ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sqpweven GIF version

Theorem sqpweven 12129
Description: The greatest power of two dividing the square of an integer is an even power of two. (Contributed by Jim Kingdon, 17-Nov-2021.)
Hypotheses
Ref Expression
oddpwdc.j 𝐽 = {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}
oddpwdc.f 𝐹 = (𝑥𝐽, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥))
Assertion
Ref Expression
sqpweven (𝐴 ∈ ℕ → 2 ∥ (2nd ‘(𝐹‘(𝐴↑2))))
Distinct variable groups:   𝑥,𝑦,𝑧   𝑥,𝐽,𝑦   𝑥,𝐴,𝑦,𝑧   𝑥,𝐹,𝑦,𝑧
Allowed substitution hint:   𝐽(𝑧)

Proof of Theorem sqpweven
StepHypRef Expression
1 oddpwdc.j . . . . . . . 8 𝐽 = {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}
2 oddpwdc.f . . . . . . . 8 𝐹 = (𝑥𝐽, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥))
31, 2oddpwdc 12128 . . . . . . 7 𝐹:(𝐽 × ℕ0)–1-1-onto→ℕ
4 f1ocnv 5455 . . . . . . 7 (𝐹:(𝐽 × ℕ0)–1-1-onto→ℕ → 𝐹:ℕ–1-1-onto→(𝐽 × ℕ0))
5 f1of 5442 . . . . . . 7 (𝐹:ℕ–1-1-onto→(𝐽 × ℕ0) → 𝐹:ℕ⟶(𝐽 × ℕ0))
63, 4, 5mp2b 8 . . . . . 6 𝐹:ℕ⟶(𝐽 × ℕ0)
76ffvelrni 5630 . . . . 5 (𝐴 ∈ ℕ → (𝐹𝐴) ∈ (𝐽 × ℕ0))
8 xp2nd 6145 . . . . 5 ((𝐹𝐴) ∈ (𝐽 × ℕ0) → (2nd ‘(𝐹𝐴)) ∈ ℕ0)
97, 8syl 14 . . . 4 (𝐴 ∈ ℕ → (2nd ‘(𝐹𝐴)) ∈ ℕ0)
109nn0zd 9332 . . 3 (𝐴 ∈ ℕ → (2nd ‘(𝐹𝐴)) ∈ ℤ)
11 2nn 9039 . . . . 5 2 ∈ ℕ
1211a1i 9 . . . 4 (𝐴 ∈ ℕ → 2 ∈ ℕ)
1312nnzd 9333 . . 3 (𝐴 ∈ ℕ → 2 ∈ ℤ)
14 dvdsmul2 11776 . . 3 (((2nd ‘(𝐹𝐴)) ∈ ℤ ∧ 2 ∈ ℤ) → 2 ∥ ((2nd ‘(𝐹𝐴)) · 2))
1510, 13, 14syl2anc 409 . 2 (𝐴 ∈ ℕ → 2 ∥ ((2nd ‘(𝐹𝐴)) · 2))
16 xp1st 6144 . . . . . . . . . 10 ((𝐹𝐴) ∈ (𝐽 × ℕ0) → (1st ‘(𝐹𝐴)) ∈ 𝐽)
177, 16syl 14 . . . . . . . . 9 (𝐴 ∈ ℕ → (1st ‘(𝐹𝐴)) ∈ 𝐽)
18 breq2 3993 . . . . . . . . . . . 12 (𝑧 = (1st ‘(𝐹𝐴)) → (2 ∥ 𝑧 ↔ 2 ∥ (1st ‘(𝐹𝐴))))
1918notbid 662 . . . . . . . . . . 11 (𝑧 = (1st ‘(𝐹𝐴)) → (¬ 2 ∥ 𝑧 ↔ ¬ 2 ∥ (1st ‘(𝐹𝐴))))
2019, 1elrab2 2889 . . . . . . . . . 10 ((1st ‘(𝐹𝐴)) ∈ 𝐽 ↔ ((1st ‘(𝐹𝐴)) ∈ ℕ ∧ ¬ 2 ∥ (1st ‘(𝐹𝐴))))
