ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reapirr GIF version

Theorem reapirr 8604
Description: Real apartness is irreflexive. Part of Definition 11.2.7(v) of [HoTT], p. (varies). Beyond the development of # itself, proofs should use apirr 8632 instead. (Contributed by Jim Kingdon, 26-Jan-2020.)
Assertion
Ref Expression
reapirr (𝐴 ∈ ℝ → ¬ 𝐴 # 𝐴)

Proof of Theorem reapirr
StepHypRef Expression
1 ltnr 8103 . 2 (𝐴 ∈ ℝ → ¬ 𝐴 < 𝐴)
2 reapval 8603 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐴 # 𝐴 ↔ (𝐴 < 𝐴𝐴 < 𝐴)))
32anidms 397 . . 3 (𝐴 ∈ ℝ → (𝐴 # 𝐴 ↔ (𝐴 < 𝐴𝐴 < 𝐴)))
4 oridm 758 . . 3 ((𝐴 < 𝐴𝐴 < 𝐴) ↔ 𝐴 < 𝐴)
53, 4bitrdi 196 . 2 (𝐴 ∈ ℝ → (𝐴 # 𝐴𝐴 < 𝐴))
61, 5mtbird 674 1 (𝐴 ∈ ℝ → ¬ 𝐴 # 𝐴)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wb 105  wo 709  wcel 2167   class class class wbr 4033  cr 7878   < clt 8061   # creap 8601
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-pre-ltirr 7991
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-xp 4669  df-pnf 8063  df-mnf 8064  df-ltxr 8066  df-reap 8602
This theorem is referenced by:  apirr  8632
  Copyright terms: Public domain W3C validator