ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sqpweven GIF version

Theorem sqpweven 11889
Description: The greatest power of two dividing the square of an integer is an even power of two. (Contributed by Jim Kingdon, 17-Nov-2021.)
Hypotheses
Ref Expression
oddpwdc.j 𝐽 = {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}
oddpwdc.f 𝐹 = (𝑥𝐽, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥))
Assertion
Ref Expression
sqpweven (𝐴 ∈ ℕ → 2 ∥ (2nd ‘(𝐹‘(𝐴↑2))))
Distinct variable groups:   𝑥,𝑦,𝑧   𝑥,𝐽,𝑦   𝑥,𝐴,𝑦,𝑧   𝑥,𝐹,𝑦,𝑧
Allowed substitution hint:   𝐽(𝑧)

Proof of Theorem sqpweven
StepHypRef Expression
1 oddpwdc.j . . . . . . . 8 𝐽 = {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}
2 oddpwdc.f . . . . . . . 8 𝐹 = (𝑥𝐽, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥))
31, 2oddpwdc 11888 . . . . . . 7 𝐹:(𝐽 × ℕ0)–1-1-onto→ℕ
4 f1ocnv 5388 . . . . . . 7 (𝐹:(𝐽 × ℕ0)–1-1-onto→ℕ → 𝐹:ℕ–1-1-onto→(𝐽 × ℕ0))
5 f1of 5375 . . . . . . 7 (𝐹:ℕ–1-1-onto→(𝐽 × ℕ0) → 𝐹:ℕ⟶(𝐽 × ℕ0))
63, 4, 5mp2b 8 . . . . . 6 𝐹:ℕ⟶(𝐽 × ℕ0)
76ffvelrni 5562 . . . . 5 (𝐴 ∈ ℕ → (𝐹𝐴) ∈ (𝐽 × ℕ0))
8 xp2nd 6072 . . . . 5 ((𝐹𝐴) ∈ (𝐽 × ℕ0) → (2nd ‘(𝐹𝐴)) ∈ ℕ0)
97, 8syl 14 . . . 4 (𝐴 ∈ ℕ → (2nd ‘(𝐹𝐴)) ∈ ℕ0)
109nn0zd 9195 . . 3 (𝐴 ∈ ℕ → (2nd ‘(𝐹𝐴)) ∈ ℤ)
11 2nn 8905 . . . . 5 2 ∈ ℕ
1211a1i 9 . . . 4 (𝐴 ∈ ℕ → 2 ∈ ℕ)
1312nnzd 9196 . . 3 (𝐴 ∈ ℕ → 2 ∈ ℤ)
14 dvdsmul2 11552 . . 3 (((2nd ‘(𝐹𝐴)) ∈ ℤ ∧ 2 ∈ ℤ) → 2 ∥ ((2nd ‘(𝐹𝐴)) · 2))
1510, 13, 14syl2anc 409 . 2 (𝐴 ∈ ℕ → 2 ∥ ((2nd ‘(𝐹𝐴)) · 2))
16 xp1st 6071 . . . . . . . . . 10 ((𝐹𝐴) ∈ (𝐽 × ℕ0) → (1st ‘(𝐹𝐴)) ∈ 𝐽)
177, 16syl 14 . . . . . . . . 9 (𝐴 ∈ ℕ → (1st ‘(𝐹𝐴)) ∈ 𝐽)
