Proof of Theorem sqpweven
Step | Hyp | Ref
| Expression |
1 | | oddpwdc.j |
. . . . . . . 8
⊢ 𝐽 = {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} |
2 | | oddpwdc.f |
. . . . . . . 8
⊢ 𝐹 = (𝑥 ∈ 𝐽, 𝑦 ∈ ℕ0 ↦
((2↑𝑦) · 𝑥)) |
3 | 1, 2 | oddpwdc 12128 |
. . . . . . 7
⊢ 𝐹:(𝐽 × ℕ0)–1-1-onto→ℕ |
4 | | f1ocnv 5455 |
. . . . . . 7
⊢ (𝐹:(𝐽 × ℕ0)–1-1-onto→ℕ → ◡𝐹:ℕ–1-1-onto→(𝐽 ×
ℕ0)) |
5 | | f1of 5442 |
. . . . . . 7
⊢ (◡𝐹:ℕ–1-1-onto→(𝐽 × ℕ0) → ◡𝐹:ℕ⟶(𝐽 ×
ℕ0)) |
6 | 3, 4, 5 | mp2b 8 |
. . . . . 6
⊢ ◡𝐹:ℕ⟶(𝐽 ×
ℕ0) |
7 | 6 | ffvelrni 5630 |
. . . . 5
⊢ (𝐴 ∈ ℕ → (◡𝐹‘𝐴) ∈ (𝐽 ×
ℕ0)) |
8 | | xp2nd 6145 |
. . . . 5
⊢ ((◡𝐹‘𝐴) ∈ (𝐽 × ℕ0) →
(2nd ‘(◡𝐹‘𝐴)) ∈
ℕ0) |
9 | 7, 8 | syl 14 |
. . . 4
⊢ (𝐴 ∈ ℕ →
(2nd ‘(◡𝐹‘𝐴)) ∈
ℕ0) |
10 | 9 | nn0zd 9332 |
. . 3
⊢ (𝐴 ∈ ℕ →
(2nd ‘(◡𝐹‘𝐴)) ∈ ℤ) |
11 | | 2nn 9039 |
. . . . 5
⊢ 2 ∈
ℕ |
12 | 11 | a1i 9 |
. . . 4
⊢ (𝐴 ∈ ℕ → 2 ∈
ℕ) |
13 | 12 | nnzd 9333 |
. . 3
⊢ (𝐴 ∈ ℕ → 2 ∈
ℤ) |
14 | | dvdsmul2 11776 |
. . 3
⊢
(((2nd ‘(◡𝐹‘𝐴)) ∈ ℤ ∧ 2 ∈ ℤ)
→ 2 ∥ ((2nd ‘(◡𝐹‘𝐴)) · 2)) |
15 | 10, 13, 14 | syl2anc 409 |
. 2
⊢ (𝐴 ∈ ℕ → 2 ∥
((2nd ‘(◡𝐹‘𝐴)) · 2)) |
16 | | xp1st 6144 |
. . . . . . . . . 10
⊢ ((◡𝐹‘𝐴) ∈ (𝐽 × ℕ0) →
(1st ‘(◡𝐹‘𝐴)) ∈ 𝐽) |
17 | 7, 16 | syl 14 |
. . . . . . . . 9
⊢ (𝐴 ∈ ℕ →
(1st ‘(◡𝐹‘𝐴)) ∈ 𝐽) |
18 | | breq2 3993 |
. . . . . . . . . . . 12
⊢ (𝑧 = (1st ‘(◡𝐹‘𝐴)) → (2 ∥ 𝑧 ↔ 2 ∥ (1st
‘(◡𝐹‘𝐴)))) |
19 | 18 | notbid 662 |
. . . . . . . . . . 11
⊢ (𝑧 = (1st ‘(◡𝐹‘𝐴)) → (¬ 2 ∥ 𝑧 ↔ ¬ 2 ∥
(1st ‘(◡𝐹‘𝐴)))) |
20 | 19, 1 | elrab2 2889 |
. . . . . . . . . 10
⊢
