ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  absext GIF version

Theorem absext 11014
Description: Strong extensionality for absolute value. (Contributed by Jim Kingdon, 12-Aug-2021.)
Assertion
Ref Expression
absext ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘𝐴) # (abs‘𝐵) → 𝐴 # 𝐵))

Proof of Theorem absext
StepHypRef Expression
1 absval2 11008 . . . . . . 7 (𝐴 ∈ ℂ → (abs‘𝐴) = (√‘(((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2))))
2 absval2 11008 . . . . . . 7 (𝐵 ∈ ℂ → (abs‘𝐵) = (√‘(((ℜ‘𝐵)↑2) + ((ℑ‘𝐵)↑2))))
31, 2breqan12d 4003 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘𝐴) # (abs‘𝐵) ↔ (√‘(((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2))) # (√‘(((ℜ‘𝐵)↑2) + ((ℑ‘𝐵)↑2)))))
4 simpl 108 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐴 ∈ ℂ)
54recld 10889 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℜ‘𝐴) ∈ ℝ)
65resqcld 10622 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℜ‘𝐴)↑2) ∈ ℝ)
74imcld 10890 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℑ‘𝐴) ∈ ℝ)
87resqcld 10622 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℑ‘𝐴)↑2) ∈ ℝ)
96, 8readdcld 7936 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2)) ∈ ℝ)
105sqge0d 10623 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 0 ≤ ((ℜ‘𝐴)↑2))
117sqge0d 10623 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 0 ≤ ((ℑ‘𝐴)↑2))
126, 8, 10, 11addge0d 8428 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 0 ≤ (((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2)))
13 simpr 109 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐵 ∈ ℂ)
1413recld 10889 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℜ‘𝐵) ∈ ℝ)
1514resqcld 10622 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℜ‘𝐵)↑2) ∈ ℝ)
1613imcld 10890 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℑ‘𝐵) ∈ ℝ)
1716resqcld 10622 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℑ‘𝐵)↑2) ∈ ℝ)
1815, 17readdcld 7936 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((ℜ‘𝐵)↑2) + ((ℑ‘𝐵)↑2)) ∈ ℝ)
1914sqge0d 10623 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 0 ≤ ((ℜ‘𝐵)↑2))
2016sqge0d 10623 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 0 ≤ ((ℑ‘𝐵)↑2))
2115, 17, 19, 20addge0d 8428 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 0 ≤ (((ℜ‘𝐵)↑2) + ((ℑ‘𝐵)↑2)))
22 sqrt11ap 10989 . . . . . . 7 ((((((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2)) ∈ ℝ ∧ 0 ≤ (((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2))) ∧ ((((ℜ‘𝐵)↑2) + ((ℑ‘𝐵)↑2)) ∈ ℝ ∧ 0 ≤ (((ℜ‘𝐵)↑2) + ((ℑ‘𝐵)↑2)))) → ((√‘(((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2))) # (√‘(((ℜ‘𝐵)↑2) + ((ℑ‘𝐵)↑2))) ↔ (((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2)) # (((ℜ‘𝐵)↑2) + ((ℑ‘𝐵)↑2))))
239, 12, 18, 21, 22syl22anc 1234 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((√‘(((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2))) # (√‘(((ℜ‘𝐵)↑2) + ((ℑ‘𝐵)↑2))) ↔ (((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2)) # (((ℜ‘𝐵)↑2) + ((ℑ‘𝐵)↑2))))
243, 23bitrd 187 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘𝐴) # (abs‘𝐵) ↔ (((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2)) # (((ℜ‘𝐵)↑2) + ((ℑ‘𝐵)↑2))))
