| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nn0ge2m1nn | GIF version | ||
| Description: If a nonnegative integer is greater than or equal to two, the integer decreased by 1 is a positive integer. (Contributed by Alexander van der Vekens, 1-Aug-2018.) (Revised by AV, 4-Jan-2020.) |
| Ref | Expression |
|---|---|
| nn0ge2m1nn | ⊢ ((𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁) → (𝑁 − 1) ∈ ℕ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 109 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁) → 𝑁 ∈ ℕ0) | |
| 2 | 1red 8157 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ0 → 1 ∈ ℝ) | |
| 3 | 2re 9176 | . . . . . . . . 9 ⊢ 2 ∈ ℝ | |
| 4 | 3 | a1i 9 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ0 → 2 ∈ ℝ) |
| 5 | nn0re 9374 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ) | |
| 6 | 2, 4, 5 | 3jca 1201 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 → (1 ∈ ℝ ∧ 2 ∈ ℝ ∧ 𝑁 ∈ ℝ)) |
| 7 | 6 | adantr 276 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁) → (1 ∈ ℝ ∧ 2 ∈ ℝ ∧ 𝑁 ∈ ℝ)) |
| 8 | simpr 110 | . . . . . . 7 ⊢ ((𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁) → 2 ≤ 𝑁) | |
| 9 | 1lt2 9276 | . . . . . . 7 ⊢ 1 < 2 | |
| 10 | 8, 9 | jctil 312 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁) → (1 < 2 ∧ 2 ≤ 𝑁)) |
| 11 | ltleletr 8224 | . . . . . 6 ⊢ ((1 ∈ ℝ ∧ 2 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((1 < 2 ∧ 2 ≤ 𝑁) → 1 ≤ 𝑁)) | |
| 12 | 7, 10, 11 | sylc 62 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁) → 1 ≤ 𝑁) |
| 13 | elnnnn0c 9410 | . . . . 5 ⊢ (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁)) | |
| 14 | 1, 12, 13 | sylanbrc 417 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁) → 𝑁 ∈ ℕ) |
| 15 | nn1m1nn 9124 | . . . 4 ⊢ (𝑁 ∈ ℕ → (𝑁 = 1 ∨ (𝑁 − 1) ∈ ℕ)) | |
| 16 | 14, 15 | syl 14 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁) → (𝑁 = 1 ∨ (𝑁 − 1) ∈ ℕ)) |
| 17 | 1re 8141 | . . . . . . . . . . 11 ⊢ 1 ∈ ℝ | |
| 18 | 3, 17 | lenlti 8243 | . . . . . . . . . 10 ⊢ (2 ≤ 1 ↔ ¬ 1 < 2) |
| 19 | 18 | biimpi 120 | . . . . . . . . 9 ⊢ (2 ≤ 1 → ¬ 1 < 2) |
| 20 | 9, 19 | mt2 643 | . . . . . . . 8 ⊢ ¬ 2 ≤ 1 |
| 21 | breq2 4086 | . . . . . . . 8 ⊢ (𝑁 = 1 → (2 ≤ 𝑁 ↔ 2 ≤ 1)) | |
| 22 | 20, 21 | mtbiri 679 | . . . . . . 7 ⊢ (𝑁 = 1 → ¬ 2 ≤ 𝑁) |
| 23 | 22 | pm2.21d 622 | . . . . . 6 ⊢ (𝑁 = 1 → (2 ≤ 𝑁 → (𝑁 − 1) ∈ ℕ)) |
| 24 | 23 | com12 30 | . . . . 5 ⊢ (2 ≤ 𝑁 → (𝑁 = 1 → (𝑁 − 1) ∈ ℕ)) |
| 25 | 24 | adantl 277 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁) → (𝑁 = 1 → (𝑁 − 1) ∈ ℕ)) |
| 26 | 25 | orim1d 792 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁) → ((𝑁 = 1 ∨ (𝑁 − 1) ∈ ℕ) → ((𝑁 − 1) ∈ ℕ ∨ (𝑁 − 1) ∈ ℕ))) |
| 27 | 16, 26 | mpd 13 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁) → ((𝑁 − 1) ∈ ℕ ∨ (𝑁 − 1) ∈ ℕ)) |
| 28 | oridm 762 | . 2 ⊢ (((𝑁 − 1) ∈ ℕ ∨ (𝑁 − 1) ∈ ℕ) ↔ (𝑁 − 1) ∈ ℕ) | |
| 29 | 27, 28 | sylib 122 | 1 ⊢ ((𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁) → (𝑁 − 1) ∈ ℕ) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∨ wo 713 ∧ w3a 1002 = wceq 1395 ∈ wcel 2200 class class class wbr 4082 (class class class)co 6000 ℝcr 7994 1c1 7996 < clt 8177 ≤ cle 8178 − cmin 8313 ℕcn 9106 2c2 9157 ℕ0cn0 9365 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-addcom 8095 ax-addass 8097 ax-distr 8099 ax-i2m1 8100 ax-0lt1 8101 ax-0id 8103 ax-rnegex 8104 ax-cnre 8106 ax-pre-ltirr 8107 ax-pre-ltwlin 8108 ax-pre-lttrn 8109 ax-pre-ltadd 8111 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-iota 5277 df-fun 5319 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-pnf 8179 df-mnf 8180 df-xr 8181 df-ltxr 8182 df-le 8183 df-sub 8315 df-inn 9107 df-2 9165 df-n0 9366 |
| This theorem is referenced by: nn0ge2m1nn0 9426 |
| Copyright terms: Public domain | W3C validator |