ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0ge2m1nn GIF version

Theorem nn0ge2m1nn 9129
Description: If a nonnegative integer is greater than or equal to two, the integer decreased by 1 is a positive integer. (Contributed by Alexander van der Vekens, 1-Aug-2018.) (Revised by AV, 4-Jan-2020.)
Assertion
Ref Expression
nn0ge2m1nn ((𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁) → (𝑁 − 1) ∈ ℕ)

Proof of Theorem nn0ge2m1nn
StepHypRef Expression
1 simpl 108 . . . . 5 ((𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁) → 𝑁 ∈ ℕ0)
2 1red 7872 . . . . . . . 8 (𝑁 ∈ ℕ0 → 1 ∈ ℝ)
3 2re 8882 . . . . . . . . 9 2 ∈ ℝ
43a1i 9 . . . . . . . 8 (𝑁 ∈ ℕ0 → 2 ∈ ℝ)
5 nn0re 9078 . . . . . . . 8 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
62, 4, 53jca 1162 . . . . . . 7 (𝑁 ∈ ℕ0 → (1 ∈ ℝ ∧ 2 ∈ ℝ ∧ 𝑁 ∈ ℝ))
76adantr 274 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁) → (1 ∈ ℝ ∧ 2 ∈ ℝ ∧ 𝑁 ∈ ℝ))
8 simpr 109 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁) → 2 ≤ 𝑁)
9 1lt2 8981 . . . . . . 7 1 < 2
108, 9jctil 310 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁) → (1 < 2 ∧ 2 ≤ 𝑁))
11 ltleletr 7938 . . . . . 6 ((1 ∈ ℝ ∧ 2 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((1 < 2 ∧ 2 ≤ 𝑁) → 1 ≤ 𝑁))
127, 10, 11sylc 62 . . . . 5 ((𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁) → 1 ≤ 𝑁)
13 elnnnn0c 9114 . . . . 5 (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁))
141, 12, 13sylanbrc 414 . . . 4 ((𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁) → 𝑁 ∈ ℕ)
15 nn1m1nn 8830 . . . 4 (𝑁 ∈ ℕ → (𝑁 = 1 ∨ (𝑁 − 1) ∈ ℕ))
1614, 15syl 14 . . 3 ((𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁) → (𝑁 = 1 ∨ (𝑁 − 1) ∈ ℕ))
17 1re 7856 . . . . . . . . . . 11 1 ∈ ℝ
183, 17lenlti 7956 . . . . . . . . . 10 (2 ≤ 1 ↔ ¬ 1 < 2)
1918biimpi 119 . . . . . . . . 9 (2 ≤ 1 → ¬ 1 < 2)
209, 19mt2 630 . . . . . . . 8 ¬ 2 ≤ 1
21 breq2 3965 . . . . . . . 8 (𝑁 = 1 → (2 ≤ 𝑁 ↔ 2 ≤ 1))
2220, 21mtbiri 665 . . . . . . 7 (𝑁 = 1 → ¬ 2 ≤ 𝑁)
2322pm2.21d 609 . . . . . 6 (𝑁 = 1 → (2 ≤ 𝑁 → (𝑁 − 1) ∈ ℕ))
2423com12 30 . . . . 5 (2 ≤ 𝑁 → (𝑁 = 1 → (𝑁 − 1) ∈ ℕ))
2524adantl 275 . . . 4 ((𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁) → (𝑁 = 1 → (𝑁 − 1) ∈ ℕ))
2625orim1d 777 . . 3 ((𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁) → ((𝑁 = 1 ∨ (𝑁 − 1) ∈ ℕ) → ((𝑁 − 1) ∈ ℕ ∨ (𝑁 − 1) ∈ ℕ)))
2716, 26mpd 13 . 2 ((𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁) → ((𝑁 − 1) ∈ ℕ ∨ (𝑁 − 1) ∈ ℕ))
28 oridm 747 . 2 (((𝑁 − 1) ∈ ℕ ∨ (𝑁 − 1) ∈ ℕ) ↔ (𝑁 − 1) ∈ ℕ)
2927, 28sylib 121 1 ((𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁) → (𝑁 − 1) ∈ ℕ)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wo 698  w3a 963   = wceq 1332  wcel 2125   class class class wbr 3961  (class class class)co 5814  cr 7710  1c1 7712   < clt 7891  cle 7892  cmin 8025  cn 8812  2c2 8863  0cn0 9069
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-13 2127  ax-14 2128  ax-ext 2136  ax-sep 4078  ax-pow 4130  ax-pr 4164  ax-un 4388  ax-setind 4490  ax-cnex 7802  ax-resscn 7803  ax-1cn 7804  ax-1re 7805  ax-icn 7806  ax-addcl 7807  ax-addrcl 7808  ax-mulcl 7809  ax-addcom 7811  ax-addass 7813  ax-distr 7815  ax-i2m1 7816  ax-0lt1 7817  ax-0id 7819  ax-rnegex 7820  ax-cnre 7822  ax-pre-ltirr 7823  ax-pre-ltwlin 7824  ax-pre-lttrn 7825  ax-pre-ltadd 7827
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1740  df-eu 2006  df-mo 2007  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-ne 2325  df-nel 2420  df-ral 2437  df-rex 2438  df-reu 2439  df-rab 2441  df-v 2711  df-sbc 2934  df-dif 3100  df-un 3102  df-in 3104  df-ss 3111  df-pw 3541  df-sn 3562  df-pr 3563  df-op 3565  df-uni 3769  df-int 3804  df-br 3962  df-opab 4022  df-id 4248  df-xp 4585  df-rel 4586  df-cnv 4587  df-co 4588  df-dm 4589  df-iota 5128  df-fun 5165  df-fv 5171  df-riota 5770  df-ov 5817  df-oprab 5818  df-mpo 5819  df-pnf 7893  df-mnf 7894  df-xr 7895  df-ltxr 7896  df-le 7897  df-sub 8027  df-inn 8813  df-2 8871  df-n0 9070
This theorem is referenced by:  nn0ge2m1nn0  9130
  Copyright terms: Public domain W3C validator