Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  absext GIF version

Theorem absext 10557
 Description: Strong extensionality for absolute value. (Contributed by Jim Kingdon, 12-Aug-2021.)
Assertion
Ref Expression
absext ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘𝐴) # (abs‘𝐵) → 𝐴 # 𝐵))

Proof of Theorem absext
StepHypRef Expression
1 absval2 10551 . . . . . . 7 (𝐴 ∈ ℂ → (abs‘𝐴) = (√‘(((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2))))
2 absval2 10551 . . . . . . 7 (𝐵 ∈ ℂ → (abs‘𝐵) = (√‘(((ℜ‘𝐵)↑2) + ((ℑ‘𝐵)↑2))))
31, 2breqan12d 3866 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘𝐴) # (abs‘𝐵) ↔ (√‘(((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2))) # (√‘(((ℜ‘𝐵)↑2) + ((ℑ‘𝐵)↑2)))))
4 simpl 108 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐴 ∈ ℂ)
54recld 10433 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℜ‘𝐴) ∈ ℝ)
65resqcld 10173 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℜ‘𝐴)↑2) ∈ ℝ)
74imcld 10434 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℑ‘𝐴) ∈ ℝ)
87resqcld 10173 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℑ‘𝐴)↑2) ∈ ℝ)
96, 8readdcld 7578 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2)) ∈ ℝ)
105sqge0d 10174 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 0 ≤ ((ℜ‘𝐴)↑2))
117sqge0d 10174 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 0 ≤ ((ℑ‘𝐴)↑2))
126, 8, 10, 11addge0d 8060 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 0 ≤ (((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2)))
13 simpr 109 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐵 ∈ ℂ)
1413recld 10433 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℜ‘𝐵) ∈ ℝ)
1514resqcld 10173 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℜ‘𝐵)↑2) ∈ ℝ)
1613imcld 10434 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℑ‘𝐵) ∈ ℝ)
1716resqcld 10173 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℑ‘𝐵)↑2) ∈ ℝ)
1815, 17readdcld 7578 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((ℜ‘𝐵)↑2) + ((ℑ‘𝐵)↑2)) ∈ ℝ)
1914sqge0d 10174 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 0 ≤ ((ℜ‘𝐵)↑2))
2016sqge0d 10174 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 0 ≤ ((ℑ‘𝐵)↑2))
2115, 17, 19, 20addge0d 8060 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 0 ≤ (((ℜ‘𝐵)↑2) + ((ℑ‘𝐵)↑2)))
