| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > reapirr | GIF version | ||
| Description: Real apartness is irreflexive. Part of Definition 11.2.7(v) of [HoTT], p. (varies). Beyond the development of # itself, proofs should use apirr 8691 instead. (Contributed by Jim Kingdon, 26-Jan-2020.) |
| Ref | Expression |
|---|---|
| reapirr | ⊢ (𝐴 ∈ ℝ → ¬ 𝐴 #ℝ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltnr 8162 | . 2 ⊢ (𝐴 ∈ ℝ → ¬ 𝐴 < 𝐴) | |
| 2 | reapval 8662 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐴 #ℝ 𝐴 ↔ (𝐴 < 𝐴 ∨ 𝐴 < 𝐴))) | |
| 3 | 2 | anidms 397 | . . 3 ⊢ (𝐴 ∈ ℝ → (𝐴 #ℝ 𝐴 ↔ (𝐴 < 𝐴 ∨ 𝐴 < 𝐴))) |
| 4 | oridm 759 | . . 3 ⊢ ((𝐴 < 𝐴 ∨ 𝐴 < 𝐴) ↔ 𝐴 < 𝐴) | |
| 5 | 3, 4 | bitrdi 196 | . 2 ⊢ (𝐴 ∈ ℝ → (𝐴 #ℝ 𝐴 ↔ 𝐴 < 𝐴)) |
| 6 | 1, 5 | mtbird 675 | 1 ⊢ (𝐴 ∈ ℝ → ¬ 𝐴 #ℝ 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 105 ∨ wo 710 ∈ wcel 2177 class class class wbr 4048 ℝcr 7937 < clt 8120 #ℝ creap 8660 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4167 ax-pow 4223 ax-pr 4258 ax-un 4485 ax-setind 4590 ax-cnex 8029 ax-resscn 8030 ax-pre-ltirr 8050 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-dif 3170 df-un 3172 df-in 3174 df-ss 3181 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-uni 3854 df-br 4049 df-opab 4111 df-xp 4686 df-pnf 8122 df-mnf 8123 df-ltxr 8125 df-reap 8661 |
| This theorem is referenced by: apirr 8691 |
| Copyright terms: Public domain | W3C validator |