((1st ‘(◡𝐹‘𝐴)) ∈ 𝐽 ↔ ((1st ‘(◡𝐹‘𝐴)) ∈ ℕ ∧ ¬ 2 ∥
(1st ‘(◡𝐹‘𝐴)))) |
21 | 20 | simplbi 272 |
. . . . . . . . 9
⊢
((1st ‘(◡𝐹‘𝐴)) ∈ 𝐽 → (1st ‘(◡𝐹‘𝐴)) ∈ ℕ) |
22 | 17, 21 | syl 14 |
. . . . . . . 8
⊢ (𝐴 ∈ ℕ →
(1st ‘(◡𝐹‘𝐴)) ∈ ℕ) |
23 | 22 | nnsqcld 10630 |
. . . . . . 7
⊢ (𝐴 ∈ ℕ →
((1st ‘(◡𝐹‘𝐴))↑2) ∈ ℕ) |
24 | 20 | simprbi 273 |
. . . . . . . . . 10
⊢
((1st ‘(◡𝐹‘𝐴)) ∈ 𝐽 → ¬ 2 ∥ (1st
‘(◡𝐹‘𝐴))) |
25 | 17, 24 | syl 14 |
. . . . . . . . 9
⊢ (𝐴 ∈ ℕ → ¬ 2
∥ (1st ‘(◡𝐹‘𝐴))) |
26 | | 2prm 12081 |
. . . . . . . . . 10
⊢ 2 ∈
ℙ |
27 | 22 | nnzd 9333 |
. . . . . . . . . 10
⊢ (𝐴 ∈ ℕ →
(1st ‘(◡𝐹‘𝐴)) ∈ ℤ) |
28 | | euclemma 12100 |
. . . . . . . . . . 11
⊢ ((2
∈ ℙ ∧ (1st ‘(◡𝐹‘𝐴)) ∈ ℤ ∧ (1st
‘(◡𝐹‘𝐴)) ∈ ℤ) → (2 ∥
((1st ‘(◡𝐹‘𝐴)) · (1st ‘(◡𝐹‘𝐴))) ↔ (2 ∥ (1st
‘(◡𝐹‘𝐴)) ∨ 2 ∥ (1st
‘(◡𝐹‘𝐴))))) |
29 | | oridm 752 |
. . . . . . . . . . 11
⊢ ((2
∥ (1st ‘(◡𝐹‘𝐴)) ∨ 2 ∥ (1st
‘(◡𝐹‘𝐴))) ↔ 2 ∥ (1st
‘(◡𝐹‘𝐴))) |
30 | 28, 29 | bitrdi 195 |
. . . . . . . . . 10
⊢ ((2
∈ ℙ ∧ (1st ‘(◡𝐹‘𝐴)) ∈ ℤ ∧ (1st
‘(◡𝐹‘𝐴)) ∈ ℤ) → (2 ∥
((1st ‘(◡𝐹‘𝐴)) · (1st ‘(◡𝐹‘𝐴))) ↔ 2 ∥ (1st
‘(◡𝐹‘𝐴)))) |
31 | 26, 27, 27, 30 | mp3an2i 1337 |
. . . . . . . . 9
⊢ (𝐴 ∈ ℕ → (2
∥ ((1st ‘(◡𝐹‘𝐴)) · (1st ‘(◡𝐹‘𝐴))) ↔ 2 ∥ (1st
‘(◡𝐹‘𝐴)))) |
32 | 25, 31 | mtbird 668 |
. . . . . . . 8
⊢ (𝐴 ∈ ℕ → ¬ 2
∥ ((1st ‘(◡𝐹‘𝐴)) · (1st ‘(◡𝐹‘𝐴)))) |
33 | 22 | nncnd 8892 |
. . . . . . . . . 10
⊢ (𝐴 ∈ ℕ →
(1st ‘(◡𝐹‘𝐴)) ∈ ℂ) |
34 | 33 | sqvald 10606 |
. . . . . . . . 9
⊢ (𝐴 ∈ ℕ →
((1st ‘(◡𝐹‘𝐴))↑2) = ((1st ‘(◡𝐹‘𝐴)) · (1st ‘(◡𝐹‘𝐴)))) |
35 | 34 | breq2d 4001 |
. . . . . . . 8
⊢ (𝐴 ∈ ℕ → (2