2120simplbi 272 . . . . . . . . 9 ((1st ‘(𝐹𝐴)) ∈ 𝐽 → (1st ‘(𝐹𝐴)) ∈ ℕ)
2217, 21syl 14 . . . . . . . 8 (𝐴 ∈ ℕ → (1st ‘(𝐹𝐴)) ∈ ℕ)
2322nnsqcld 10630 . . . . . . 7 (𝐴 ∈ ℕ → ((1st ‘(𝐹𝐴))↑2) ∈ ℕ)
2420simprbi 273 . . . . . . . . . 10 ((1st ‘(𝐹𝐴)) ∈ 𝐽 → ¬ 2 ∥ (1st ‘(𝐹𝐴)))
2517, 24syl 14 . . . . . . . . 9 (𝐴 ∈ ℕ → ¬ 2 ∥ (1st ‘(𝐹𝐴)))
26 2prm 12081 . . . . . . . . . 10 2 ∈ ℙ
2722nnzd 9333 . . . . . . . . . 10 (𝐴 ∈ ℕ → (1st ‘(𝐹𝐴)) ∈ ℤ)
28 euclemma 12100 . . . . . . . . . . 11 ((2 ∈ ℙ ∧ (1st ‘(𝐹𝐴)) ∈ ℤ ∧ (1st ‘(𝐹𝐴)) ∈ ℤ) → (2 ∥ ((1st ‘(𝐹𝐴)) · (1st ‘(𝐹𝐴))) ↔ (2 ∥ (1st ‘(𝐹𝐴)) ∨ 2 ∥ (1st ‘(𝐹𝐴)))))
29 oridm 752 . . . . . . . . . . 11 ((2 ∥ (1st ‘(𝐹𝐴)) ∨ 2 ∥ (1st ‘(𝐹𝐴))) ↔ 2 ∥ (1st ‘(𝐹𝐴)))
3028, 29bitrdi 195 . . . . . . . . . 10 ((2 ∈ ℙ ∧ (1st ‘(𝐹𝐴)) ∈ ℤ ∧ (1st ‘(𝐹𝐴)) ∈ ℤ) → (2 ∥ ((1st ‘(𝐹𝐴)) · (1st ‘(𝐹𝐴))) ↔ 2 ∥ (1st ‘(𝐹𝐴))))
3126, 27, 27, 30mp3an2i 1337 . . . . . . . . 9 (𝐴 ∈ ℕ → (2 ∥ ((1st ‘(𝐹𝐴)) · (1st ‘(𝐹𝐴))) ↔ 2 ∥ (1st ‘(𝐹𝐴))))
3225, 31mtbird 668 . . . . . . . 8 (𝐴 ∈ ℕ → ¬ 2 ∥ ((1st ‘(𝐹𝐴)) · (1st ‘(𝐹𝐴))))
3322nncnd 8892 . . . . . . . . . 10 (𝐴 ∈ ℕ → (1st ‘(𝐹𝐴)) ∈ ℂ)
3433sqvald 10606 . . . . . . . . 9 (𝐴 ∈ ℕ → ((1st ‘(𝐹𝐴))↑2) = ((1st ‘(𝐹𝐴)) · (1st ‘(𝐹𝐴))))
3534breq2d 4001 . . . . . . . 8 (𝐴 ∈ ℕ → (2 ∥ ((1st ‘(𝐹𝐴))↑2) ↔ 2 ∥ ((1st ‘(𝐹𝐴)) · (1st ‘(𝐹𝐴)))))
3632, 35mtbird 668 . . . . . . 7 (𝐴 ∈ ℕ → ¬ 2 ∥ ((1st ‘(𝐹𝐴))↑2))
37 breq2 3993 . . . . . . . . 9 (𝑧 = ((1st ‘(𝐹𝐴))↑2) → (2 ∥ 𝑧 ↔ 2 ∥ ((1st ‘(𝐹𝐴))↑2)))
3837notbid 662 . . . . . . . 8 (𝑧 = ((1st ‘(𝐹𝐴))↑2) → (¬ 2 ∥ 𝑧 ↔ ¬ 2 ∥ ((1st ‘(𝐹𝐴))↑2)))
3938, 1elrab2 2889 . . . . . . 7 (((1st ‘(𝐹𝐴))↑2) ∈ 𝐽 ↔ (((1st ‘(𝐹𝐴))↑2) ∈ ℕ ∧ ¬ 2 ∥ ((1st ‘(𝐹𝐴))↑2)))
4023, 36, 39sylanbrc 415 . . . . . 6 (𝐴 ∈ ℕ → ((1st ‘(𝐹𝐴))↑2) ∈ 𝐽)
4112nnnn0d 9188 . . . . . . 7 (𝐴 ∈ ℕ → 2 ∈ ℕ0)
429, 41nn0mulcld 9193 . . . . . 6 (𝐴 ∈ ℕ → ((2nd ‘(𝐹𝐴)) · 2) ∈ ℕ0)