18 breq2 3941 . . . . . . . . . . . 12 (𝑧 = (1st ‘(𝐹𝐴)) → (2 ∥ 𝑧 ↔ 2 ∥ (1st ‘(𝐹𝐴))))
1918notbid 657 . . . . . . . . . . 11 (𝑧 = (1st ‘(𝐹𝐴)) → (¬ 2 ∥ 𝑧 ↔ ¬ 2 ∥ (1st ‘(𝐹𝐴))))
2019, 1elrab2 2847 . . . . . . . . . 10 ((1st ‘(𝐹𝐴)) ∈ 𝐽 ↔ ((1st ‘(𝐹𝐴)) ∈ ℕ ∧ ¬ 2 ∥ (1st ‘(𝐹𝐴))))
2120simplbi 272 . . . . . . . . 9 ((1st ‘(𝐹𝐴)) ∈ 𝐽 → (1st ‘(𝐹𝐴)) ∈ ℕ)
2217, 21syl 14 . . . . . . . 8 (𝐴 ∈ ℕ → (1st ‘(𝐹𝐴)) ∈ ℕ)
2322nnsqcld 10476 . . . . . . 7 (𝐴 ∈ ℕ → ((1st ‘(𝐹𝐴))↑2) ∈ ℕ)
2420simprbi 273 . . . . . . . . . 10 ((1st ‘(𝐹𝐴)) ∈ 𝐽 → ¬ 2 ∥ (1st ‘(𝐹𝐴)))
2517, 24syl 14 . . . . . . . . 9 (𝐴 ∈ ℕ → ¬ 2 ∥ (1st ‘(𝐹𝐴)))
26 2prm 11844 . . . . . . . . . 10 2 ∈ ℙ
2722nnzd 9196 . . . . . . . . . 10 (𝐴 ∈ ℕ → (1st ‘(𝐹𝐴)) ∈ ℤ)
28 euclemma 11860 . . . . . . . . . . 11 ((2 ∈ ℙ ∧ (1st ‘(𝐹𝐴)) ∈ ℤ ∧ (1st ‘(𝐹𝐴)) ∈ ℤ) → (2 ∥ ((1st ‘(𝐹𝐴)) · (1st ‘(𝐹𝐴))) ↔ (2 ∥ (1st ‘(𝐹𝐴)) ∨ 2 ∥ (1st ‘(𝐹𝐴)))))
29 oridm 747 . . . . . . . . . . 11 ((2 ∥ (1st ‘(𝐹𝐴)) ∨ 2 ∥ (1st ‘(𝐹𝐴))) ↔ 2 ∥ (1st ‘(𝐹𝐴)))
3028, 29syl6bb 195 . . . . . . . . . 10 ((2 ∈ ℙ ∧ (1st ‘(𝐹𝐴)) ∈ ℤ ∧ (1st ‘(𝐹𝐴)) ∈ ℤ) → (2 ∥ ((1st ‘(𝐹𝐴)) · (1st ‘(𝐹𝐴))) ↔ 2 ∥ (1st ‘(𝐹𝐴))))
3126, 27, 27, 30mp3an2i 1321 . . . . . . . . 9 (𝐴 ∈ ℕ → (2 ∥ ((1st ‘(𝐹𝐴)) · (1st ‘(𝐹𝐴))) ↔ 2 ∥ (1st ‘(𝐹𝐴))))
3225, 31mtbird 663 . . . . . . . 8 (𝐴 ∈ ℕ → ¬ 2 ∥ ((1st ‘(𝐹𝐴)) · (1st ‘(𝐹𝐴))))
3322nncnd 8758 . . . . . . . . . 10 (𝐴 ∈ ℕ → (1st ‘(𝐹𝐴)) ∈ ℂ)
3433sqvald 10452 . . . . . . . . 9 (𝐴 ∈ ℕ → ((1st ‘(𝐹𝐴))↑2) = ((1st ‘(𝐹𝐴)) · (1st ‘(𝐹𝐴))))
3534breq2d 3949 . . . . . . . 8 (𝐴 ∈ ℕ → (2 ∥ ((1st ‘(𝐹𝐴))↑2) ↔ 2 ∥ ((1st ‘(𝐹𝐴)) · (1st ‘(𝐹𝐴)))))
3632, 35mtbird 663 . . . . . . 7 (𝐴 ∈ ℕ → ¬ 2 ∥ ((1st ‘(𝐹𝐴))↑2))
37 breq2 3941 . . . . . . . . 9 (𝑧 = ((1st ‘(𝐹𝐴))↑2) → (2 ∥ 𝑧 ↔ 2 ∥ ((1st ‘(𝐹𝐴))↑2)))