∥ ((1st ‘(◡𝐹‘𝐴))↑2) ↔ 2 ∥ ((1st
‘(◡𝐹‘𝐴)) · (1st ‘(◡𝐹‘𝐴))))) |
36 | 32, 35 | mtbird 668 |
. . . . . . 7
⊢ (𝐴 ∈ ℕ → ¬ 2
∥ ((1st ‘(◡𝐹‘𝐴))↑2)) |
37 | | breq2 3993 |
. . . . . . . . 9
⊢ (𝑧 = ((1st
‘(◡𝐹‘𝐴))↑2) → (2 ∥ 𝑧 ↔ 2 ∥
((1st ‘(◡𝐹‘𝐴))↑2))) |
38 | 37 | notbid 662 |
. . . . . . . 8
⊢ (𝑧 = ((1st
‘(◡𝐹‘𝐴))↑2) → (¬ 2 ∥ 𝑧 ↔ ¬ 2 ∥
((1st ‘(◡𝐹‘𝐴))↑2))) |
39 | 38, 1 | elrab2 2889 |
. . . . . . 7
⊢
(((1st ‘(◡𝐹‘𝐴))↑2) ∈ 𝐽 ↔ (((1st ‘(◡𝐹‘𝐴))↑2) ∈ ℕ ∧ ¬ 2
∥ ((1st ‘(◡𝐹‘𝐴))↑2))) |
40 | 23, 36, 39 | sylanbrc 415 |
. . . . . 6
⊢ (𝐴 ∈ ℕ →
((1st ‘(◡𝐹‘𝐴))↑2) ∈ 𝐽) |
41 | 12 | nnnn0d 9188 |
. . . . . . 7
⊢ (𝐴 ∈ ℕ → 2 ∈
ℕ0) |
42 | 9, 41 | nn0mulcld 9193 |
. . . . . 6
⊢ (𝐴 ∈ ℕ →
((2nd ‘(◡𝐹‘𝐴)) · 2) ∈
ℕ0) |
43 | | opelxp 4641 |
. . . . . 6
⊢
(〈((1st ‘(◡𝐹‘𝐴))↑2), ((2nd ‘(◡𝐹‘𝐴)) · 2)〉 ∈ (𝐽 × ℕ0)
↔ (((1st ‘(◡𝐹‘𝐴))↑2) ∈ 𝐽 ∧ ((2nd ‘(◡𝐹‘𝐴)) · 2) ∈
ℕ0)) |
44 | 40, 42, 43 | sylanbrc 415 |
. . . . 5
⊢ (𝐴 ∈ ℕ →
〈((1st ‘(◡𝐹‘𝐴))↑2), ((2nd ‘(◡𝐹‘𝐴)) · 2)〉 ∈ (𝐽 ×
ℕ0)) |
45 | 12 | nncnd 8892 |
. . . . . . . . 9
⊢ (𝐴 ∈ ℕ → 2 ∈
ℂ) |
46 | 45, 41, 9 | expmuld 10612 |
. . . . . . . 8
⊢ (𝐴 ∈ ℕ →
(2↑((2nd ‘(◡𝐹‘𝐴)) · 2)) = ((2↑(2nd
‘(◡𝐹‘𝐴)))↑2)) |
47 | 46 | oveq1d 5868 |
. . . . . . 7
⊢ (𝐴 ∈ ℕ →
((2↑((2nd ‘(◡𝐹‘𝐴)) · 2)) · ((1st
‘(◡𝐹‘𝐴))↑2)) = (((2↑(2nd
‘(◡𝐹‘𝐴)))↑2) · ((1st
‘(◡𝐹‘𝐴))↑2))) |
48 | 12, 42 | nnexpcld 10631 |
. . . . . . . . 9
⊢ (𝐴 ∈ ℕ →
(2↑((2nd ‘(◡𝐹‘𝐴)) · 2)) ∈
ℕ) |
49 | 48, 23 | nnmulcld 8927 |
. . . . . . . 8
⊢ (𝐴 ∈ ℕ →
((2↑((2nd ‘(◡𝐹‘𝐴)) · 2)) · ((1st
‘(◡𝐹‘𝐴))↑2)) ∈ ℕ) |
50 | | oveq2 5861 |
. . . . . . . . 9
⊢ (𝑥 = ((1st
