ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  absext GIF version

Theorem absext 11027
Description: Strong extensionality for absolute value. (Contributed by Jim Kingdon, 12-Aug-2021.)
Assertion
Ref Expression
absext ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘𝐴) # (abs‘𝐵) → 𝐴 # 𝐵))

Proof of Theorem absext
StepHypRef Expression
1 absval2 11021 . . . . . . 7 (𝐴 ∈ ℂ → (abs‘𝐴) = (√‘(((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2))))
2 absval2 11021 . . . . . . 7 (𝐵 ∈ ℂ → (abs‘𝐵) = (√‘(((ℜ‘𝐵)↑2) + ((ℑ‘𝐵)↑2))))
31, 2breqan12d 4005 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘𝐴) # (abs‘𝐵) ↔ (√‘(((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2))) # (√‘(((ℜ‘𝐵)↑2) + ((ℑ‘𝐵)↑2)))))
4 simpl 108 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐴 ∈ ℂ)
54recld 10902 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℜ‘𝐴) ∈ ℝ)
65resqcld 10635 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℜ‘𝐴)↑2) ∈ ℝ)
74imcld 10903 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℑ‘𝐴) ∈ ℝ)
87resqcld 10635 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℑ‘𝐴)↑2) ∈ ℝ)
96, 8readdcld 7949 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2)) ∈ ℝ)
105sqge0d 10636 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 0 ≤ ((ℜ‘𝐴)↑2))
117sqge0d 10636 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 0 ≤ ((ℑ‘𝐴)↑2))
126, 8, 10, 11addge0d 8441 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 0 ≤ (((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2)))
13 simpr 109 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐵 ∈ ℂ)
1413recld 10902 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℜ‘𝐵) ∈ ℝ)
1514resqcld 10635 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℜ‘𝐵)↑2) ∈ ℝ)
1613imcld 10903 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℑ‘𝐵) ∈ ℝ)
1716resqcld 10635 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℑ‘𝐵)↑2) ∈ ℝ)
1815, 17readdcld 7949 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((ℜ‘𝐵)↑2) + ((ℑ‘𝐵)↑2)) ∈ ℝ)
1914sqge0d 10636 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 0 ≤ ((ℜ‘𝐵)↑2))
2016sqge0d 10636 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 0 ≤ ((ℑ‘𝐵)↑2))
2115, 17, 19, 20addge0d 8441 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 0 ≤ (((ℜ‘𝐵)↑2) + ((ℑ‘𝐵)↑2)))
22 sqrt11ap 11002 . . . . . . 7 ((((((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2)) ∈ ℝ ∧ 0 ≤ (((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2))) ∧ ((((ℜ‘𝐵)↑2) + ((ℑ‘𝐵)↑2)) ∈ ℝ ∧ 0 ≤ (((ℜ‘𝐵)↑2) + ((ℑ‘𝐵)↑2)))) → ((√‘(((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2))) # (√‘(((ℜ‘𝐵)↑2) + ((ℑ‘𝐵)↑2))) ↔ (((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2)) # (((ℜ‘𝐵)↑2) + ((ℑ‘𝐵)↑2))))
