| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > reapirr | GIF version | ||
| Description: Real apartness is irreflexive. Part of Definition 11.2.7(v) of [HoTT], p. (varies). Beyond the development of # itself, proofs should use apirr 8740 instead. (Contributed by Jim Kingdon, 26-Jan-2020.) |
| Ref | Expression |
|---|---|
| reapirr | ⊢ (𝐴 ∈ ℝ → ¬ 𝐴 #ℝ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltnr 8211 | . 2 ⊢ (𝐴 ∈ ℝ → ¬ 𝐴 < 𝐴) | |
| 2 | reapval 8711 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐴 #ℝ 𝐴 ↔ (𝐴 < 𝐴 ∨ 𝐴 < 𝐴))) | |
| 3 | 2 | anidms 397 | . . 3 ⊢ (𝐴 ∈ ℝ → (𝐴 #ℝ 𝐴 ↔ (𝐴 < 𝐴 ∨ 𝐴 < 𝐴))) |
| 4 | oridm 762 | . . 3 ⊢ ((𝐴 < 𝐴 ∨ 𝐴 < 𝐴) ↔ 𝐴 < 𝐴) | |
| 5 | 3, 4 | bitrdi 196 | . 2 ⊢ (𝐴 ∈ ℝ → (𝐴 #ℝ 𝐴 ↔ 𝐴 < 𝐴)) |
| 6 | 1, 5 | mtbird 677 | 1 ⊢ (𝐴 ∈ ℝ → ¬ 𝐴 #ℝ 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 105 ∨ wo 713 ∈ wcel 2200 class class class wbr 4082 ℝcr 7986 < clt 8169 #ℝ creap 8709 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-setind 4626 ax-cnex 8078 ax-resscn 8079 ax-pre-ltirr 8099 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-xp 4722 df-pnf 8171 df-mnf 8172 df-ltxr 8174 df-reap 8710 |
| This theorem is referenced by: apirr 8740 |
| Copyright terms: Public domain | W3C validator |