‘(◡𝐹‘𝐴))↑2) → ((2↑𝑦) · 𝑥) = ((2↑𝑦) · ((1st ‘(◡𝐹‘𝐴))↑2))) |
51 | | oveq2 5861 |
. . . . . . . . . 10
⊢ (𝑦 = ((2nd
‘(◡𝐹‘𝐴)) · 2) → (2↑𝑦) = (2↑((2nd
‘(◡𝐹‘𝐴)) · 2))) |
52 | 51 | oveq1d 5868 |
. . . . . . . . 9
⊢ (𝑦 = ((2nd
‘(◡𝐹‘𝐴)) · 2) → ((2↑𝑦) · ((1st
‘(◡𝐹‘𝐴))↑2)) = ((2↑((2nd
‘(◡𝐹‘𝐴)) · 2)) · ((1st
‘(◡𝐹‘𝐴))↑2))) |
53 | 50, 52, 2 | ovmpog 5987 |
. . . . . . . 8
⊢
((((1st ‘(◡𝐹‘𝐴))↑2) ∈ 𝐽 ∧ ((2nd ‘(◡𝐹‘𝐴)) · 2) ∈ ℕ0
∧ ((2↑((2nd ‘(◡𝐹‘𝐴)) · 2)) · ((1st
‘(◡𝐹‘𝐴))↑2)) ∈ ℕ) →
(((1st ‘(◡𝐹‘𝐴))↑2)𝐹((2nd ‘(◡𝐹‘𝐴)) · 2)) = ((2↑((2nd
‘(◡𝐹‘𝐴)) · 2)) · ((1st
‘(◡𝐹‘𝐴))↑2))) |
54 | 40, 42, 49, 53 | syl3anc 1233 |
. . . . . . 7
⊢ (𝐴 ∈ ℕ →
(((1st ‘(◡𝐹‘𝐴))↑2)𝐹((2nd ‘(◡𝐹‘𝐴)) · 2)) = ((2↑((2nd
‘(◡𝐹‘𝐴)) · 2)) · ((1st
‘(◡𝐹‘𝐴))↑2))) |
55 | | f1ocnvfv2 5757 |
. . . . . . . . . . . . 13
⊢ ((𝐹:(𝐽 × ℕ0)–1-1-onto→ℕ ∧ 𝐴 ∈ ℕ) → (𝐹‘(◡𝐹‘𝐴)) = 𝐴) |
56 | 3, 55 | mpan 422 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ ℕ → (𝐹‘(◡𝐹‘𝐴)) = 𝐴) |
57 | | 1st2nd2 6154 |
. . . . . . . . . . . . . 14
⊢ ((◡𝐹‘𝐴) ∈ (𝐽 × ℕ0) → (◡𝐹‘𝐴) = 〈(1st ‘(◡𝐹‘𝐴)), (2nd ‘(◡𝐹‘𝐴))〉) |
58 | 7, 57 | syl 14 |
. . . . . . . . . . . . 13
⊢ (𝐴 ∈ ℕ → (◡𝐹‘𝐴) = 〈(1st ‘(◡𝐹‘𝐴)), (2nd ‘(◡𝐹‘𝐴))〉) |
59 | 58 | fveq2d 5500 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ ℕ → (𝐹‘(◡𝐹‘𝐴)) = (𝐹‘〈(1st ‘(◡𝐹‘𝐴)), (2nd ‘(◡𝐹‘𝐴))〉)) |
60 | 56, 59 | eqtr3d 2205 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ ℕ → 𝐴 = (𝐹‘〈(1st ‘(◡𝐹‘𝐴)), (2nd ‘(◡𝐹‘𝐴))〉)) |
61 | | df-ov 5856 |
. . . . . . . . . . 11
⊢
((1st ‘(◡𝐹‘𝐴))𝐹(2nd ‘(◡𝐹‘𝐴))) = (𝐹‘〈(1st ‘(◡𝐹‘𝐴)), (2nd ‘(◡𝐹‘𝐴))〉) |