239, 12, 18, 21, 22syl22anc 1234 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((√‘(((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2))) # (√‘(((ℜ‘𝐵)↑2) + ((ℑ‘𝐵)↑2))) ↔ (((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2)) # (((ℜ‘𝐵)↑2) + ((ℑ‘𝐵)↑2))))
243, 23bitrd 187 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘𝐴) # (abs‘𝐵) ↔ (((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2)) # (((ℜ‘𝐵)↑2) + ((ℑ‘𝐵)↑2))))
256recnd 7948 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℜ‘𝐴)↑2) ∈ ℂ)
268recnd 7948 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℑ‘𝐴)↑2) ∈ ℂ)
2715recnd 7948 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℜ‘𝐵)↑2) ∈ ℂ)
2817recnd 7948 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℑ‘𝐵)↑2) ∈ ℂ)
29 addext 8529 . . . . . 6 (((((ℜ‘𝐴)↑2) ∈ ℂ ∧ ((ℑ‘𝐴)↑2) ∈ ℂ) ∧ (((ℜ‘𝐵)↑2) ∈ ℂ ∧ ((ℑ‘𝐵)↑2) ∈ ℂ)) → ((((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2)) # (((ℜ‘𝐵)↑2) + ((ℑ‘𝐵)↑2)) → (((ℜ‘𝐴)↑2) # ((ℜ‘𝐵)↑2) ∨ ((ℑ‘𝐴)↑2) # ((ℑ‘𝐵)↑2))))
3025, 26, 27, 28, 29syl22anc 1234 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2)) # (((ℜ‘𝐵)↑2) + ((ℑ‘𝐵)↑2)) → (((ℜ‘𝐴)↑2) # ((ℜ‘𝐵)↑2) ∨ ((ℑ‘𝐴)↑2) # ((ℑ‘𝐵)↑2))))
3124, 30sylbid 149 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘𝐴) # (abs‘𝐵) → (((ℜ‘𝐴)↑2) # ((ℜ‘𝐵)↑2) ∨ ((ℑ‘𝐴)↑2) # ((ℑ‘𝐵)↑2))))
325recnd 7948 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℜ‘𝐴) ∈ ℂ)
3332sqvald 10606 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℜ‘𝐴)↑2) = ((ℜ‘𝐴) · (ℜ‘𝐴)))
3414recnd 7948 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℜ‘𝐵) ∈ ℂ)
3534sqvald 10606 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℜ‘𝐵)↑2) = ((ℜ‘𝐵) · (ℜ‘𝐵)))
3633, 35breq12d 4002 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((ℜ‘𝐴)↑2) # ((ℜ‘𝐵)↑2) ↔ ((ℜ‘𝐴) · (ℜ‘𝐴)) # ((ℜ‘𝐵) · (ℜ‘𝐵))))
37 mulext 8533 . . . . . . . 8 ((((ℜ‘𝐴) ∈ ℂ ∧ (ℜ‘𝐴) ∈ ℂ) ∧ ((ℜ‘𝐵) ∈ ℂ ∧ (ℜ‘𝐵) ∈ ℂ)) → (((ℜ‘𝐴) · (ℜ‘𝐴)) # ((ℜ‘𝐵) · (ℜ‘𝐵)) → ((ℜ‘𝐴) # (ℜ‘𝐵) ∨ (ℜ‘𝐴) # (ℜ‘𝐵))))
3832, 32, 34, 34, 37syl22anc 1234 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((ℜ‘𝐴) · (ℜ‘𝐴)) # ((ℜ‘𝐵) · (ℜ‘𝐵)) → ((ℜ‘𝐴) # (ℜ‘𝐵) ∨ (ℜ‘𝐴) # (ℜ‘𝐵))))
3936, 38sylbid 149 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((ℜ‘𝐴)↑2) # ((ℜ‘𝐵)↑2) → ((ℜ‘𝐴) # (ℜ‘𝐵) ∨ (ℜ‘𝐴) # (ℜ‘𝐵))))
40 oridm 752 . . . . . 6 (((ℜ‘𝐴) # (ℜ‘𝐵) ∨ (ℜ‘𝐴) # (ℜ‘𝐵)) ↔ (ℜ‘𝐴) # (ℜ‘𝐵))
4139, 40syl6ib 160 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((ℜ‘𝐴)↑2) # ((ℜ‘𝐵)↑2) → (ℜ‘𝐴) # (ℜ‘𝐵)))
427recnd 7948 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℑ‘𝐴) ∈ ℂ)
4342sqvald 10606 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℑ‘𝐴)↑2) = ((ℑ‘𝐴) · (ℑ‘𝐴)))
4416recnd 7948 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℑ‘𝐵) ∈ ℂ)
4544sqvald 10606 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℑ‘𝐵)↑2) = ((ℑ‘𝐵) · (ℑ‘𝐵)))