3837notbid 657 . . . . . . . 8 (𝑧 = ((1st ‘(𝐹𝐴))↑2) → (¬ 2 ∥ 𝑧 ↔ ¬ 2 ∥ ((1st ‘(𝐹𝐴))↑2)))
3938, 1elrab2 2847 . . . . . . 7 (((1st ‘(𝐹𝐴))↑2) ∈ 𝐽 ↔ (((1st ‘(𝐹𝐴))↑2) ∈ ℕ ∧ ¬ 2 ∥ ((1st ‘(𝐹𝐴))↑2)))
4023, 36, 39sylanbrc 414 . . . . . 6 (𝐴 ∈ ℕ → ((1st ‘(𝐹𝐴))↑2) ∈ 𝐽)
4112nnnn0d 9054 . . . . . . 7 (𝐴 ∈ ℕ → 2 ∈ ℕ0)
429, 41nn0mulcld 9059 . . . . . 6 (𝐴 ∈ ℕ → ((2nd ‘(𝐹𝐴)) · 2) ∈ ℕ0)
43 opelxp 4577 . . . . . 6 (⟨((1st ‘(𝐹𝐴))↑2), ((2nd ‘(𝐹𝐴)) · 2)⟩ ∈ (𝐽 × ℕ0) ↔ (((1st ‘(𝐹𝐴))↑2) ∈ 𝐽 ∧ ((2nd ‘(𝐹𝐴)) · 2) ∈ ℕ0))
4440, 42, 43sylanbrc 414 . . . . 5 (𝐴 ∈ ℕ → ⟨((1st ‘(𝐹𝐴))↑2), ((2nd ‘(𝐹𝐴)) · 2)⟩ ∈ (𝐽 × ℕ0))
4512nncnd 8758 . . . . . . . . 9 (𝐴 ∈ ℕ → 2 ∈ ℂ)
4645, 41, 9expmuld 10458 . . . . . . . 8 (𝐴 ∈ ℕ → (2↑((2nd ‘(𝐹𝐴)) · 2)) = ((2↑(2nd ‘(𝐹𝐴)))↑2))
4746oveq1d 5797 . . . . . . 7 (𝐴 ∈ ℕ → ((2↑((2nd ‘(𝐹𝐴)) · 2)) · ((1st ‘(𝐹𝐴))↑2)) = (((2↑(2nd ‘(𝐹𝐴)))↑2) · ((1st ‘(𝐹𝐴))↑2)))
4812, 42nnexpcld 10477 . . . . . . . . 9 (𝐴 ∈ ℕ → (2↑((2nd ‘(𝐹𝐴)) · 2)) ∈ ℕ)
4948, 23nnmulcld 8793 . . . . . . . 8 (𝐴 ∈ ℕ → ((2↑((2nd ‘(𝐹𝐴)) · 2)) · ((1st ‘(𝐹𝐴))↑2)) ∈ ℕ)
50 oveq2 5790 . . . . . . . . 9 (𝑥 = ((1st ‘(𝐹𝐴))↑2) → ((2↑𝑦) · 𝑥) = ((2↑𝑦) · ((1st ‘(𝐹𝐴))↑2)))
51 oveq2 5790 . . . . . . . . . 10 (𝑦 = ((2nd ‘(𝐹𝐴)) · 2) → (2↑𝑦) = (2↑((2nd ‘(𝐹𝐴)) · 2)))
5251oveq1d 5797 . . . . . . . . 9 (𝑦 = ((2nd ‘(𝐹𝐴)) · 2) → ((2↑𝑦) · ((1st ‘(𝐹𝐴))↑2)) = ((2↑((2nd ‘(𝐹𝐴)) · 2)) · ((1st ‘(𝐹𝐴))↑2)))
5350, 52, 2ovmpog 5913 . . . . . . . 8 ((((1st ‘(𝐹𝐴))↑2) ∈ 𝐽 ∧ ((2nd ‘(𝐹𝐴)) · 2) ∈ ℕ0 ∧ ((2↑((2nd ‘(𝐹𝐴)) · 2)) · ((1st ‘(𝐹𝐴))↑2)) ∈ ℕ) → (((1st ‘(𝐹𝐴))↑2)𝐹((2nd ‘(𝐹𝐴)) · 2)) = ((2↑((2nd ‘(𝐹𝐴)) · 2)) · ((1st ‘(𝐹𝐴))↑2)))