22 sqrt11ap 10532 . . . . . . 7 ((((((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2)) ∈ ℝ ∧ 0 ≤ (((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2))) ∧ ((((ℜ‘𝐵)↑2) + ((ℑ‘𝐵)↑2)) ∈ ℝ ∧ 0 ≤ (((ℜ‘𝐵)↑2) + ((ℑ‘𝐵)↑2)))) → ((√‘(((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2))) # (√‘(((ℜ‘𝐵)↑2) + ((ℑ‘𝐵)↑2))) ↔ (((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2)) # (((ℜ‘𝐵)↑2) + ((ℑ‘𝐵)↑2))))
239, 12, 18, 21, 22syl22anc 1176 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((√‘(((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2))) # (√‘(((ℜ‘𝐵)↑2) + ((ℑ‘𝐵)↑2))) ↔ (((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2)) # (((ℜ‘𝐵)↑2) + ((ℑ‘𝐵)↑2))))
243, 23bitrd 187 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘𝐴) # (abs‘𝐵) ↔ (((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2)) # (((ℜ‘𝐵)↑2) + ((ℑ‘𝐵)↑2))))
256recnd 7577 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℜ‘𝐴)↑2) ∈ ℂ)
268recnd 7577 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℑ‘𝐴)↑2) ∈ ℂ)
2715recnd 7577 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℜ‘𝐵)↑2) ∈ ℂ)
2817recnd 7577 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℑ‘𝐵)↑2) ∈ ℂ)
29 addext 8148 . . . . . 6 (((((ℜ‘𝐴)↑2) ∈ ℂ ∧ ((ℑ‘𝐴)↑2) ∈ ℂ) ∧ (((ℜ‘𝐵)↑2) ∈ ℂ ∧ ((ℑ‘𝐵)↑2) ∈ ℂ)) → ((((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2)) # (((ℜ‘𝐵)↑2) + ((ℑ‘𝐵)↑2)) → (((ℜ‘𝐴)↑2) # ((ℜ‘𝐵)↑2) ∨ ((ℑ‘𝐴)↑2) # ((ℑ‘𝐵)↑2))))
3025, 26, 27, 28, 29syl22anc 1176 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2)) # (((ℜ‘𝐵)↑2) + ((ℑ‘𝐵)↑2)) → (((ℜ‘𝐴)↑2) # ((ℜ‘𝐵)↑2) ∨ ((ℑ‘𝐴)↑2) # ((ℑ‘𝐵)↑2))))
3124, 30sylbid 149 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘𝐴) # (abs‘𝐵) → (((ℜ‘𝐴)↑2) # ((ℜ‘𝐵)↑2) ∨ ((ℑ‘𝐴)↑2) # ((ℑ‘𝐵)↑2))))
325recnd 7577 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℜ‘𝐴) ∈ ℂ)
3332sqvald 10144 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℜ‘𝐴)↑2) = ((ℜ‘𝐴) · (ℜ‘𝐴)))
3414recnd 7577 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℜ‘𝐵) ∈ ℂ)
3534sqvald 10144 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℜ‘𝐵)↑2) = ((ℜ‘𝐵) · (ℜ‘𝐵)))
3633, 35breq12d 3864 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((ℜ‘𝐴)↑2) # ((ℜ‘𝐵)↑2) ↔ ((ℜ‘𝐴) · (ℜ‘𝐴)) # ((ℜ‘𝐵) · (ℜ‘𝐵))))
37 mulext 8152 . . . . . . . 8 ((((ℜ‘𝐴) ∈ ℂ ∧ (ℜ‘𝐴) ∈ ℂ) ∧ ((ℜ‘𝐵) ∈ ℂ ∧ (ℜ‘𝐵) ∈ ℂ)) → (((ℜ‘𝐴) · (ℜ‘𝐴)) # ((ℜ‘𝐵) · (ℜ‘𝐵)) → ((ℜ‘𝐴) # (ℜ‘𝐵) ∨ (ℜ‘𝐴) # (ℜ‘𝐵))))
3832, 32, 34, 34, 37syl22anc 1176 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((ℜ‘𝐴) · (ℜ‘𝐴)) # ((ℜ‘𝐵) · (ℜ‘𝐵)) → ((ℜ‘𝐴) # (ℜ‘𝐵) ∨ (ℜ‘𝐴) # (ℜ‘𝐵))))
3936, 38sylbid 149 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((ℜ‘𝐴)↑2) # ((ℜ‘𝐵)↑2) → ((ℜ‘𝐴) # (ℜ‘𝐵) ∨ (ℜ‘𝐴) # (ℜ‘𝐵))))
