ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  absext GIF version

Theorem absext 10835
Description: Strong extensionality for absolute value. (Contributed by Jim Kingdon, 12-Aug-2021.)
Assertion
Ref Expression
absext ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘𝐴) # (abs‘𝐵) → 𝐴 # 𝐵))

Proof of Theorem absext
StepHypRef Expression
1 absval2 10829 . . . . . . 7 (𝐴 ∈ ℂ → (abs‘𝐴) = (√‘(((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2))))
2 absval2 10829 . . . . . . 7 (𝐵 ∈ ℂ → (abs‘𝐵) = (√‘(((ℜ‘𝐵)↑2) + ((ℑ‘𝐵)↑2))))
31, 2breqan12d 3945 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘𝐴) # (abs‘𝐵) ↔ (√‘(((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2))) # (√‘(((ℜ‘𝐵)↑2) + ((ℑ‘𝐵)↑2)))))
4 simpl 108 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐴 ∈ ℂ)
54recld 10710 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℜ‘𝐴) ∈ ℝ)
65resqcld 10450 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℜ‘𝐴)↑2) ∈ ℝ)
74imcld 10711 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℑ‘𝐴) ∈ ℝ)
87resqcld 10450 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℑ‘𝐴)↑2) ∈ ℝ)
96, 8readdcld 7795 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2)) ∈ ℝ)
105sqge0d 10451 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 0 ≤ ((ℜ‘𝐴)↑2))
117sqge0d 10451 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 0 ≤ ((ℑ‘𝐴)↑2))
126, 8, 10, 11addge0d 8284 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 0 ≤ (((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2)))
13 simpr 109 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐵 ∈ ℂ)
1413recld 10710 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℜ‘𝐵) ∈ ℝ)
1514resqcld 10450 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℜ‘𝐵)↑2) ∈ ℝ)
1613imcld 10711 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℑ‘𝐵) ∈ ℝ)
1716resqcld 10450 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℑ‘𝐵)↑2) ∈ ℝ)
1815, 17readdcld 7795 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((ℜ‘𝐵)↑2) + ((ℑ‘𝐵)↑2)) ∈ ℝ)
1914sqge0d 10451 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 0 ≤ ((ℜ‘𝐵)↑2))
2016sqge0d 10451 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 0 ≤ ((ℑ‘𝐵)↑2))
2115, 17, 19, 20addge0d 8284 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 0 ≤ (((ℜ‘𝐵)↑2) + ((ℑ‘𝐵)↑2)))
22 sqrt11ap 10810 . . . . . . 7 ((((((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2)) ∈ ℝ ∧ 0 ≤ (((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2))) ∧ ((((ℜ‘𝐵)↑2) + ((ℑ‘𝐵)↑2)) ∈ ℝ ∧ 0 ≤ (((ℜ‘𝐵)↑2) + ((ℑ‘𝐵)↑2)))) → ((√‘(((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2))) # (√‘(((ℜ‘𝐵)↑2) + ((ℑ‘𝐵)↑2))) ↔ (((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2)) # (((ℜ‘𝐵)↑2) + ((ℑ‘𝐵)↑2))))