4643, 45breq12d 4002 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((ℑ‘𝐴)↑2) # ((ℑ‘𝐵)↑2) ↔ ((ℑ‘𝐴) · (ℑ‘𝐴)) # ((ℑ‘𝐵) · (ℑ‘𝐵))))
47 mulext 8533 . . . . . . . 8 ((((ℑ‘𝐴) ∈ ℂ ∧ (ℑ‘𝐴) ∈ ℂ) ∧ ((ℑ‘𝐵) ∈ ℂ ∧ (ℑ‘𝐵) ∈ ℂ)) → (((ℑ‘𝐴) · (ℑ‘𝐴)) # ((ℑ‘𝐵) · (ℑ‘𝐵)) → ((ℑ‘𝐴) # (ℑ‘𝐵) ∨ (ℑ‘𝐴) # (ℑ‘𝐵))))
4842, 42, 44, 44, 47syl22anc 1234 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((ℑ‘𝐴) · (ℑ‘𝐴)) # ((ℑ‘𝐵) · (ℑ‘𝐵)) → ((ℑ‘𝐴) # (ℑ‘𝐵) ∨ (ℑ‘𝐴) # (ℑ‘𝐵))))
4946, 48sylbid 149 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((ℑ‘𝐴)↑2) # ((ℑ‘𝐵)↑2) → ((ℑ‘𝐴) # (ℑ‘𝐵) ∨ (ℑ‘𝐴) # (ℑ‘𝐵))))
50 oridm 752 . . . . . 6 (((ℑ‘𝐴) # (ℑ‘𝐵) ∨ (ℑ‘𝐴) # (ℑ‘𝐵)) ↔ (ℑ‘𝐴) # (ℑ‘𝐵))
5149, 50syl6ib 160 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((ℑ‘𝐴)↑2) # ((ℑ‘𝐵)↑2) → (ℑ‘𝐴) # (ℑ‘𝐵)))
5241, 51orim12d 781 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((ℜ‘𝐴)↑2) # ((ℜ‘𝐵)↑2) ∨ ((ℑ‘𝐴)↑2) # ((ℑ‘𝐵)↑2)) → ((ℜ‘𝐴) # (ℜ‘𝐵) ∨ (ℑ‘𝐴) # (ℑ‘𝐵))))
5331, 52syld 45 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘𝐴) # (abs‘𝐵) → ((ℜ‘𝐴) # (ℜ‘𝐵) ∨ (ℑ‘𝐴) # (ℑ‘𝐵))))
54 apreim 8522 . . . 4 ((((ℜ‘𝐴) ∈ ℝ ∧ (ℑ‘𝐴) ∈ ℝ) ∧ ((ℜ‘𝐵) ∈ ℝ ∧ (ℑ‘𝐵) ∈ ℝ)) → (((ℜ‘𝐴) + (i · (ℑ‘𝐴))) # ((ℜ‘𝐵) + (i · (ℑ‘𝐵))) ↔ ((ℜ‘𝐴) # (ℜ‘𝐵) ∨ (ℑ‘𝐴) # (ℑ‘𝐵))))
555, 7, 14, 16, 54syl22anc 1234 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((ℜ‘𝐴) + (i · (ℑ‘𝐴))) # ((ℜ‘𝐵) + (i · (ℑ‘𝐵))) ↔ ((ℜ‘𝐴) # (ℜ‘𝐵) ∨ (ℑ‘𝐴) # (ℑ‘𝐵))))
5653, 55sylibrd 168 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘𝐴) # (abs‘𝐵) → ((ℜ‘𝐴) + (i · (ℑ‘𝐴))) # ((ℜ‘𝐵) + (i · (ℑ‘𝐵)))))
574replimd 10905 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐴 = ((ℜ‘𝐴) + (i · (ℑ‘𝐴))))
5813replimd 10905 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐵 = ((ℜ‘𝐵) + (i · (ℑ‘𝐵))))
5957, 58breq12d 4002 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 # 𝐵 ↔ ((ℜ‘𝐴) + (i · (ℑ‘𝐴))) # ((ℜ‘𝐵) + (i · (ℑ‘𝐵)))))
6056, 59sylibrd 168 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘𝐴) # (abs‘𝐵) → 𝐴 # 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wo 703  wcel 2141   class class class wbr 3989  cfv 5198  (class class class)co 5853  cc 7772  cr 7773  0cc0 7774  ici 7776   + caddc 7777   · cmul 7779  cle 7955   # cap 8500  2c2 8929  cexp 10475  cre 10804  cim 10805  csqrt 10960  abscabs 10961
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892  ax-arch 7893  ax-caucvg 7894
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-frec 6370  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-3 8938  df-4 8939  df-n0 9136  df-z 9213  df-uz 9488  df-rp 9611  df-seqfrec 10402  df-exp 10476  df-cj 10806  df-re 10807  df-im 10808  df-rsqrt 10962  df-abs 10963
This theorem is referenced by:  abssubap0  11054  absltap  11472  absgtap  11473  apdifflemr  14079
  Copyright terms: Public domain W3C validator