ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0ge2m1nn GIF version

Theorem nn0ge2m1nn 9235
Description: If a nonnegative integer is greater than or equal to two, the integer decreased by 1 is a positive integer. (Contributed by Alexander van der Vekens, 1-Aug-2018.) (Revised by AV, 4-Jan-2020.)
Assertion
Ref Expression
nn0ge2m1nn ((𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁) → (𝑁 − 1) ∈ ℕ)

Proof of Theorem nn0ge2m1nn
StepHypRef Expression
1 simpl 109 . . . . 5 ((𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁) → 𝑁 ∈ ℕ0)
2 1red 7971 . . . . . . . 8 (𝑁 ∈ ℕ0 → 1 ∈ ℝ)
3 2re 8988 . . . . . . . . 9 2 ∈ ℝ
43a1i 9 . . . . . . . 8 (𝑁 ∈ ℕ0 → 2 ∈ ℝ)
5 nn0re 9184 . . . . . . . 8 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
62, 4, 53jca 1177 . . . . . . 7 (𝑁 ∈ ℕ0 → (1 ∈ ℝ ∧ 2 ∈ ℝ ∧ 𝑁 ∈ ℝ))
76adantr 276 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁) → (1 ∈ ℝ ∧ 2 ∈ ℝ ∧ 𝑁 ∈ ℝ))
8 simpr 110 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁) → 2 ≤ 𝑁)
9 1lt2 9087 . . . . . . 7 1 < 2
108, 9jctil 312 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁) → (1 < 2 ∧ 2 ≤ 𝑁))
11 ltleletr 8038 . . . . . 6 ((1 ∈ ℝ ∧ 2 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((1 < 2 ∧ 2 ≤ 𝑁) → 1 ≤ 𝑁))
127, 10, 11sylc 62 . . . . 5 ((𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁) → 1 ≤ 𝑁)
13 elnnnn0c 9220 . . . . 5 (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁))
141, 12, 13sylanbrc 417 . . . 4 ((𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁) → 𝑁 ∈ ℕ)
15 nn1m1nn 8936 . . . 4 (𝑁 ∈ ℕ → (𝑁 = 1 ∨ (𝑁 − 1) ∈ ℕ))
1614, 15syl 14 . . 3 ((𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁) → (𝑁 = 1 ∨ (𝑁 − 1) ∈ ℕ))
17 1re 7955 . . . . . . . . . . 11 1 ∈ ℝ
183, 17lenlti 8057 . . . . . . . . . 10 (2 ≤ 1 ↔ ¬ 1 < 2)
1918biimpi 120 . . . . . . . . 9 (2 ≤ 1 → ¬ 1 < 2)
209, 19mt2 640 . . . . . . . 8 ¬ 2 ≤ 1
21 breq2 4007 . . . . . . . 8 (𝑁 = 1 → (2 ≤ 𝑁 ↔ 2 ≤ 1))
2220, 21mtbiri 675 . . . . . . 7 (𝑁 = 1 → ¬ 2 ≤ 𝑁)
2322pm2.21d 619 . . . . . 6 (𝑁 = 1 → (2 ≤ 𝑁 → (𝑁 − 1) ∈ ℕ))
2423com12 30 . . . . 5 (2 ≤ 𝑁 → (𝑁 = 1 → (𝑁 − 1) ∈ ℕ))
2524adantl 277 . . . 4 ((𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁) → (𝑁 = 1 → (𝑁 − 1) ∈ ℕ))
2625orim1d 787 . . 3 ((𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁) → ((𝑁 = 1 ∨ (𝑁 − 1) ∈ ℕ) → ((𝑁 − 1) ∈ ℕ ∨ (𝑁 − 1) ∈ ℕ)))
2716, 26mpd 13 . 2 ((𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁) → ((𝑁 − 1) ∈ ℕ ∨ (𝑁 − 1) ∈ ℕ))
28 oridm 757 . 2 (((𝑁 − 1) ∈ ℕ ∨ (𝑁 − 1) ∈ ℕ) ↔ (𝑁 − 1) ∈ ℕ)
2927, 28sylib 122 1 ((𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁) → (𝑁 − 1) ∈ ℕ)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 708  w3a 978   = wceq 1353  wcel 2148   class class class wbr 4003  (class class class)co 5874  cr 7809  1c1 7811   < clt 7991  cle 7992  cmin 8127  cn 8918  2c2 8969  0cn0 9175
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4121  ax-pow 4174  ax-pr 4209  ax-un 4433  ax-setind 4536  ax-cnex 7901  ax-resscn 7902  ax-1cn 7903  ax-1re 7904  ax-icn 7905  ax-addcl 7906  ax-addrcl 7907  ax-mulcl 7908  ax-addcom 7910  ax-addass 7912  ax-distr 7914  ax-i2m1 7915  ax-0lt1 7916  ax-0id 7918  ax-rnegex 7919  ax-cnre 7921  ax-pre-ltirr 7922  ax-pre-ltwlin 7923  ax-pre-lttrn 7924  ax-pre-ltadd 7926
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-int 3845  df-br 4004  df-opab 4065  df-id 4293  df-xp 4632  df-rel 4633  df-cnv 4634  df-co 4635  df-dm 4636  df-iota 5178  df-fun 5218  df-fv 5224  df-riota 5830  df-ov 5877  df-oprab 5878  df-mpo 5879  df-pnf 7993  df-mnf 7994  df-xr 7995  df-ltxr 7996  df-le 7997  df-sub 8129  df-inn 8919  df-2 8977  df-n0 9176
This theorem is referenced by:  nn0ge2m1nn0  9236
  Copyright terms: Public domain W3C validator