239, 12, 18, 21, 22syl22anc 1217 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((√‘(((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2))) # (√‘(((ℜ‘𝐵)↑2) + ((ℑ‘𝐵)↑2))) ↔ (((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2)) # (((ℜ‘𝐵)↑2) + ((ℑ‘𝐵)↑2))))
243, 23bitrd 187 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘𝐴) # (abs‘𝐵) ↔ (((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2)) # (((ℜ‘𝐵)↑2) + ((ℑ‘𝐵)↑2))))
256recnd 7794 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℜ‘𝐴)↑2) ∈ ℂ)
268recnd 7794 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℑ‘𝐴)↑2) ∈ ℂ)
2715recnd 7794 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℜ‘𝐵)↑2) ∈ ℂ)
2817recnd 7794 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℑ‘𝐵)↑2) ∈ ℂ)
29 addext 8372 . . . . . 6 (((((ℜ‘𝐴)↑2) ∈ ℂ ∧ ((ℑ‘𝐴)↑2) ∈ ℂ) ∧ (((ℜ‘𝐵)↑2) ∈ ℂ ∧ ((ℑ‘𝐵)↑2) ∈ ℂ)) → ((((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2)) # (((ℜ‘𝐵)↑2) + ((ℑ‘𝐵)↑2)) → (((ℜ‘𝐴)↑2) # ((ℜ‘𝐵)↑2) ∨ ((ℑ‘𝐴)↑2) # ((ℑ‘𝐵)↑2))))
3025, 26, 27, 28, 29syl22anc 1217 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2)) # (((ℜ‘𝐵)↑2) + ((ℑ‘𝐵)↑2)) → (((ℜ‘𝐴)↑2) # ((ℜ‘𝐵)↑2) ∨ ((ℑ‘𝐴)↑2) # ((ℑ‘𝐵)↑2))))
3124, 30sylbid 149 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘𝐴) # (abs‘𝐵) → (((ℜ‘𝐴)↑2) # ((ℜ‘𝐵)↑2) ∨ ((ℑ‘𝐴)↑2) # ((ℑ‘𝐵)↑2))))
325recnd 7794 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℜ‘𝐴) ∈ ℂ)
3332sqvald 10421 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℜ‘𝐴)↑2) = ((ℜ‘𝐴) · (ℜ‘𝐴)))
3414recnd 7794 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℜ‘𝐵) ∈ ℂ)
3534sqvald 10421 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℜ‘𝐵)↑2) = ((ℜ‘𝐵) · (ℜ‘𝐵)))
3633, 35breq12d 3942 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((ℜ‘𝐴)↑2) # ((ℜ‘𝐵)↑2) ↔ ((ℜ‘𝐴) · (ℜ‘𝐴)) # ((ℜ‘𝐵) · (ℜ‘𝐵))))
37 mulext 8376 . . . . . . . 8 ((((ℜ‘𝐴) ∈ ℂ ∧ (ℜ‘𝐴) ∈ ℂ) ∧ ((ℜ‘𝐵) ∈ ℂ ∧ (ℜ‘𝐵) ∈ ℂ)) → (((ℜ‘𝐴) · (ℜ‘𝐴)) # ((ℜ‘𝐵) · (ℜ‘𝐵)) → ((ℜ‘𝐴) # (ℜ‘𝐵) ∨ (ℜ‘𝐴) # (ℜ‘𝐵))))
3832, 32, 34, 34, 37syl22anc 1217 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((ℜ‘𝐴) · (ℜ‘𝐴)) # ((ℜ‘𝐵) · (ℜ‘𝐵)) → ((ℜ‘𝐴) # (ℜ‘𝐵) ∨ (ℜ‘𝐴) # (ℜ‘𝐵))))
3936, 38sylbid 149 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((ℜ‘𝐴)↑2) # ((ℜ‘𝐵)↑2) → ((ℜ‘𝐴) # (ℜ‘𝐵) ∨ (ℜ‘𝐴) # (ℜ‘𝐵))))
40 oridm 746 . . . . . 6 (((ℜ‘𝐴) # (ℜ‘𝐵) ∨ (ℜ‘𝐴) # (ℜ‘𝐵)) ↔ (ℜ‘𝐴) # (ℜ‘𝐵))
4139, 40syl6ib 160 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((ℜ‘𝐴)↑2) # ((ℜ‘𝐵)↑2) → (ℜ‘𝐴) # (ℜ‘𝐵)))
427recnd 7794 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℑ‘𝐴) ∈ ℂ)
4342sqvald 10421 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℑ‘𝐴)↑2) = ((ℑ‘𝐴) · (ℑ‘𝐴)))
4416recnd 7794 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℑ‘𝐵) ∈ ℂ)
4544sqvald 10421 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℑ‘𝐵)↑2) = ((ℑ‘𝐵) · (ℑ‘𝐵)))