43 opelxp 4641 . . . . . 6 (⟨((1st ‘(𝐹𝐴))↑2), ((2nd ‘(𝐹𝐴)) · 2)⟩ ∈ (𝐽 × ℕ0) ↔ (((1st ‘(𝐹𝐴))↑2) ∈ 𝐽 ∧ ((2nd ‘(𝐹𝐴)) · 2) ∈ ℕ0))
4440, 42, 43sylanbrc 415 . . . . 5 (𝐴 ∈ ℕ → ⟨((1st ‘(𝐹𝐴))↑2), ((2nd ‘(𝐹𝐴)) · 2)⟩ ∈ (𝐽 × ℕ0))
4512nncnd 8892 . . . . . . . . 9 (𝐴 ∈ ℕ → 2 ∈ ℂ)
4645, 41, 9expmuld 10612 . . . . . . . 8 (𝐴 ∈ ℕ → (2↑((2nd ‘(𝐹𝐴)) · 2)) = ((2↑(2nd ‘(𝐹𝐴)))↑2))
4746oveq1d 5868 . . . . . . 7 (𝐴 ∈ ℕ → ((2↑((2nd ‘(𝐹𝐴)) · 2)) · ((1st ‘(𝐹𝐴))↑2)) = (((2↑(2nd ‘(𝐹𝐴)))↑2) · ((1st ‘(𝐹𝐴))↑2)))
4812, 42nnexpcld 10631 . . . . . . . . 9 (𝐴 ∈ ℕ → (2↑((2nd ‘(𝐹𝐴)) · 2)) ∈ ℕ)
4948, 23nnmulcld 8927 . . . . . . . 8 (𝐴 ∈ ℕ → ((2↑((2nd ‘(𝐹𝐴)) · 2)) · ((1st ‘(𝐹𝐴))↑2)) ∈ ℕ)
50 oveq2 5861 . . . . . . . . 9 (𝑥 = ((1st ‘(𝐹𝐴))↑2) → ((2↑𝑦) · 𝑥) = ((2↑𝑦) · ((1st ‘(𝐹𝐴))↑2)))
51 oveq2 5861 . . . . . . . . . 10 (𝑦 = ((2nd ‘(𝐹𝐴)) · 2) → (2↑𝑦) = (2↑((2nd ‘(𝐹𝐴)) · 2)))
5251oveq1d 5868 . . . . . . . . 9 (𝑦 = ((2nd ‘(𝐹𝐴)) · 2) → ((2↑𝑦) · ((1st ‘(𝐹𝐴))↑2)) = ((2↑((2nd ‘(𝐹𝐴)) · 2)) · ((1st ‘(𝐹𝐴))↑2)))
5350, 52, 2ovmpog 5987 . . . . . . . 8 ((((1st ‘(𝐹𝐴))↑2) ∈ 𝐽 ∧ ((2nd ‘(𝐹𝐴)) · 2) ∈ ℕ0 ∧ ((2↑((2nd ‘(𝐹𝐴)) · 2)) · ((1st ‘(𝐹𝐴))↑2)) ∈ ℕ) → (((1st ‘(𝐹𝐴))↑2)𝐹((2nd ‘(𝐹𝐴)) · 2)) = ((2↑((2nd ‘(𝐹𝐴)) · 2)) · ((1st ‘(𝐹𝐴))↑2)))
5440, 42, 49, 53syl3anc 1233 . . . . . . 7 (𝐴 ∈ ℕ → (((1st ‘(𝐹𝐴))↑2)𝐹((2nd ‘(𝐹𝐴)) · 2)) = ((2↑((2nd ‘(𝐹𝐴)) · 2)) · ((1st ‘(𝐹𝐴))↑2)))
55 f1ocnvfv2 5757 . . . . . . . . . . . . 13 ((𝐹:(𝐽 × ℕ0)–1-1-onto→ℕ ∧ 𝐴 ∈ ℕ) → (𝐹‘(𝐹𝐴)) = 𝐴)
563, 55mpan 422 . . . . . . . . . . . 12 (𝐴 ∈ ℕ → (𝐹‘(𝐹𝐴)) = 𝐴)
57 1st2nd2 6154 . . . . . . . . . . . . . 14 ((𝐹𝐴) ∈ (𝐽 × ℕ0) → (𝐹𝐴) = ⟨(1st ‘(𝐹𝐴)), (2nd ‘(𝐹𝐴))⟩)
587, 57syl 14 . . . . . . . . . . . . 13 (𝐴 ∈ ℕ → (𝐹𝐴) = ⟨(1st ‘(𝐹𝐴)), (2nd ‘(𝐹𝐴))⟩)
5958fveq2d 5500 . . . . . . . . . . . 12 (𝐴 ∈ ℕ → (𝐹‘(𝐹𝐴)) = (𝐹‘⟨(1st ‘(𝐹𝐴)), (2nd ‘(𝐹𝐴))⟩))
6056, 59eqtr3d 2205 . . . . . . . . . . 11 (𝐴 ∈ ℕ → 𝐴 = (𝐹‘⟨(1st ‘(𝐹𝐴)), (2nd ‘(𝐹𝐴))⟩))
