ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0ge2m1nn GIF version

Theorem nn0ge2m1nn 8624
Description: If a nonnegative integer is greater than or equal to two, the integer decreased by 1 is a positive integer. (Contributed by Alexander van der Vekens, 1-Aug-2018.) (Revised by AV, 4-Jan-2020.)
Assertion
Ref Expression
nn0ge2m1nn ((𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁) → (𝑁 − 1) ∈ ℕ)

Proof of Theorem nn0ge2m1nn
StepHypRef Expression
1 simpl 107 . . . . 5 ((𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁) → 𝑁 ∈ ℕ0)
2 1red 7405 . . . . . . . 8 (𝑁 ∈ ℕ0 → 1 ∈ ℝ)
3 2re 8385 . . . . . . . . 9 2 ∈ ℝ
43a1i 9 . . . . . . . 8 (𝑁 ∈ ℕ0 → 2 ∈ ℝ)
5 nn0re 8573 . . . . . . . 8 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
62, 4, 53jca 1119 . . . . . . 7 (𝑁 ∈ ℕ0 → (1 ∈ ℝ ∧ 2 ∈ ℝ ∧ 𝑁 ∈ ℝ))
76adantr 270 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁) → (1 ∈ ℝ ∧ 2 ∈ ℝ ∧ 𝑁 ∈ ℝ))
8 simpr 108 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁) → 2 ≤ 𝑁)
9 1lt2 8477 . . . . . . 7 1 < 2
108, 9jctil 305 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁) → (1 < 2 ∧ 2 ≤ 𝑁))
11 ltleletr 7469 . . . . . 6 ((1 ∈ ℝ ∧ 2 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((1 < 2 ∧ 2 ≤ 𝑁) → 1 ≤ 𝑁))
127, 10, 11sylc 61 . . . . 5 ((𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁) → 1 ≤ 𝑁)
13 elnnnn0c 8609 . . . . 5 (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁))
141, 12, 13sylanbrc 408 . . . 4 ((𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁) → 𝑁 ∈ ℕ)
15 nn1m1nn 8333 . . . 4 (𝑁 ∈ ℕ → (𝑁 = 1 ∨ (𝑁 − 1) ∈ ℕ))
1614, 15syl 14 . . 3 ((𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁) → (𝑁 = 1 ∨ (𝑁 − 1) ∈ ℕ))
17 1re 7389 . . . . . . . . . . 11 1 ∈ ℝ
183, 17lenlti 7487 . . . . . . . . . 10 (2 ≤ 1 ↔ ¬ 1 < 2)
1918biimpi 118 . . . . . . . . 9 (2 ≤ 1 → ¬ 1 < 2)
209, 19mt2 602 . . . . . . . 8 ¬ 2 ≤ 1
21 breq2 3815 . . . . . . . 8 (𝑁 = 1 → (2 ≤ 𝑁 ↔ 2 ≤ 1))
2220, 21mtbiri 633 . . . . . . 7 (𝑁 = 1 → ¬ 2 ≤ 𝑁)
2322pm2.21d 582 . . . . . 6 (𝑁 = 1 → (2 ≤ 𝑁 → (𝑁 − 1) ∈ ℕ))
2423com12 30 . . . . 5 (2 ≤ 𝑁 → (𝑁 = 1 → (𝑁 − 1) ∈ ℕ))
2524adantl 271 . . . 4 ((𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁) → (𝑁 = 1 → (𝑁 − 1) ∈ ℕ))
2625orim1d 734 . . 3 ((𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁) → ((𝑁 = 1 ∨ (𝑁 − 1) ∈ ℕ) → ((𝑁 − 1) ∈ ℕ ∨ (𝑁 − 1) ∈ ℕ)))
2716, 26mpd 13 . 2 ((𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁) → ((𝑁 − 1) ∈ ℕ ∨ (𝑁 − 1) ∈ ℕ))
28 oridm 707 . 2 (((𝑁 − 1) ∈ ℕ ∨ (𝑁 − 1) ∈ ℕ) ↔ (𝑁 − 1) ∈ ℕ)
2927, 28sylib 120 1 ((𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁) → (𝑁 − 1) ∈ ℕ)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 102  wo 662  w3a 920   = wceq 1285  wcel 1434   class class class wbr 3811  (class class class)co 5590  cr 7251  1c1 7253   < clt 7424  cle 7425  cmin 7555  cn 8315  2c2 8365  0cn0 8564
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-sep 3922  ax-pow 3974  ax-pr 3999  ax-un 4223  ax-setind 4315  ax-cnex 7338  ax-resscn 7339  ax-1cn 7340  ax-1re 7341  ax-icn 7342  ax-addcl 7343  ax-addrcl 7344  ax-mulcl 7345  ax-addcom 7347  ax-addass 7349  ax-distr 7351  ax-i2m1 7352  ax-0lt1 7353  ax-0id 7355  ax-rnegex 7356  ax-cnre 7358  ax-pre-ltirr 7359  ax-pre-ltwlin 7360  ax-pre-lttrn 7361  ax-pre-ltadd 7363
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-nel 2345  df-ral 2358  df-rex 2359  df-reu 2360  df-rab 2362  df-v 2614  df-sbc 2827  df-dif 2986  df-un 2988  df-in 2990  df-ss 2997  df-pw 3408  df-sn 3428  df-pr 3429  df-op 3431  df-uni 3628  df-int 3663  df-br 3812  df-opab 3866  df-id 4083  df-xp 4406  df-rel 4407  df-cnv 4408  df-co 4409  df-dm 4410  df-iota 4933  df-fun 4970  df-fv 4976  df-riota 5546  df-ov 5593  df-oprab 5594  df-mpt2 5595  df-pnf 7426  df-mnf 7427  df-xr 7428  df-ltxr 7429  df-le 7430  df-sub 7557  df-inn 8316  df-2 8374  df-n0 8565
This theorem is referenced by:  nn0ge2m1nn0  8625
  Copyright terms: Public domain W3C validator