ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0ge2m1nn GIF version

Theorem nn0ge2m1nn 9300
Description: If a nonnegative integer is greater than or equal to two, the integer decreased by 1 is a positive integer. (Contributed by Alexander van der Vekens, 1-Aug-2018.) (Revised by AV, 4-Jan-2020.)
Assertion
Ref Expression
nn0ge2m1nn ((𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁) → (𝑁 − 1) ∈ ℕ)

Proof of Theorem nn0ge2m1nn
StepHypRef Expression
1 simpl 109 . . . . 5 ((𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁) → 𝑁 ∈ ℕ0)
2 1red 8034 . . . . . . . 8 (𝑁 ∈ ℕ0 → 1 ∈ ℝ)
3 2re 9052 . . . . . . . . 9 2 ∈ ℝ
43a1i 9 . . . . . . . 8 (𝑁 ∈ ℕ0 → 2 ∈ ℝ)
5 nn0re 9249 . . . . . . . 8 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
62, 4, 53jca 1179 . . . . . . 7 (𝑁 ∈ ℕ0 → (1 ∈ ℝ ∧ 2 ∈ ℝ ∧ 𝑁 ∈ ℝ))
76adantr 276 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁) → (1 ∈ ℝ ∧ 2 ∈ ℝ ∧ 𝑁 ∈ ℝ))
8 simpr 110 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁) → 2 ≤ 𝑁)
9 1lt2 9151 . . . . . . 7 1 < 2
108, 9jctil 312 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁) → (1 < 2 ∧ 2 ≤ 𝑁))
11 ltleletr 8101 . . . . . 6 ((1 ∈ ℝ ∧ 2 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((1 < 2 ∧ 2 ≤ 𝑁) → 1 ≤ 𝑁))
127, 10, 11sylc 62 . . . . 5 ((𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁) → 1 ≤ 𝑁)
13 elnnnn0c 9285 . . . . 5 (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁))
141, 12, 13sylanbrc 417 . . . 4 ((𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁) → 𝑁 ∈ ℕ)
15 nn1m1nn 9000 . . . 4 (𝑁 ∈ ℕ → (𝑁 = 1 ∨ (𝑁 − 1) ∈ ℕ))
1614, 15syl 14 . . 3 ((𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁) → (𝑁 = 1 ∨ (𝑁 − 1) ∈ ℕ))
17 1re 8018 . . . . . . . . . . 11 1 ∈ ℝ
183, 17lenlti 8120 . . . . . . . . . 10 (2 ≤ 1 ↔ ¬ 1 < 2)
1918biimpi 120 . . . . . . . . 9 (2 ≤ 1 → ¬ 1 < 2)
209, 19mt2 641 . . . . . . . 8 ¬ 2 ≤ 1
21 breq2 4033 . . . . . . . 8 (𝑁 = 1 → (2 ≤ 𝑁 ↔ 2 ≤ 1))
2220, 21mtbiri 676 . . . . . . 7 (𝑁 = 1 → ¬ 2 ≤ 𝑁)
2322pm2.21d 620 . . . . . 6 (𝑁 = 1 → (2 ≤ 𝑁 → (𝑁 − 1) ∈ ℕ))
2423com12 30 . . . . 5 (2 ≤ 𝑁 → (𝑁 = 1 → (𝑁 − 1) ∈ ℕ))
2524adantl 277 . . . 4 ((𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁) → (𝑁 = 1 → (𝑁 − 1) ∈ ℕ))
2625orim1d 788 . . 3 ((𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁) → ((𝑁 = 1 ∨ (𝑁 − 1) ∈ ℕ) → ((𝑁 − 1) ∈ ℕ ∨ (𝑁 − 1) ∈ ℕ)))
2716, 26mpd 13 . 2 ((𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁) → ((𝑁 − 1) ∈ ℕ ∨ (𝑁 − 1) ∈ ℕ))
28 oridm 758 . 2 (((𝑁 − 1) ∈ ℕ ∨ (𝑁 − 1) ∈ ℕ) ↔ (𝑁 − 1) ∈ ℕ)
2927, 28sylib 122 1 ((𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁) → (𝑁 − 1) ∈ ℕ)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 709  w3a 980   = wceq 1364  wcel 2164   class class class wbr 4029  (class class class)co 5918  cr 7871  1c1 7873   < clt 8054  cle 8055  cmin 8190  cn 8982  2c2 9033  0cn0 9240
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-iota 5215  df-fun 5256  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-inn 8983  df-2 9041  df-n0 9241
This theorem is referenced by:  nn0ge2m1nn0  9301
  Copyright terms: Public domain W3C validator