Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > reapirr | GIF version |
Description: Real apartness is irreflexive. Part of Definition 11.2.7(v) of [HoTT], p. (varies). Beyond the development of # itself, proofs should use apirr 8503 instead. (Contributed by Jim Kingdon, 26-Jan-2020.) |
Ref | Expression |
---|---|
reapirr | ⊢ (𝐴 ∈ ℝ → ¬ 𝐴 #ℝ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltnr 7975 | . 2 ⊢ (𝐴 ∈ ℝ → ¬ 𝐴 < 𝐴) | |
2 | reapval 8474 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐴 #ℝ 𝐴 ↔ (𝐴 < 𝐴 ∨ 𝐴 < 𝐴))) | |
3 | 2 | anidms 395 | . . 3 ⊢ (𝐴 ∈ ℝ → (𝐴 #ℝ 𝐴 ↔ (𝐴 < 𝐴 ∨ 𝐴 < 𝐴))) |
4 | oridm 747 | . . 3 ⊢ ((𝐴 < 𝐴 ∨ 𝐴 < 𝐴) ↔ 𝐴 < 𝐴) | |
5 | 3, 4 | bitrdi 195 | . 2 ⊢ (𝐴 ∈ ℝ → (𝐴 #ℝ 𝐴 ↔ 𝐴 < 𝐴)) |
6 | 1, 5 | mtbird 663 | 1 ⊢ (𝐴 ∈ ℝ → ¬ 𝐴 #ℝ 𝐴) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 104 ∨ wo 698 ∈ wcel 2136 class class class wbr 3982 ℝcr 7752 < clt 7933 #ℝ creap 8472 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-pre-ltirr 7865 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-xp 4610 df-pnf 7935 df-mnf 7936 df-ltxr 7938 df-reap 8473 |
This theorem is referenced by: apirr 8503 |
Copyright terms: Public domain | W3C validator |