Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nn0ge2m1nn | GIF version |
Description: If a nonnegative integer is greater than or equal to two, the integer decreased by 1 is a positive integer. (Contributed by Alexander van der Vekens, 1-Aug-2018.) (Revised by AV, 4-Jan-2020.) |
Ref | Expression |
---|---|
nn0ge2m1nn | ⊢ ((𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁) → (𝑁 − 1) ∈ ℕ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 108 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁) → 𝑁 ∈ ℕ0) | |
2 | 1red 7872 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ0 → 1 ∈ ℝ) | |
3 | 2re 8882 | . . . . . . . . 9 ⊢ 2 ∈ ℝ | |
4 | 3 | a1i 9 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ0 → 2 ∈ ℝ) |
5 | nn0re 9078 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ) | |
6 | 2, 4, 5 | 3jca 1162 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 → (1 ∈ ℝ ∧ 2 ∈ ℝ ∧ 𝑁 ∈ ℝ)) |
7 | 6 | adantr 274 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁) → (1 ∈ ℝ ∧ 2 ∈ ℝ ∧ 𝑁 ∈ ℝ)) |
8 | simpr 109 | . . . . . . 7 ⊢ ((𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁) → 2 ≤ 𝑁) | |
9 | 1lt2 8981 | . . . . . . 7 ⊢ 1 < 2 | |
10 | 8, 9 | jctil 310 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁) → (1 < 2 ∧ 2 ≤ 𝑁)) |
11 | ltleletr 7938 | . . . . . 6 ⊢ ((1 ∈ ℝ ∧ 2 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((1 < 2 ∧ 2 ≤ 𝑁) → 1 ≤ 𝑁)) | |
12 | 7, 10, 11 | sylc 62 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁) → 1 ≤ 𝑁) |
13 | elnnnn0c 9114 | . . . . 5 ⊢ (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁)) | |
14 | 1, 12, 13 | sylanbrc 414 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁) → 𝑁 ∈ ℕ) |
15 | nn1m1nn 8830 | . . . 4 ⊢ (𝑁 ∈ ℕ → (𝑁 = 1 ∨ (𝑁 − 1) ∈ ℕ)) | |
16 | 14, 15 | syl 14 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁) → (𝑁 = 1 ∨ (𝑁 − 1) ∈ ℕ)) |
17 | 1re 7856 | . . . . . . . . . . 11 ⊢ 1 ∈ ℝ | |
18 | 3, 17 | lenlti 7956 | . . . . . . . . . 10 ⊢ (2 ≤ 1 ↔ ¬ 1 < 2) |
19 | 18 | biimpi 119 | . . . . . . . . 9 ⊢ (2 ≤ 1 → ¬ 1 < 2) |
20 | 9, 19 | mt2 630 | . . . . . . . 8 ⊢ ¬ 2 ≤ 1 |
21 | breq2 3965 | . . . . . . . 8 ⊢ (𝑁 = 1 → (2 ≤ 𝑁 ↔ 2 ≤ 1)) | |
22 | 20, 21 | mtbiri 665 | . . . . . . 7 ⊢ (𝑁 = 1 → ¬ 2 ≤ 𝑁) |
23 | 22 | pm2.21d 609 | . . . . . 6 ⊢ (𝑁 = 1 → (2 ≤ 𝑁 → (𝑁 − 1) ∈ ℕ)) |
24 | 23 | com12 30 | . . . . 5 ⊢ (2 ≤ 𝑁 → (𝑁 = 1 → (𝑁 − 1) ∈ ℕ)) |
25 | 24 | adantl 275 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁) → (𝑁 = 1 → (𝑁 − 1) ∈ ℕ)) |
26 | 25 | orim1d 777 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁) → ((𝑁 = 1 ∨ (𝑁 − 1) ∈ ℕ) → ((𝑁 − 1) ∈ ℕ ∨ (𝑁 − 1) ∈ ℕ))) |
27 | 16, 26 | mpd 13 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁) → ((𝑁 − 1) ∈ ℕ ∨ (𝑁 − 1) ∈ ℕ)) |
28 | oridm 747 | . 2 ⊢ (((𝑁 − 1) ∈ ℕ ∨ (𝑁 − 1) ∈ ℕ) ↔ (𝑁 − 1) ∈ ℕ) | |
29 | 27, 28 | sylib 121 | 1 ⊢ ((𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁) → (𝑁 − 1) ∈ ℕ) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ∨ wo 698 ∧ w3a 963 = wceq 1332 ∈ wcel 2125 class class class wbr 3961 (class class class)co 5814 ℝcr 7710 1c1 7712 < clt 7891 ≤ cle 7892 − cmin 8025 ℕcn 8812 2c2 8863 ℕ0cn0 9069 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-13 2127 ax-14 2128 ax-ext 2136 ax-sep 4078 ax-pow 4130 ax-pr 4164 ax-un 4388 ax-setind 4490 ax-cnex 7802 ax-resscn 7803 ax-1cn 7804 ax-1re 7805 ax-icn 7806 ax-addcl 7807 ax-addrcl 7808 ax-mulcl 7809 ax-addcom 7811 ax-addass 7813 ax-distr 7815 ax-i2m1 7816 ax-0lt1 7817 ax-0id 7819 ax-rnegex 7820 ax-cnre 7822 ax-pre-ltirr 7823 ax-pre-ltwlin 7824 ax-pre-lttrn 7825 ax-pre-ltadd 7827 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1335 df-fal 1338 df-nf 1438 df-sb 1740 df-eu 2006 df-mo 2007 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-ne 2325 df-nel 2420 df-ral 2437 df-rex 2438 df-reu 2439 df-rab 2441 df-v 2711 df-sbc 2934 df-dif 3100 df-un 3102 df-in 3104 df-ss 3111 df-pw 3541 df-sn 3562 df-pr 3563 df-op 3565 df-uni 3769 df-int 3804 df-br 3962 df-opab 4022 df-id 4248 df-xp 4585 df-rel 4586 df-cnv 4587 df-co 4588 df-dm 4589 df-iota 5128 df-fun 5165 df-fv 5171 df-riota 5770 df-ov 5817 df-oprab 5818 df-mpo 5819 df-pnf 7893 df-mnf 7894 df-xr 7895 df-ltxr 7896 df-le 7897 df-sub 8027 df-inn 8813 df-2 8871 df-n0 9070 |
This theorem is referenced by: nn0ge2m1nn0 9130 |
Copyright terms: Public domain | W3C validator |