62 | 60, 61 | eqtr4di 2221 |
. . . . . . . . . 10
⊢ (𝐴 ∈ ℕ → 𝐴 = ((1st
‘(◡𝐹‘𝐴))𝐹(2nd ‘(◡𝐹‘𝐴)))) |
63 | 12, 9 | nnexpcld 10631 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ ℕ →
(2↑(2nd ‘(◡𝐹‘𝐴))) ∈ ℕ) |
64 | 63, 22 | nnmulcld 8927 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ ℕ →
((2↑(2nd ‘(◡𝐹‘𝐴))) · (1st ‘(◡𝐹‘𝐴))) ∈ ℕ) |
65 | | oveq2 5861 |
. . . . . . . . . . . 12
⊢ (𝑥 = (1st ‘(◡𝐹‘𝐴)) → ((2↑𝑦) · 𝑥) = ((2↑𝑦) · (1st ‘(◡𝐹‘𝐴)))) |
66 | | oveq2 5861 |
. . . . . . . . . . . . 13
⊢ (𝑦 = (2nd ‘(◡𝐹‘𝐴)) → (2↑𝑦) = (2↑(2nd ‘(◡𝐹‘𝐴)))) |
67 | 66 | oveq1d 5868 |
. . . . . . . . . . . 12
⊢ (𝑦 = (2nd ‘(◡𝐹‘𝐴)) → ((2↑𝑦) · (1st ‘(◡𝐹‘𝐴))) = ((2↑(2nd ‘(◡𝐹‘𝐴))) · (1st ‘(◡𝐹‘𝐴)))) |
68 | 65, 67, 2 | ovmpog 5987 |
. . . . . . . . . . 11
⊢
(((1st ‘(◡𝐹‘𝐴)) ∈ 𝐽 ∧ (2nd ‘(◡𝐹‘𝐴)) ∈ ℕ0 ∧
((2↑(2nd ‘(◡𝐹‘𝐴))) · (1st ‘(◡𝐹‘𝐴))) ∈ ℕ) → ((1st
‘(◡𝐹‘𝐴))𝐹(2nd ‘(◡𝐹‘𝐴))) = ((2↑(2nd ‘(◡𝐹‘𝐴))) · (1st ‘(◡𝐹‘𝐴)))) |
69 | 17, 9, 64, 68 | syl3anc 1233 |
. . . . . . . . . 10
⊢ (𝐴 ∈ ℕ →
((1st ‘(◡𝐹‘𝐴))𝐹(2nd ‘(◡𝐹‘𝐴))) = ((2↑(2nd ‘(◡𝐹‘𝐴))) · (1st ‘(◡𝐹‘𝐴)))) |
70 | 62, 69 | eqtrd 2203 |
. . . . . . . . 9
⊢ (𝐴 ∈ ℕ → 𝐴 = ((2↑(2nd
‘(◡𝐹‘𝐴))) · (1st ‘(◡𝐹‘𝐴)))) |
71 | 70 | oveq1d 5868 |
. . . . . . . 8
⊢ (𝐴 ∈ ℕ → (𝐴↑2) =
(((2↑(2nd ‘(◡𝐹‘𝐴))) · (1st ‘(◡𝐹‘𝐴)))↑2)) |
72 | 63 | nncnd 8892 |
. . . . . . . . 9
⊢ (𝐴 ∈ ℕ →
(2↑(2nd ‘(◡𝐹‘𝐴))) ∈ ℂ) |
73 | 72, 33 | sqmuld 10621 |
. . . . . . . 8
⊢ (𝐴 ∈ ℕ →
(((2↑(2nd ‘(◡𝐹‘𝐴))) · (1st ‘(◡𝐹‘𝐴)))↑2) = (((2↑(2nd
‘(◡𝐹‘𝐴)))↑2) · ((1st
‘(◡𝐹‘𝐴))↑2))) |
74 | 71, 73 | eqtrd 2203 |
