ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reapirr GIF version

Theorem reapirr 8663
Description: Real apartness is irreflexive. Part of Definition 11.2.7(v) of [HoTT], p. (varies). Beyond the development of # itself, proofs should use apirr 8691 instead. (Contributed by Jim Kingdon, 26-Jan-2020.)
Assertion
Ref Expression
reapirr (𝐴 ∈ ℝ → ¬ 𝐴 # 𝐴)

Proof of Theorem reapirr
StepHypRef Expression
1 ltnr 8162 . 2 (𝐴 ∈ ℝ → ¬ 𝐴 < 𝐴)
2 reapval 8662 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐴 # 𝐴 ↔ (𝐴 < 𝐴𝐴 < 𝐴)))
32anidms 397 . . 3 (𝐴 ∈ ℝ → (𝐴 # 𝐴 ↔ (𝐴 < 𝐴𝐴 < 𝐴)))
4 oridm 759 . . 3 ((𝐴 < 𝐴𝐴 < 𝐴) ↔ 𝐴 < 𝐴)
53, 4bitrdi 196 . 2 (𝐴 ∈ ℝ → (𝐴 # 𝐴𝐴 < 𝐴))
61, 5mtbird 675 1 (𝐴 ∈ ℝ → ¬ 𝐴 # 𝐴)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wb 105  wo 710  wcel 2177   class class class wbr 4048  cr 7937   < clt 8120   # creap 8660
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4167  ax-pow 4223  ax-pr 4258  ax-un 4485  ax-setind 4590  ax-cnex 8029  ax-resscn 8030  ax-pre-ltirr 8050
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-dif 3170  df-un 3172  df-in 3174  df-ss 3181  df-pw 3620  df-sn 3641  df-pr 3642  df-op 3644  df-uni 3854  df-br 4049  df-opab 4111  df-xp 4686  df-pnf 8122  df-mnf 8123  df-ltxr 8125  df-reap 8661
This theorem is referenced by:  apirr  8691
  Copyright terms: Public domain W3C validator