfrec 10338  df-exp 10412  df-cj 10735  df-re 10736  df-im 10737  df-rsqrt 10891  df-abs 10892  df-dvds 11677  df-gcd 11822  df-prm 11976
This theorem is referenced by:  sqne2sq  12042
  Copyright terms: Public domain W3C validator