5440, 42, 49, 53syl3anc 1217 . . . . . . 7 (𝐴 ∈ ℕ → (((1st ‘(𝐹𝐴))↑2)𝐹((2nd ‘(𝐹𝐴)) · 2)) = ((2↑((2nd ‘(𝐹𝐴)) · 2)) · ((1st ‘(𝐹𝐴))↑2)))
55 f1ocnvfv2 5687 . . . . . . . . . . . . 13 ((𝐹:(𝐽 × ℕ0)–1-1-onto→ℕ ∧ 𝐴 ∈ ℕ) → (𝐹‘(𝐹𝐴)) = 𝐴)
563, 55mpan 421 . . . . . . . . . . . 12 (𝐴 ∈ ℕ → (𝐹‘(𝐹𝐴)) = 𝐴)
57 1st2nd2 6081 . . . . . . . . . . . . . 14 ((𝐹𝐴) ∈ (𝐽 × ℕ0) → (𝐹𝐴) = ⟨(1st ‘(𝐹𝐴)), (2nd ‘(𝐹𝐴))⟩)
587, 57syl 14 . . . . . . . . . . . . 13 (𝐴 ∈ ℕ → (𝐹𝐴) = ⟨(1st ‘(𝐹𝐴)), (2nd ‘(𝐹𝐴))⟩)
5958fveq2d 5433 . . . . . . . . . . . 12 (𝐴 ∈ ℕ → (𝐹‘(𝐹𝐴)) = (𝐹‘⟨(1st ‘(𝐹𝐴)), (2nd ‘(𝐹𝐴))⟩))
6056, 59eqtr3d 2175 . . . . . . . . . . 11 (𝐴 ∈ ℕ → 𝐴 = (𝐹‘⟨(1st ‘(𝐹𝐴)), (2nd ‘(𝐹𝐴))⟩))
61 df-ov 5785 . . . . . . . . . . 11 ((1st ‘(𝐹𝐴))𝐹(2nd ‘(𝐹𝐴))) = (𝐹‘⟨(1st ‘(𝐹𝐴)), (2nd ‘(𝐹𝐴))⟩)
6260, 61eqtr4di 2191 . . . . . . . . . 10 (𝐴 ∈ ℕ → 𝐴 = ((1st ‘(𝐹𝐴))𝐹(2nd ‘(𝐹𝐴))))
6312, 9nnexpcld 10477 . . . . . . . . . . . 12 (𝐴 ∈ ℕ → (2↑(2nd ‘(𝐹𝐴))) ∈ ℕ)
6463, 22nnmulcld 8793 . . . . . . . . . . 11 (𝐴 ∈ ℕ → ((2↑(2nd ‘(𝐹𝐴))) · (1st ‘(𝐹𝐴))) ∈ ℕ)
65 oveq2 5790 . . . . . . . . . . . 12 (𝑥 = (1st ‘(𝐹𝐴)) → ((2↑𝑦) · 𝑥) = ((2↑𝑦) · (1st ‘(𝐹𝐴))))
66 oveq2 5790 . . . . . . . . . . . . 13 (𝑦 = (2nd ‘(𝐹𝐴)) → (2↑𝑦) = (2↑(2nd ‘(𝐹𝐴))))
6766oveq1d 5797 . . . . . . . . . . . 12 (𝑦 = (2nd ‘(𝐹𝐴)) → ((2↑𝑦) · (1st ‘(𝐹𝐴))) = ((2↑(2nd ‘(𝐹𝐴))) · (1st ‘(𝐹𝐴))))
6865, 67, 2ovmpog 5913 . . . . . . . . . . 11 (((1st ‘(𝐹𝐴)) ∈ 𝐽 ∧ (2nd ‘(𝐹𝐴)) ∈ ℕ0 ∧ ((2↑(2nd ‘(𝐹𝐴))) · (1st ‘(𝐹𝐴))) ∈ ℕ) → ((1st ‘(𝐹𝐴))𝐹(2nd ‘(𝐹𝐴))) = ((2↑(2nd ‘(𝐹𝐴))) · (1st ‘(𝐹𝐴))))
6917, 9, 64, 68syl3anc 1217 . . . . . . . . . 10 (𝐴 ∈ ℕ → ((1st ‘(𝐹𝐴))𝐹(2nd ‘(𝐹𝐴))) = ((2↑(2nd ‘(𝐹𝐴))) · (1st ‘(𝐹𝐴))))
7062, 69eqtrd 2173 . . . . . . . . 9 (𝐴 ∈ ℕ → 𝐴 = ((2↑(2nd ‘(𝐹𝐴))) · (1st ‘(𝐹𝐴))))