. . . . . . 7
⊢ (𝐴 ∈ ℕ → (𝐴↑2) =
(((2↑(2nd ‘(◡𝐹‘𝐴)))↑2) · ((1st
‘(◡𝐹‘𝐴))↑2))) |
75 | 47, 54, 74 | 3eqtr4rd 2214 |
. . . . . 6
⊢ (𝐴 ∈ ℕ → (𝐴↑2) = (((1st
‘(◡𝐹‘𝐴))↑2)𝐹((2nd ‘(◡𝐹‘𝐴)) · 2))) |
76 | | df-ov 5856 |
. . . . . 6
⊢
(((1st ‘(◡𝐹‘𝐴))↑2)𝐹((2nd ‘(◡𝐹‘𝐴)) · 2)) = (𝐹‘〈((1st ‘(◡𝐹‘𝐴))↑2), ((2nd ‘(◡𝐹‘𝐴)) · 2)〉) |
77 | 75, 76 | eqtr2di 2220 |
. . . . 5
⊢ (𝐴 ∈ ℕ → (𝐹‘〈((1st
‘(◡𝐹‘𝐴))↑2), ((2nd ‘(◡𝐹‘𝐴)) · 2)〉) = (𝐴↑2)) |
78 | | f1ocnvfv 5758 |
. . . . . 6
⊢ ((𝐹:(𝐽 × ℕ0)–1-1-onto→ℕ ∧ 〈((1st
‘(◡𝐹‘𝐴))↑2), ((2nd ‘(◡𝐹‘𝐴)) · 2)〉 ∈ (𝐽 × ℕ0))
→ ((𝐹‘〈((1st ‘(◡𝐹‘𝐴))↑2), ((2nd ‘(◡𝐹‘𝐴)) · 2)〉) = (𝐴↑2) → (◡𝐹‘(𝐴↑2)) = 〈((1st
‘(◡𝐹‘𝐴))↑2), ((2nd ‘(◡𝐹‘𝐴)) · 2)〉)) |
79 | 3, 78 | mpan 422 |
. . . . 5
⊢
(〈((1st ‘(◡𝐹‘𝐴))↑2), ((2nd ‘(◡𝐹‘𝐴)) · 2)〉 ∈ (𝐽 × ℕ0)
→ ((𝐹‘〈((1st ‘(◡𝐹‘𝐴))↑2), ((2nd ‘(◡𝐹‘𝐴)) · 2)〉) = (𝐴↑2) → (◡𝐹‘(𝐴↑2)) = 〈((1st
‘(◡𝐹‘𝐴))↑2), ((2nd ‘(◡𝐹‘𝐴)) · 2)〉)) |
80 | 44, 77, 79 | sylc 62 |
. . . 4
⊢ (𝐴 ∈ ℕ → (◡𝐹‘(𝐴↑2)) = 〈((1st
‘(◡𝐹‘𝐴))↑2), ((2nd ‘(◡𝐹‘𝐴)) · 2)〉) |
81 | 80 | fveq2d 5500 |
. . 3
⊢ (𝐴 ∈ ℕ →
(2nd ‘(◡𝐹‘(𝐴↑2))) = (2nd
‘〈((1st ‘(◡𝐹‘𝐴))↑2), ((2nd ‘(◡𝐹‘𝐴)) · 2)〉)) |
82 | | op2ndg 6130 |
. . . 4
⊢
((((1st ‘(◡𝐹‘𝐴))↑2) ∈ 𝐽 ∧ ((2nd ‘(◡𝐹‘𝐴)) · 2) ∈ ℕ0)
→ (2nd ‘〈((1st ‘(◡𝐹‘𝐴))↑2), ((2nd ‘(◡𝐹‘𝐴)) · 2)〉) = ((2nd
‘(◡𝐹‘𝐴)) · 2)) |
83 | 40, 42, 82 | syl2anc 409 |
. . 3
⊢ (𝐴 ∈ ℕ →
(2nd ‘〈((1st ‘(◡𝐹‘𝐴))↑2), ((2nd ‘(◡𝐹‘𝐴)) · 2)〉) = ((2nd
‘(◡𝐹‘𝐴)) · 2)) |
84 | 81, 83 | eqtrd 2203 |
. 2
⊢ (𝐴 ∈ ℕ →
(2nd ‘(◡𝐹‘(𝐴↑2))) = ((2nd ‘(◡𝐹‘𝐴)) · 2)) |
85 | 15, 84 | breqtrrd 4017 |
1
⊢ (𝐴 ∈ ℕ → 2 ∥
(2nd ‘(◡𝐹‘(𝐴↑2)))) |