| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nn0ge2m1nn | GIF version | ||
| Description: If a nonnegative integer is greater than or equal to two, the integer decreased by 1 is a positive integer. (Contributed by Alexander van der Vekens, 1-Aug-2018.) (Revised by AV, 4-Jan-2020.) |
| Ref | Expression |
|---|---|
| nn0ge2m1nn | ⊢ ((𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁) → (𝑁 − 1) ∈ ℕ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 109 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁) → 𝑁 ∈ ℕ0) | |
| 2 | 1red 8107 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ0 → 1 ∈ ℝ) | |
| 3 | 2re 9126 | . . . . . . . . 9 ⊢ 2 ∈ ℝ | |
| 4 | 3 | a1i 9 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ0 → 2 ∈ ℝ) |
| 5 | nn0re 9324 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ) | |
| 6 | 2, 4, 5 | 3jca 1180 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 → (1 ∈ ℝ ∧ 2 ∈ ℝ ∧ 𝑁 ∈ ℝ)) |
| 7 | 6 | adantr 276 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁) → (1 ∈ ℝ ∧ 2 ∈ ℝ ∧ 𝑁 ∈ ℝ)) |
| 8 | simpr 110 | . . . . . . 7 ⊢ ((𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁) → 2 ≤ 𝑁) | |
| 9 | 1lt2 9226 | . . . . . . 7 ⊢ 1 < 2 | |
| 10 | 8, 9 | jctil 312 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁) → (1 < 2 ∧ 2 ≤ 𝑁)) |
| 11 | ltleletr 8174 | . . . . . 6 ⊢ ((1 ∈ ℝ ∧ 2 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((1 < 2 ∧ 2 ≤ 𝑁) → 1 ≤ 𝑁)) | |
| 12 | 7, 10, 11 | sylc 62 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁) → 1 ≤ 𝑁) |
| 13 | elnnnn0c 9360 | . . . . 5 ⊢ (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁)) | |
| 14 | 1, 12, 13 | sylanbrc 417 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁) → 𝑁 ∈ ℕ) |
| 15 | nn1m1nn 9074 | . . . 4 ⊢ (𝑁 ∈ ℕ → (𝑁 = 1 ∨ (𝑁 − 1) ∈ ℕ)) | |
| 16 | 14, 15 | syl 14 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁) → (𝑁 = 1 ∨ (𝑁 − 1) ∈ ℕ)) |
| 17 | 1re 8091 | . . . . . . . . . . 11 ⊢ 1 ∈ ℝ | |
| 18 | 3, 17 | lenlti 8193 | . . . . . . . . . 10 ⊢ (2 ≤ 1 ↔ ¬ 1 < 2) |
| 19 | 18 | biimpi 120 | . . . . . . . . 9 ⊢ (2 ≤ 1 → ¬ 1 < 2) |
| 20 | 9, 19 | mt2 641 | . . . . . . . 8 ⊢ ¬ 2 ≤ 1 |
| 21 | breq2 4055 | . . . . . . . 8 ⊢ (𝑁 = 1 → (2 ≤ 𝑁 ↔ 2 ≤ 1)) | |
| 22 | 20, 21 | mtbiri 677 | . . . . . . 7 ⊢ (𝑁 = 1 → ¬ 2 ≤ 𝑁) |
| 23 | 22 | pm2.21d 620 | . . . . . 6 ⊢ (𝑁 = 1 → (2 ≤ 𝑁 → (𝑁 − 1) ∈ ℕ)) |
| 24 | 23 | com12 30 | . . . . 5 ⊢ (2 ≤ 𝑁 → (𝑁 = 1 → (𝑁 − 1) ∈ ℕ)) |
| 25 | 24 | adantl 277 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁) → (𝑁 = 1 → (𝑁 − 1) ∈ ℕ)) |
| 26 | 25 | orim1d 789 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁) → ((𝑁 = 1 ∨ (𝑁 − 1) ∈ ℕ) → ((𝑁 − 1) ∈ ℕ ∨ (𝑁 − 1) ∈ ℕ))) |
| 27 | 16, 26 | mpd 13 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁) → ((𝑁 − 1) ∈ ℕ ∨ (𝑁 − 1) ∈ ℕ)) |
| 28 | oridm 759 | . 2 ⊢ (((𝑁 − 1) ∈ ℕ ∨ (𝑁 − 1) ∈ ℕ) ↔ (𝑁 − 1) ∈ ℕ) | |
| 29 | 27, 28 | sylib 122 | 1 ⊢ ((𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁) → (𝑁 − 1) ∈ ℕ) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∨ wo 710 ∧ w3a 981 = wceq 1373 ∈ wcel 2177 class class class wbr 4051 (class class class)co 5957 ℝcr 7944 1c1 7946 < clt 8127 ≤ cle 8128 − cmin 8263 ℕcn 9056 2c2 9107 ℕ0cn0 9315 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 ax-cnex 8036 ax-resscn 8037 ax-1cn 8038 ax-1re 8039 ax-icn 8040 ax-addcl 8041 ax-addrcl 8042 ax-mulcl 8043 ax-addcom 8045 ax-addass 8047 ax-distr 8049 ax-i2m1 8050 ax-0lt1 8051 ax-0id 8053 ax-rnegex 8054 ax-cnre 8056 ax-pre-ltirr 8057 ax-pre-ltwlin 8058 ax-pre-lttrn 8059 ax-pre-ltadd 8061 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-br 4052 df-opab 4114 df-id 4348 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-iota 5241 df-fun 5282 df-fv 5288 df-riota 5912 df-ov 5960 df-oprab 5961 df-mpo 5962 df-pnf 8129 df-mnf 8130 df-xr 8131 df-ltxr 8132 df-le 8133 df-sub 8265 df-inn 9057 df-2 9115 df-n0 9316 |
| This theorem is referenced by: nn0ge2m1nn0 9376 |
| Copyright terms: Public domain | W3C validator |