Proof of Theorem lt2msq
| Step | Hyp | Ref
| Expression |
| 1 | | lt2msq1 8912 |
. . . 4
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝐴 · 𝐴) < (𝐵 · 𝐵)) |
| 2 | 1 | 3expia 1207 |
. . 3
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 → (𝐴 · 𝐴) < (𝐵 · 𝐵))) |
| 3 | 2 | adantrr 479 |
. 2
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (𝐴 < 𝐵 → (𝐴 · 𝐴) < (𝐵 · 𝐵))) |
| 4 | | simpr 110 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) |
| 5 | | simpll 527 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → 𝐴 ∈ ℝ) |
| 6 | | lt2msq1 8912 |
. . . . . . . 8
⊢ (((𝐵 ∈ ℝ ∧ 0 ≤
𝐵) ∧ 𝐴 ∈ ℝ ∧ 𝐵 < 𝐴) → (𝐵 · 𝐵) < (𝐴 · 𝐴)) |
| 7 | 6 | 3expia 1207 |
. . . . . . 7
⊢ (((𝐵 ∈ ℝ ∧ 0 ≤
𝐵) ∧ 𝐴 ∈ ℝ) → (𝐵 < 𝐴 → (𝐵 · 𝐵) < (𝐴 · 𝐴))) |
| 8 | 4, 5, 7 | syl2anc 411 |
. . . . . 6
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (𝐵 < 𝐴 → (𝐵 · 𝐵) < (𝐴 · 𝐴))) |
| 9 | 8 | con3d 632 |
. . . . 5
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (¬ (𝐵 · 𝐵) < (𝐴 · 𝐴) → ¬ 𝐵 < 𝐴)) |
| 10 | 5, 5 | remulcld 8057 |
. . . . . 6
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (𝐴 · 𝐴) ∈ ℝ) |
| 11 | | simprl 529 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → 𝐵 ∈ ℝ) |
| 12 | 11, 11 | remulcld 8057 |
. . . . . 6
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (𝐵 · 𝐵) ∈ ℝ) |
| 13 | 10, 12 | lenltd 8144 |
. . . . 5
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴 · 𝐴) ≤ (𝐵 · 𝐵) ↔ ¬ (𝐵 · 𝐵) < (𝐴 · 𝐴))) |
| 14 | 5, 11 | lenltd 8144 |
. . . . 5
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) |
| 15 | 9, 13, 14 | 3imtr4d 203 |
. . . 4
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴 · 𝐴) ≤ (𝐵 · 𝐵) → 𝐴 ≤ 𝐵)) |
| 16 | 5 | recnd 8055 |
. . . . . 6
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → 𝐴 ∈ ℂ) |
| 17 | 11 | recnd 8055 |
. . . . . 6
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → 𝐵 ∈ ℂ) |
| 18 | | mulext 8641 |
. . . . . 6
⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ∈ ℂ) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ∈ ℂ)) → ((𝐴 · 𝐴) # (𝐵 · 𝐵) → (𝐴 # 𝐵 ∨ 𝐴 # 𝐵))) |
| 19 | 16, 16, 17, 17, 18 | syl22anc 1250 |
. . . . 5
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴 · 𝐴) # (𝐵 · 𝐵) → (𝐴 # 𝐵 ∨ 𝐴 # 𝐵))) |
| 20 | | oridm 758 |
. . . . 5
⊢ ((𝐴 # 𝐵 ∨ 𝐴 # 𝐵) ↔ 𝐴 # 𝐵) |
| 21 | 19, 20 | imbitrdi 161 |
. . . 4
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴 · 𝐴) # (𝐵 · 𝐵) → 𝐴 # 𝐵)) |
| 22 | 15, 21 | anim12d 335 |
. . 3
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (((𝐴 · 𝐴) ≤ (𝐵 · 𝐵) ∧ (𝐴 · 𝐴) # (𝐵 · 𝐵)) → (𝐴 ≤ 𝐵 ∧ 𝐴 # 𝐵))) |
| 23 | | ltleap 8659 |
. . . 4
⊢ (((𝐴 · 𝐴) ∈ ℝ ∧ (𝐵 · 𝐵) ∈ ℝ) → ((𝐴 · 𝐴) < (𝐵 · 𝐵) ↔ ((𝐴 · 𝐴) ≤ (𝐵 · 𝐵) ∧ (𝐴 · 𝐴) # (𝐵 · 𝐵)))) |
| 24 | 10, 12, 23 | syl2anc 411 |
. . 3
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴 · 𝐴) < (𝐵 · 𝐵) ↔ ((𝐴 · 𝐴) ≤ (𝐵 · 𝐵) ∧ (𝐴 · 𝐴) # (𝐵 · 𝐵)))) |
| 25 | | ltleap 8659 |
. . . 4
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ (𝐴 ≤ 𝐵 ∧ 𝐴 # 𝐵))) |
| 26 | 5, 11, 25 | syl2anc 411 |
. . 3
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (𝐴 < 𝐵 ↔ (𝐴 ≤ 𝐵 ∧ 𝐴 # 𝐵))) |
| 27 | 22, 24, 26 | 3imtr4d 203 |
. 2
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴 · 𝐴) < (𝐵 · 𝐵) → 𝐴 < 𝐵)) |
| 28 | 3, 27 | impbid 129 |
1
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (𝐴 < 𝐵 ↔ (𝐴 · 𝐴) < (𝐵 · 𝐵))) |