4643, 45breq12d 3942 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((ℑ‘𝐴)↑2) # ((ℑ‘𝐵)↑2) ↔ ((ℑ‘𝐴) · (ℑ‘𝐴)) # ((ℑ‘𝐵) · (ℑ‘𝐵))))
47 mulext 8376 . . . . . . . 8 ((((ℑ‘𝐴) ∈ ℂ ∧ (ℑ‘𝐴) ∈ ℂ) ∧ ((ℑ‘𝐵) ∈ ℂ ∧ (ℑ‘𝐵) ∈ ℂ)) → (((ℑ‘𝐴) · (ℑ‘𝐴)) # ((ℑ‘𝐵) · (ℑ‘𝐵)) → ((ℑ‘𝐴) # (ℑ‘𝐵) ∨ (ℑ‘𝐴) # (ℑ‘𝐵))))
4842, 42, 44, 44, 47syl22anc 1217 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((ℑ‘𝐴) · (ℑ‘𝐴)) # ((ℑ‘𝐵) · (ℑ‘𝐵)) → ((ℑ‘𝐴) # (ℑ‘𝐵) ∨ (ℑ‘𝐴) # (ℑ‘𝐵))))
4946, 48sylbid 149 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((ℑ‘𝐴)↑2) # ((ℑ‘𝐵)↑2) → ((ℑ‘𝐴) # (ℑ‘𝐵) ∨ (ℑ‘𝐴) # (ℑ‘𝐵))))
50 oridm 746 . . . . . 6 (((ℑ‘𝐴) # (ℑ‘𝐵) ∨ (ℑ‘𝐴) # (ℑ‘𝐵)) ↔ (ℑ‘𝐴) # (ℑ‘𝐵))
5149, 50syl6ib 160 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((ℑ‘𝐴)↑2) # ((ℑ‘𝐵)↑2) → (ℑ‘𝐴) # (ℑ‘𝐵)))
5241, 51orim12d 775 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((ℜ‘𝐴)↑2) # ((ℜ‘𝐵)↑2) ∨ ((ℑ‘𝐴)↑2) # ((ℑ‘𝐵)↑2)) → ((ℜ‘𝐴) # (ℜ‘𝐵) ∨ (ℑ‘𝐴) # (ℑ‘𝐵))))
5331, 52syld 45 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘𝐴) # (abs‘𝐵) → ((ℜ‘𝐴) # (ℜ‘𝐵) ∨ (ℑ‘𝐴) # (ℑ‘𝐵))))
54 apreim 8365 . . . 4 ((((ℜ‘𝐴) ∈ ℝ ∧ (ℑ‘𝐴) ∈ ℝ) ∧ ((ℜ‘𝐵) ∈ ℝ ∧ (ℑ‘𝐵) ∈ ℝ)) → (((ℜ‘𝐴) + (i · (ℑ‘𝐴))) # ((ℜ‘𝐵) + (i · (ℑ‘𝐵))) ↔ ((ℜ‘𝐴) # (ℜ‘𝐵) ∨ (ℑ‘𝐴) # (ℑ‘𝐵))))
555, 7, 14, 16, 54syl22anc 1217 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((ℜ‘𝐴) + (i · (ℑ‘𝐴))) # ((ℜ‘𝐵) + (i · (ℑ‘𝐵))) ↔ ((ℜ‘𝐴) # (ℜ‘𝐵) ∨ (ℑ‘𝐴) # (ℑ‘𝐵))))
5653, 55sylibrd 168 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘𝐴) # (abs‘𝐵) → ((ℜ‘𝐴) + (i · (ℑ‘𝐴))) # ((ℜ‘𝐵) + (i · (ℑ‘𝐵)))))
574replimd 10713 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐴 = ((ℜ‘𝐴) + (i · (ℑ‘𝐴))))
5813replimd 10713 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐵 = ((ℜ‘𝐵) + (i · (ℑ‘𝐵))))
5957, 58breq12d 3942 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 # 𝐵 ↔ ((ℜ‘𝐴) + (i · (ℑ‘𝐴))) # ((ℜ‘𝐵) + (i · (ℑ‘𝐵)))))
6056, 59sylibrd 168 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘𝐴) # (abs‘𝐵) → 𝐴 # 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wo 697  wcel 1480   class class class wbr 3929  cfv 5123  (class class class)co 5774  cc 7618  cr 7619  0cc0 7620  ici 7622   + caddc 7623   · cmul 7625  cle 7801   # cap 8343  2c2 8771  cexp 10292  cre 10612  cim 10613  csqrt 10768  abscabs 10769
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738  ax-arch 7739  ax-caucvg 7740
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-inn 8721  df-2 8779  df-3 8780  df-4 8781  df-n0 8978  df-z 9055  df-uz 9327  df-rp 9442  df-seqfrec 10219  df-exp 10293  df-cj 10614  df-re 10615  df-im 10616  df-rsqrt 10770  df-abs 10771
This theorem is referenced by:  abssubap0  10862  absltap  11278  absgtap  11279
  Copyright terms: Public domain W3C validator