61 df-ov 5856 . . . . . . . . . . 11 ((1st ‘(𝐹𝐴))𝐹(2nd ‘(𝐹𝐴))) = (𝐹‘⟨(1st ‘(𝐹𝐴)), (2nd ‘(𝐹𝐴))⟩)
6260, 61eqtr4di 2221 . . . . . . . . . 10 (𝐴 ∈ ℕ → 𝐴 = ((1st ‘(𝐹𝐴))𝐹(2nd ‘(𝐹𝐴))))
6312, 9nnexpcld 10631 . . . . . . . . . . . 12 (𝐴 ∈ ℕ → (2↑(2nd ‘(𝐹𝐴))) ∈ ℕ)
6463, 22nnmulcld 8927 . . . . . . . . . . 11 (𝐴 ∈ ℕ → ((2↑(2nd ‘(𝐹𝐴))) · (1st ‘(𝐹𝐴))) ∈ ℕ)
65 oveq2 5861 . . . . . . . . . . . 12 (𝑥 = (1st ‘(𝐹𝐴)) → ((2↑𝑦) · 𝑥) = ((2↑𝑦) · (1st ‘(𝐹𝐴))))
66 oveq2 5861 . . . . . . . . . . . . 13 (𝑦 = (2nd ‘(𝐹𝐴)) → (2↑𝑦) = (2↑(2nd ‘(𝐹𝐴))))
6766oveq1d 5868 . . . . . . . . . . . 12 (𝑦 = (2nd ‘(𝐹𝐴)) → ((2↑𝑦) · (1st ‘(𝐹𝐴))) = ((2↑(2nd ‘(𝐹𝐴))) · (1st ‘(𝐹𝐴))))
6865, 67, 2ovmpog 5987 . . . . . . . . . . 11 (((1st ‘(𝐹𝐴)) ∈ 𝐽 ∧ (2nd ‘(𝐹𝐴)) ∈ ℕ0 ∧ ((2↑(2nd ‘(𝐹𝐴))) · (1st ‘(𝐹𝐴))) ∈ ℕ) → ((1st ‘(𝐹𝐴))𝐹(2nd ‘(𝐹𝐴))) = ((2↑(2nd ‘(𝐹𝐴))) · (1st ‘(𝐹𝐴))))
6917, 9, 64, 68syl3anc 1233 . . . . . . . . . 10 (𝐴 ∈ ℕ → ((1st ‘(𝐹𝐴))𝐹(2nd ‘(𝐹𝐴))) = ((2↑(2nd ‘(𝐹𝐴))) · (1st ‘(𝐹𝐴))))
7062, 69eqtrd 2203 . . . . . . . . 9 (𝐴 ∈ ℕ → 𝐴 = ((2↑(2nd ‘(𝐹𝐴))) · (1st ‘(𝐹𝐴))))
7170oveq1d 5868 . . . . . . . 8 (𝐴 ∈ ℕ → (𝐴↑2) = (((2↑(2nd ‘(𝐹𝐴))) · (1st ‘(𝐹𝐴)))↑2))
7263nncnd 8892 . . . . . . . . 9 (𝐴 ∈ ℕ → (2↑(2nd ‘(𝐹𝐴))) ∈ ℂ)
7372, 33sqmuld 10621 . . . . . . . 8 (𝐴 ∈ ℕ → (((2↑(2nd ‘(𝐹𝐴))) · (1st ‘(𝐹𝐴)))↑2) = (((2↑(2nd ‘(𝐹𝐴)))↑2) · ((1st ‘(𝐹𝐴))↑2)))
7471, 73eqtrd 2203 . . . . . . 7 (𝐴 ∈ ℕ → (𝐴↑2) = (((2↑(2nd ‘(𝐹𝐴)))↑2) · ((1st ‘(𝐹𝐴))↑2)))
7547, 54, 743eqtr4rd 2214 . . . . . 6 (𝐴 ∈ ℕ → (𝐴↑2) = (((1st ‘(𝐹𝐴))↑2)𝐹((2nd ‘(𝐹𝐴)) · 2)))
76 df-ov 5856 . . . . . 6 (((1st ‘(𝐹𝐴))↑2)𝐹((2nd ‘(𝐹𝐴)) · 2)) = (𝐹‘⟨((1st ‘(𝐹𝐴))↑2), ((2nd ‘(𝐹𝐴)) · 2)⟩)
7775, 76eqtr2di 2220 . . . . 5 (𝐴 ∈ ℕ → (𝐹‘⟨((1st ‘(𝐹𝐴))↑2), ((2nd ‘(𝐹𝐴)) · 2)⟩) = (𝐴↑2))
78 f1ocnvfv 5758 . . . . . 6 ((𝐹:(𝐽 × ℕ0)–1-1-onto→ℕ ∧ ⟨((1st ‘(𝐹𝐴))↑2), ((2nd ‘(𝐹𝐴)) · 2)⟩ ∈ (𝐽 × ℕ0)) → ((𝐹‘⟨((1st ‘(𝐹𝐴))↑2), ((2nd ‘(𝐹𝐴)) · 2)⟩) = (𝐴↑2) → (𝐹‘(𝐴↑2)) = ⟨((1st ‘(𝐹𝐴))↑2), ((2nd ‘(𝐹𝐴)) · 2)⟩))
