![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > reapirr | GIF version |
Description: Real apartness is irreflexive. Part of Definition 11.2.7(v) of [HoTT], p. (varies). Beyond the development of # itself, proofs should use apirr 8626 instead. (Contributed by Jim Kingdon, 26-Jan-2020.) |
Ref | Expression |
---|---|
reapirr | ⊢ (𝐴 ∈ ℝ → ¬ 𝐴 #ℝ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltnr 8098 | . 2 ⊢ (𝐴 ∈ ℝ → ¬ 𝐴 < 𝐴) | |
2 | reapval 8597 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐴 #ℝ 𝐴 ↔ (𝐴 < 𝐴 ∨ 𝐴 < 𝐴))) | |
3 | 2 | anidms 397 | . . 3 ⊢ (𝐴 ∈ ℝ → (𝐴 #ℝ 𝐴 ↔ (𝐴 < 𝐴 ∨ 𝐴 < 𝐴))) |
4 | oridm 758 | . . 3 ⊢ ((𝐴 < 𝐴 ∨ 𝐴 < 𝐴) ↔ 𝐴 < 𝐴) | |
5 | 3, 4 | bitrdi 196 | . 2 ⊢ (𝐴 ∈ ℝ → (𝐴 #ℝ 𝐴 ↔ 𝐴 < 𝐴)) |
6 | 1, 5 | mtbird 674 | 1 ⊢ (𝐴 ∈ ℝ → ¬ 𝐴 #ℝ 𝐴) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 105 ∨ wo 709 ∈ wcel 2164 class class class wbr 4030 ℝcr 7873 < clt 8056 #ℝ creap 8595 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-cnex 7965 ax-resscn 7966 ax-pre-ltirr 7986 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-br 4031 df-opab 4092 df-xp 4666 df-pnf 8058 df-mnf 8059 df-ltxr 8061 df-reap 8596 |
This theorem is referenced by: apirr 8626 |
Copyright terms: Public domain | W3C validator |