256recnd 7935 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℜ‘𝐴)↑2) ∈ ℂ)
268recnd 7935 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℑ‘𝐴)↑2) ∈ ℂ)
2715recnd 7935 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℜ‘𝐵)↑2) ∈ ℂ)
2817recnd 7935 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℑ‘𝐵)↑2) ∈ ℂ)
29 addext 8516 . . . . . 6 (((((ℜ‘𝐴)↑2) ∈ ℂ ∧ ((ℑ‘𝐴)↑2) ∈ ℂ) ∧ (((ℜ‘𝐵)↑2) ∈ ℂ ∧ ((ℑ‘𝐵)↑2) ∈ ℂ)) → ((((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2)) # (((ℜ‘𝐵)↑2) + ((ℑ‘𝐵)↑2)) → (((ℜ‘𝐴)↑2) # ((ℜ‘𝐵)↑2) ∨ ((ℑ‘𝐴)↑2) # ((ℑ‘𝐵)↑2))))
3025, 26, 27, 28, 29syl22anc 1234 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2)) # (((ℜ‘𝐵)↑2) + ((ℑ‘𝐵)↑2)) → (((ℜ‘𝐴)↑2) # ((ℜ‘𝐵)↑2) ∨ ((ℑ‘𝐴)↑2) # ((ℑ‘𝐵)↑2))))
3124, 30sylbid 149 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘𝐴) # (abs‘𝐵) → (((ℜ‘𝐴)↑2) # ((ℜ‘𝐵)↑2) ∨ ((ℑ‘𝐴)↑2) # ((ℑ‘𝐵)↑2))))
325recnd 7935 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℜ‘𝐴) ∈ ℂ)
3332sqvald 10593 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℜ‘𝐴)↑2) = ((ℜ‘𝐴) · (ℜ‘𝐴)))
3414recnd 7935 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℜ‘𝐵) ∈ ℂ)
3534sqvald 10593 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℜ‘𝐵)↑2) = ((ℜ‘𝐵) · (ℜ‘𝐵)))
3633, 35breq12d 4000 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((ℜ‘𝐴)↑2) # ((ℜ‘𝐵)↑2) ↔ ((ℜ‘𝐴) · (ℜ‘𝐴)) # ((ℜ‘𝐵) · (ℜ‘𝐵))))
37 mulext 8520 . . . . . . . 8 ((((ℜ‘𝐴) ∈ ℂ ∧ (ℜ‘𝐴) ∈ ℂ) ∧ ((ℜ‘𝐵) ∈ ℂ ∧ (ℜ‘𝐵) ∈ ℂ)) → (((ℜ‘𝐴) · (ℜ‘𝐴)) # ((ℜ‘𝐵) · (ℜ‘𝐵)) → ((ℜ‘𝐴) # (ℜ‘𝐵) ∨ (ℜ‘𝐴) # (ℜ‘𝐵))))
3832, 32, 34, 34, 37syl22anc 1234 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((ℜ‘𝐴) · (ℜ‘𝐴)) # ((ℜ‘𝐵) · (ℜ‘𝐵)) → ((ℜ‘𝐴) # (ℜ‘𝐵) ∨ (ℜ‘𝐴) # (ℜ‘𝐵))))
3936, 38sylbid 149 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((ℜ‘𝐴)↑2) # ((ℜ‘𝐵)↑2) → ((ℜ‘𝐴) # (ℜ‘𝐵) ∨ (ℜ‘𝐴) # (ℜ‘𝐵))))
40 oridm 752 . . . . . 6 (((ℜ‘𝐴) # (ℜ‘𝐵) ∨ (ℜ‘𝐴) # (ℜ‘𝐵)) ↔ (ℜ‘𝐴) # (ℜ‘𝐵))
4139, 40syl6ib 160 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((ℜ‘𝐴)↑2) # ((ℜ‘𝐵)↑2) → (ℜ‘𝐴) # (ℜ‘𝐵)))
427recnd 7935 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℑ‘𝐴) ∈ ℂ)
4342sqvald 10593 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℑ‘𝐴)↑2) = ((ℑ‘𝐴) · (ℑ‘𝐴)))
4416recnd 7935 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℑ‘𝐵) ∈ ℂ)
4544sqvald 10593 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℑ‘𝐵)↑2) = ((ℑ‘𝐵) · (ℑ‘𝐵)))
4643, 45breq12d 4000 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((ℑ‘𝐴)↑2) # ((ℑ‘𝐵)↑2) ↔ ((ℑ‘𝐴) · (ℑ‘𝐴)) # ((ℑ‘𝐵) · (ℑ‘𝐵))))
47 mulext 8520 . . . . . . . 8 ((((ℑ‘𝐴) ∈ ℂ ∧ (ℑ‘𝐴) ∈ ℂ) ∧ ((ℑ‘𝐵) ∈ ℂ ∧ (ℑ‘𝐵) ∈ ℂ)) → (((ℑ‘𝐴) · (ℑ‘𝐴)) # ((ℑ‘𝐵) · (ℑ‘𝐵)) → ((ℑ‘𝐴) # (ℑ‘𝐵) ∨ (ℑ‘𝐴) # (ℑ‘𝐵))))
4842, 42, 44, 44, 47syl22anc 1234 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((ℑ‘𝐴) · (ℑ‘𝐴)) # ((ℑ‘𝐵) · (ℑ‘𝐵)) → ((ℑ‘𝐴) # (ℑ‘𝐵) ∨ (ℑ‘𝐴) # (ℑ‘𝐵))))
4946, 48sylbid 149 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((ℑ‘𝐴)↑2) # ((ℑ‘𝐵)↑2) → ((ℑ‘𝐴) # (ℑ‘𝐵) ∨ (ℑ‘𝐴) # (ℑ‘𝐵))))
50 oridm 752 . . . . . 6 (((ℑ‘𝐴) # (ℑ‘𝐵) ∨ (ℑ‘𝐴) # (ℑ‘𝐵)) ↔ (ℑ‘𝐴) # (ℑ‘𝐵))
5149, 50syl6ib 160 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((ℑ‘𝐴)↑2) # ((ℑ‘𝐵)↑2) → (ℑ‘𝐴) # (ℑ‘𝐵)))