793, 78mpan 422 . . . . 5 (⟨((1st ‘(𝐹𝐴))↑2), ((2nd ‘(𝐹𝐴)) · 2)⟩ ∈ (𝐽 × ℕ0) → ((𝐹‘⟨((1st ‘(𝐹𝐴))↑2), ((2nd ‘(𝐹𝐴)) · 2)⟩) = (𝐴↑2) → (𝐹‘(𝐴↑2)) = ⟨((1st ‘(𝐹𝐴))↑2), ((2nd ‘(𝐹𝐴)) · 2)⟩))
8044, 77, 79sylc 62 . . . 4 (𝐴 ∈ ℕ → (𝐹‘(𝐴↑2)) = ⟨((1st ‘(𝐹𝐴))↑2), ((2nd ‘(𝐹𝐴)) · 2)⟩)
8180fveq2d 5500 . . 3 (𝐴 ∈ ℕ → (2nd ‘(𝐹‘(𝐴↑2))) = (2nd ‘⟨((1st ‘(𝐹𝐴))↑2), ((2nd ‘(𝐹𝐴)) · 2)⟩))
82 op2ndg 6130 . . . 4 ((((1st ‘(𝐹𝐴))↑2) ∈ 𝐽 ∧ ((2nd ‘(𝐹𝐴)) · 2) ∈ ℕ0) → (2nd ‘⟨((1st ‘(𝐹𝐴))↑2), ((2nd ‘(𝐹𝐴)) · 2)⟩) = ((2nd ‘(𝐹𝐴)) · 2))
8340, 42, 82syl2anc 409 . . 3 (𝐴 ∈ ℕ → (2nd ‘⟨((1st ‘(𝐹𝐴))↑2), ((2nd ‘(𝐹𝐴)) · 2)⟩) = ((2nd ‘(𝐹𝐴)) · 2))
8481, 83eqtrd 2203 . 2 (𝐴 ∈ ℕ → (2nd ‘(𝐹‘(𝐴↑2))) = ((2nd ‘(𝐹𝐴)) · 2))
8515, 84breqtrrd 4017 1 (𝐴 ∈ ℕ → 2 ∥ (2nd ‘(𝐹‘(𝐴↑2))))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wb 104  wo 703  w3a 973   = wceq 1348  wcel 2141  {crab 2452  cop 3586   class class class wbr 3989   × cxp 4609  ccnv 4610  wf 5194  1-1-ontowf1o 5197  cfv 5198  (class class class)co 5853  cmpo 5855  1st c1st 6117  2nd c2nd 6118   · cmul 7779  cn 8878  2c2 8929  0cn0 9135  cz 9212  cexp 10475  cdvds 11749  cprime 12061
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892  ax-arch 7893  ax-caucvg 7894
This theorem depends on definitions:  df-bi 116  df-stab 826  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-frec 6370  df-1o 6395  df-2o 6396  df-er 6513  df-en 6719  df-sup 6961  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-3 8938  df-4 8939  df-n0 9136  df-z 9213  df-uz 9488  df-q 9579  df-rp 9611  df-fz 9966  df-fzo 10099  df-fl 10226  df-mod 10279  df-seqfrec 10402  df-exp 10476  df-cj 10806  df-re 10807  df-im 10808  df-rsqrt 10962  df-abs 10963  df-dvds 11750  df-gcd 11898  df-prm 12062
This theorem is referenced by:  sqne2sq  12131
  Copyright terms: Public domain W3C validator