7170oveq1d 5797 . . . . . . . 8 (𝐴 ∈ ℕ → (𝐴↑2) = (((2↑(2nd ‘(𝐹𝐴))) · (1st ‘(𝐹𝐴)))↑2))
7263nncnd 8758 . . . . . . . . 9 (𝐴 ∈ ℕ → (2↑(2nd ‘(𝐹𝐴))) ∈ ℂ)
7372, 33sqmuld 10467 . . . . . . . 8 (𝐴 ∈ ℕ → (((2↑(2nd ‘(𝐹𝐴))) · (1st ‘(𝐹𝐴)))↑2) = (((2↑(2nd ‘(𝐹𝐴)))↑2) · ((1st ‘(𝐹𝐴))↑2)))
7471, 73eqtrd 2173 . . . . . . 7 (𝐴 ∈ ℕ → (𝐴↑2) = (((2↑(2nd ‘(𝐹𝐴)))↑2) · ((1st ‘(𝐹𝐴))↑2)))
7547, 54, 743eqtr4rd 2184 . . . . . 6 (𝐴 ∈ ℕ → (𝐴↑2) = (((1st ‘(𝐹𝐴))↑2)𝐹((2nd ‘(𝐹𝐴)) · 2)))
76 df-ov 5785 . . . . . 6 (((1st ‘(𝐹𝐴))↑2)𝐹((2nd ‘(𝐹𝐴)) · 2)) = (𝐹‘⟨((1st ‘(𝐹𝐴))↑2), ((2nd ‘(𝐹𝐴)) · 2)⟩)
7775, 76eqtr2di 2190 . . . . 5 (𝐴 ∈ ℕ → (𝐹‘⟨((1st ‘(𝐹𝐴))↑2), ((2nd ‘(𝐹𝐴)) · 2)⟩) = (𝐴↑2))
78 f1ocnvfv 5688 . . . . . 6 ((𝐹:(𝐽 × ℕ0)–1-1-onto→ℕ ∧ ⟨((1st ‘(𝐹𝐴))↑2), ((2nd ‘(𝐹𝐴)) · 2)⟩ ∈ (𝐽 × ℕ0)) → ((𝐹‘⟨((1st ‘(𝐹𝐴))↑2), ((2nd ‘(𝐹𝐴)) · 2)⟩) = (𝐴↑2) → (𝐹‘(𝐴↑2)) = ⟨((1st ‘(𝐹𝐴))↑2), ((2nd ‘(𝐹𝐴)) · 2)⟩))
793, 78mpan 421 . . . . 5 (⟨((1st ‘(𝐹𝐴))↑2), ((2nd ‘(𝐹𝐴)) · 2)⟩ ∈ (𝐽 × ℕ0) → ((𝐹‘⟨((1st ‘(𝐹𝐴))↑2), ((2nd ‘(𝐹𝐴)) · 2)⟩) = (𝐴↑2) → (𝐹‘(𝐴↑2)) = ⟨((1st ‘(𝐹𝐴))↑2), ((2nd ‘(𝐹𝐴)) · 2)⟩))
8044, 77, 79sylc 62 . . . 4 (𝐴 ∈ ℕ → (𝐹‘(𝐴↑2)) = ⟨((1st ‘(𝐹𝐴))↑2), ((2nd ‘(𝐹𝐴)) · 2)⟩)
8180fveq2d 5433 . . 3 (𝐴 ∈ ℕ → (2nd ‘(𝐹‘(𝐴↑2))) = (2nd ‘⟨((1st ‘(𝐹𝐴))↑2), ((2nd ‘(𝐹𝐴)) · 2)⟩))
82 op2ndg 6057 . . . 4 ((((1st ‘(𝐹𝐴))↑2) ∈ 𝐽 ∧ ((2nd ‘(𝐹𝐴)) · 2) ∈ ℕ0) → (2nd ‘⟨((1st ‘(𝐹𝐴))↑2), ((2nd ‘(𝐹𝐴)) · 2)⟩) = ((2nd ‘(𝐹𝐴)) · 2))
8340, 42, 82syl2anc 409 . . 3 (𝐴 ∈ ℕ → (2nd ‘⟨((1st ‘(𝐹𝐴))↑2), ((2nd ‘(𝐹𝐴)) · 2)⟩) = ((2nd ‘(𝐹𝐴)) · 2))
8481, 83eqtrd 2173 . 2 (𝐴 ∈ ℕ → (2nd ‘(𝐹‘(𝐴↑2))) = ((2nd ‘(𝐹𝐴)) · 2))