5241, 51orim12d 781 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((ℜ‘𝐴)↑2) # ((ℜ‘𝐵)↑2) ∨ ((ℑ‘𝐴)↑2) # ((ℑ‘𝐵)↑2)) → ((ℜ‘𝐴) # (ℜ‘𝐵) ∨ (ℑ‘𝐴) # (ℑ‘𝐵))))
5331, 52syld 45 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘𝐴) # (abs‘𝐵) → ((ℜ‘𝐴) # (ℜ‘𝐵) ∨ (ℑ‘𝐴) # (ℑ‘𝐵))))
54 apreim 8509 . . . 4 ((((ℜ‘𝐴) ∈ ℝ ∧ (ℑ‘𝐴) ∈ ℝ) ∧ ((ℜ‘𝐵) ∈ ℝ ∧ (ℑ‘𝐵) ∈ ℝ)) → (((ℜ‘𝐴) + (i · (ℑ‘𝐴))) # ((ℜ‘𝐵) + (i · (ℑ‘𝐵))) ↔ ((ℜ‘𝐴) # (ℜ‘𝐵) ∨ (ℑ‘𝐴) # (ℑ‘𝐵))))
555, 7, 14, 16, 54syl22anc 1234 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((ℜ‘𝐴) + (i · (ℑ‘𝐴))) # ((ℜ‘𝐵) + (i · (ℑ‘𝐵))) ↔ ((ℜ‘𝐴) # (ℜ‘𝐵) ∨ (ℑ‘𝐴) # (ℑ‘𝐵))))
5653, 55sylibrd 168 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘𝐴) # (abs‘𝐵) → ((ℜ‘𝐴) + (i · (ℑ‘𝐴))) # ((ℜ‘𝐵) + (i · (ℑ‘𝐵)))))
574replimd 10892 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐴 = ((ℜ‘𝐴) + (i · (ℑ‘𝐴))))
5813replimd 10892 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐵 = ((ℜ‘𝐵) + (i · (ℑ‘𝐵))))
5957, 58breq12d 4000 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 # 𝐵 ↔ ((ℜ‘𝐴) + (i · (ℑ‘𝐴))) # ((ℜ‘𝐵) + (i · (ℑ‘𝐵)))))
6056, 59sylibrd 168 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘𝐴) # (abs‘𝐵) → 𝐴 # 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wo 703  wcel 2141   class class class wbr 3987  cfv 5196  (class class class)co 5850  cc 7759  cr 7760  0cc0 7761  ici 7763   + caddc 7764   · cmul 7766  cle 7942   # cap 8487  2c2 8916  cexp 10462  cre 10791  cim 10792  csqrt 10947  abscabs 10948
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4102  ax-sep 4105  ax-nul 4113  ax-pow 4158  ax-pr 4192  ax-un 4416  ax-setind 4519  ax-iinf 4570  ax-cnex 7852  ax-resscn 7853  ax-1cn 7854  ax-1re 7855  ax-icn 7856  ax-addcl 7857  ax-addrcl 7858  ax-mulcl 7859  ax-mulrcl 7860  ax-addcom 7861  ax-mulcom 7862  ax-addass 7863  ax-mulass 7864  ax-distr 7865  ax-i2m1 7866  ax-0lt1 7867  ax-1rid 7868  ax-0id 7869  ax-rnegex 7870  ax-precex 7871  ax-cnre 7872  ax-pre-ltirr 7873  ax-pre-ltwlin 7874  ax-pre-lttrn 7875  ax-pre-apti 7876  ax-pre-ltadd 7877  ax-pre-mulgt0 7878  ax-pre-mulext 7879  ax-arch 7880  ax-caucvg 7881
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3526  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-int 3830  df-iun 3873  df-br 3988  df-opab 4049  df-mpt 4050  df-tr 4086  df-id 4276  df-po 4279  df-iso 4280  df-iord 4349  df-on 4351  df-ilim 4352  df-suc 4354  df-iom 4573  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-ima 4622  df-iota 5158  df-fun 5198  df-fn 5199  df-f 5200  df-f1 5201  df-fo 5202  df-f1o 5203  df-fv 5204  df-riota 5806  df-ov 5853  df-oprab 5854  df-mpo 5855  df-1st 6116  df-2nd 6117  df-recs 6281  df-frec 6367  df-pnf 7943  df-mnf 7944  df-xr 7945  df-ltxr 7946  df-le 7947  df-sub 8079  df-neg 8080  df-reap 8481  df-ap 8488  df-div 8577  df-inn 8866  df-2 8924  df-3 8925  df-4 8926  df-n0 9123  df-z 9200  df-uz 9475  df-rp 9598  df-seqfrec 10389  df-exp 10463  df-cj 10793  df-re 10794  df-im 10795  df-rsqrt 10949  df-abs 10950
This theorem is referenced by:  abssubap0  11041  absltap  11459  absgtap  11460  apdifflemr  14001
  Copyright terms: Public domain W3C validator