40 oridm 710 . . . . . 6 (((ℜ‘𝐴) # (ℜ‘𝐵) ∨ (ℜ‘𝐴) # (ℜ‘𝐵)) ↔ (ℜ‘𝐴) # (ℜ‘𝐵))
4139, 40syl6ib 160 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((ℜ‘𝐴)↑2) # ((ℜ‘𝐵)↑2) → (ℜ‘𝐴) # (ℜ‘𝐵)))
427recnd 7577 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℑ‘𝐴) ∈ ℂ)
4342sqvald 10144 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℑ‘𝐴)↑2) = ((ℑ‘𝐴) · (ℑ‘𝐴)))
4416recnd 7577 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℑ‘𝐵) ∈ ℂ)
4544sqvald 10144 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℑ‘𝐵)↑2) = ((ℑ‘𝐵) · (ℑ‘𝐵)))
4643, 45breq12d 3864 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((ℑ‘𝐴)↑2) # ((ℑ‘𝐵)↑2) ↔ ((ℑ‘𝐴) · (ℑ‘𝐴)) # ((ℑ‘𝐵) · (ℑ‘𝐵))))
47 mulext 8152 . . . . . . . 8 ((((ℑ‘𝐴) ∈ ℂ ∧ (ℑ‘𝐴) ∈ ℂ) ∧ ((ℑ‘𝐵) ∈ ℂ ∧ (ℑ‘𝐵) ∈ ℂ)) → (((ℑ‘𝐴) · (ℑ‘𝐴)) # ((ℑ‘𝐵) · (ℑ‘𝐵)) → ((ℑ‘𝐴) # (ℑ‘𝐵) ∨ (ℑ‘𝐴) # (ℑ‘𝐵))))
4842, 42, 44, 44, 47syl22anc 1176 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((ℑ‘𝐴) · (ℑ‘𝐴)) # ((ℑ‘𝐵) · (ℑ‘𝐵)) → ((ℑ‘𝐴) # (ℑ‘𝐵) ∨ (ℑ‘𝐴) # (ℑ‘𝐵))))
4946, 48sylbid 149 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((ℑ‘𝐴)↑2) # ((ℑ‘𝐵)↑2) → ((ℑ‘𝐴) # (ℑ‘𝐵) ∨ (ℑ‘𝐴) # (ℑ‘𝐵))))
50 oridm 710 . . . . . 6 (((ℑ‘𝐴) # (ℑ‘𝐵) ∨ (ℑ‘𝐴) # (ℑ‘𝐵)) ↔ (ℑ‘𝐴) # (ℑ‘𝐵))
5149, 50syl6ib 160 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((ℑ‘𝐴)↑2) # ((ℑ‘𝐵)↑2) → (ℑ‘𝐴) # (ℑ‘𝐵)))
5241, 51orim12d 736 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((ℜ‘𝐴)↑2) # ((ℜ‘𝐵)↑2) ∨ ((ℑ‘𝐴)↑2) # ((ℑ‘𝐵)↑2)) → ((ℜ‘𝐴) # (ℜ‘𝐵) ∨ (ℑ‘𝐴) # (ℑ‘𝐵))))
5331, 52syld 45 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘𝐴) # (abs‘𝐵) → ((ℜ‘𝐴) # (ℜ‘𝐵) ∨ (ℑ‘𝐴) # (ℑ‘𝐵))))
54 apreim 8141 . . . 4 ((((ℜ‘𝐴) ∈ ℝ ∧ (ℑ‘𝐴) ∈ ℝ) ∧ ((ℜ‘𝐵) ∈ ℝ ∧ (ℑ‘𝐵) ∈ ℝ)) → (((ℜ‘𝐴) + (i · (ℑ‘𝐴))) # ((ℜ‘𝐵) + (i · (ℑ‘𝐵))) ↔ ((ℜ‘𝐴) # (ℜ‘𝐵) ∨ (ℑ‘𝐴) # (ℑ‘𝐵))))
555, 7, 14, 16, 54syl22anc 1176 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((ℜ‘𝐴) + (i · (ℑ‘𝐴))) # ((ℜ‘𝐵) + (i · (ℑ‘𝐵))) ↔ ((ℜ‘𝐴) # (ℜ‘𝐵) ∨ (ℑ‘𝐴) # (ℑ‘𝐵))))
5653, 55sylibrd 168 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘𝐴) # (abs‘𝐵) → ((ℜ‘𝐴) + (i · (ℑ‘𝐴))) # ((ℜ‘𝐵) + (i · (ℑ‘𝐵)))))
574replimd 10436 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐴 = ((ℜ‘𝐴) + (i · (ℑ‘𝐴))))
5813replimd 10436 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐵 = ((ℜ‘𝐵) + (i · (ℑ‘𝐵))))
5957, 58breq12d 3864 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 # 𝐵 ↔ ((ℜ‘𝐴) + (i · (ℑ‘𝐴))) # ((ℜ‘𝐵) + (i · (ℑ‘𝐵)))))