8515, 84breqtrrd 3964 1 (𝐴 ∈ ℕ → 2 ∥ (2nd ‘(𝐹‘(𝐴↑2))))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wb 104  wo 698  w3a 963   = wceq 1332  wcel 1481  {crab 2421  cop 3535   class class class wbr 3937   × cxp 4545  ccnv 4546  wf 5127  1-1-ontowf1o 5130  cfv 5131  (class class class)co 5782  cmpo 5784  1st c1st 6044  2nd c2nd 6045   · cmul 7649  cn 8744  2c2 8795  0cn0 9001  cz 9078  cexp 10323  cdvds 11529  cprime 11824
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-mulrcl 7743  ax-addcom 7744  ax-mulcom 7745  ax-addass 7746  ax-mulass 7747  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-1rid 7751  ax-0id 7752  ax-rnegex 7753  ax-precex 7754  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-apti 7759  ax-pre-ltadd 7760  ax-pre-mulgt0 7761  ax-pre-mulext 7762  ax-arch 7763  ax-caucvg 7764
This theorem depends on definitions:  df-bi 116  df-stab 817  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-if 3480  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-po 4226  df-iso 4227  df-iord 4296  df-on 4298  df-ilim 4299  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-frec 6296  df-1o 6321  df-2o 6322  df-er 6437  df-en 6643  df-sup 6879  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-reap 8361  df-ap 8368  df-div 8457  df-inn 8745  df-2 8803  df-3 8804  df-4 8805  df-n0 9002  df-z 9079  df-uz 9351  df-q 9439  df-rp 9471  df-fz 9822  df-fzo 9951  df-fl 10074  df-mod 10127  df-seqfrec 10250  df-exp 10324  df-cj 10646  df-re 10647  df-im 10648  df-rsqrt 10802  df-abs 10803  df-dvds 11530  df-gcd 11672  df-prm 11825
This theorem is referenced by:  sqne2sq  11891
  Copyright terms: Public domain W3C validator