ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lt2msq GIF version

Theorem lt2msq 8644
Description: Two nonnegative numbers compare the same as their squares. (Contributed by Roy F. Longton, 8-Aug-2005.) (Revised by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
lt2msq (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (𝐴 < 𝐵 ↔ (𝐴 · 𝐴) < (𝐵 · 𝐵)))

Proof of Theorem lt2msq
StepHypRef Expression
1 lt2msq1 8643 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝐴 · 𝐴) < (𝐵 · 𝐵))
213expia 1183 . . 3 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 → (𝐴 · 𝐴) < (𝐵 · 𝐵)))
32adantrr 470 . 2 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (𝐴 < 𝐵 → (𝐴 · 𝐴) < (𝐵 · 𝐵)))
4 simpr 109 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵))
5 simpll 518 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → 𝐴 ∈ ℝ)
6 lt2msq1 8643 . . . . . . . 8 (((𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐴 ∈ ℝ ∧ 𝐵 < 𝐴) → (𝐵 · 𝐵) < (𝐴 · 𝐴))
763expia 1183 . . . . . . 7 (((𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐴 ∈ ℝ) → (𝐵 < 𝐴 → (𝐵 · 𝐵) < (𝐴 · 𝐴)))
84, 5, 7syl2anc 408 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (𝐵 < 𝐴 → (𝐵 · 𝐵) < (𝐴 · 𝐴)))
98con3d 620 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (¬ (𝐵 · 𝐵) < (𝐴 · 𝐴) → ¬ 𝐵 < 𝐴))
105, 5remulcld 7796 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (𝐴 · 𝐴) ∈ ℝ)
11 simprl 520 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → 𝐵 ∈ ℝ)
1211, 11remulcld 7796 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (𝐵 · 𝐵) ∈ ℝ)
1310, 12lenltd 7880 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴 · 𝐴) ≤ (𝐵 · 𝐵) ↔ ¬ (𝐵 · 𝐵) < (𝐴 · 𝐴)))
145, 11lenltd 7880 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (𝐴𝐵 ↔ ¬ 𝐵 < 𝐴))
159, 13, 143imtr4d 202 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴 · 𝐴) ≤ (𝐵 · 𝐵) → 𝐴𝐵))
165recnd 7794 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → 𝐴 ∈ ℂ)
1711recnd 7794 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → 𝐵 ∈ ℂ)
18 mulext 8376 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐴 ∈ ℂ) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ∈ ℂ)) → ((𝐴 · 𝐴) # (𝐵 · 𝐵) → (𝐴 # 𝐵𝐴 # 𝐵)))
1916, 16, 17, 17, 18syl22anc 1217 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴 · 𝐴) # (𝐵 · 𝐵) → (𝐴 # 𝐵𝐴 # 𝐵)))
20 oridm 746 . . . . 5 ((𝐴 # 𝐵𝐴 # 𝐵) ↔ 𝐴 # 𝐵)
2119, 20syl6ib 160 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴 · 𝐴) # (𝐵 · 𝐵) → 𝐴 # 𝐵))
2215, 21anim12d 333 . . 3 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (((𝐴 · 𝐴) ≤ (𝐵 · 𝐵) ∧ (𝐴 · 𝐴) # (𝐵 · 𝐵)) → (𝐴𝐵𝐴 # 𝐵)))
23 ltleap 8394 . . . 4 (((𝐴 · 𝐴) ∈ ℝ ∧ (𝐵 · 𝐵) ∈ ℝ) → ((𝐴 · 𝐴) < (𝐵 · 𝐵) ↔ ((𝐴 · 𝐴) ≤ (𝐵 · 𝐵) ∧ (𝐴 · 𝐴) # (𝐵 · 𝐵))))
2410, 12, 23syl2anc 408 . . 3 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴 · 𝐴) < (𝐵 · 𝐵) ↔ ((𝐴 · 𝐴) ≤ (𝐵 · 𝐵) ∧ (𝐴 · 𝐴) # (𝐵 · 𝐵))))
25 ltleap 8394 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ (𝐴𝐵𝐴 # 𝐵)))
265, 11, 25syl2anc 408 . . 3 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (𝐴 < 𝐵 ↔ (𝐴𝐵𝐴 # 𝐵)))
2722, 24, 263imtr4d 202 . 2 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴 · 𝐴) < (𝐵 · 𝐵) → 𝐴 < 𝐵))
283, 27impbid 128 1 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (𝐴 < 𝐵 ↔ (𝐴 · 𝐴) < (𝐵 · 𝐵)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 697  wcel 1480   class class class wbr 3929  (class class class)co 5774  cc 7618  cr 7619  0cc0 7620   · cmul 7625   < clt 7800  cle 7801   # cap 8343
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-id 4215  df-po 4218  df-iso 4219  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-iota 5088  df-fun 5125  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344
This theorem is referenced by:  le2msq  8659  lt2msqi  8672  lt2sq  10366
  Copyright terms: Public domain W3C validator