6056, 59sylibrd 168 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘𝐴) # (abs‘𝐵) → 𝐴 # 𝐵))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103   ↔ wb 104   ∨ wo 665   ∈ wcel 1439   class class class wbr 3851  ‘cfv 5028  (class class class)co 5666  ℂcc 7409  ℝcr 7410  0cc0 7411  ici 7413   + caddc 7414   · cmul 7416   ≤ cle 7584   # cap 8119  2c2 8534  ↑cexp 10015  ℜcre 10335  ℑcim 10336  √csqrt 10490  abscabs 10491 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 580  ax-in2 581  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-13 1450  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-coll 3960  ax-sep 3963  ax-nul 3971  ax-pow 4015  ax-pr 4045  ax-un 4269  ax-setind 4366  ax-iinf 4416  ax-cnex 7497  ax-resscn 7498  ax-1cn 7499  ax-1re 7500  ax-icn 7501  ax-addcl 7502  ax-addrcl 7503  ax-mulcl 7504  ax-mulrcl 7505  ax-addcom 7506  ax-mulcom 7507  ax-addass 7508  ax-mulass 7509  ax-distr 7510  ax-i2m1 7511  ax-0lt1 7512  ax-1rid 7513  ax-0id 7514  ax-rnegex 7515  ax-precex 7516  ax-cnre 7517  ax-pre-ltirr 7518  ax-pre-ltwlin 7519  ax-pre-lttrn 7520  ax-pre-apti 7521  ax-pre-ltadd 7522  ax-pre-mulgt0 7523  ax-pre-mulext 7524  ax-arch 7525  ax-caucvg 7526 This theorem depends on definitions:  df-bi 116  df-dc 782  df-3or 926  df-3an 927  df-tru 1293  df-fal 1296  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ne 2257  df-nel 2352  df-ral 2365  df-rex 2366  df-reu 2367  df-rmo 2368  df-rab 2369  df-v 2622  df-sbc 2842  df-csb 2935  df-dif 3002  df-un 3004  df-in 3006  df-ss 3013  df-nul 3288  df-if 3398  df-pw 3435  df-sn 3456  df-pr 3457  df-op 3459  df-uni 3660  df-int 3695  df-iun 3738  df-br 3852  df-opab 3906  df-mpt 3907  df-tr 3943  df-id 4129  df-po 4132  df-iso 4133  df-iord 4202  df-on 4204  df-ilim 4205  df-suc 4207  df-iom 4419  df-xp 4458  df-rel 4459  df-cnv 4460  df-co 4461  df-dm 4462  df-rn 4463  df-res 4464  df-ima 4465  df-iota 4993  df-fun 5030  df-fn 5031  df-f 5032  df-f1 5033  df-fo 5034  df-f1o 5035  df-fv 5036  df-riota 5622  df-ov 5669  df-oprab 5670  df-mpt2 5671  df-1st 5925  df-2nd 5926  df-recs 6084  df-frec 6170  df-pnf 7585  df-mnf 7586  df-xr 7587  df-ltxr 7588  df-le 7589  df-sub 7716  df-neg 7717  df-reap 8113  df-ap 8120  df-div 8201  df-inn 8484  df-2 8542  df-3 8543  df-4 8544  df-n0 8735  df-z 8812  df-uz 9081  df-rp 9196  df-iseq 9914  df-seq3 9915  df-exp 10016  df-cj 10337  df-re 10338  df-im 10339  df-rsqrt 10492  df-abs 10493 This theorem is referenced by:  abssubap0  10584  absltap  10964  absgtap  10965
 Copyright terms: Public domain W3C validator