ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lt2msq GIF version

Theorem lt2msq 8941
Description: Two nonnegative numbers compare the same as their squares. (Contributed by Roy F. Longton, 8-Aug-2005.) (Revised by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
lt2msq (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (𝐴 < 𝐵 ↔ (𝐴 · 𝐴) < (𝐵 · 𝐵)))

Proof of Theorem lt2msq
StepHypRef Expression
1 lt2msq1 8940 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝐴 · 𝐴) < (𝐵 · 𝐵))
213expia 1207 . . 3 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 → (𝐴 · 𝐴) < (𝐵 · 𝐵)))
32adantrr 479 . 2 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (𝐴 < 𝐵 → (𝐴 · 𝐴) < (𝐵 · 𝐵)))
4 simpr 110 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵))
5 simpll 527 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → 𝐴 ∈ ℝ)
6 lt2msq1 8940 . . . . . . . 8 (((𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐴 ∈ ℝ ∧ 𝐵 < 𝐴) → (𝐵 · 𝐵) < (𝐴 · 𝐴))
763expia 1207 . . . . . . 7 (((𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐴 ∈ ℝ) → (𝐵 < 𝐴 → (𝐵 · 𝐵) < (𝐴 · 𝐴)))
84, 5, 7syl2anc 411 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (𝐵 < 𝐴 → (𝐵 · 𝐵) < (𝐴 · 𝐴)))
98con3d 632 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (¬ (𝐵 · 𝐵) < (𝐴 · 𝐴) → ¬ 𝐵 < 𝐴))
105, 5remulcld 8085 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (𝐴 · 𝐴) ∈ ℝ)
11 simprl 529 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → 𝐵 ∈ ℝ)
1211, 11remulcld 8085 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (𝐵 · 𝐵) ∈ ℝ)
1310, 12lenltd 8172 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴 · 𝐴) ≤ (𝐵 · 𝐵) ↔ ¬ (𝐵 · 𝐵) < (𝐴 · 𝐴)))
145, 11lenltd 8172 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (𝐴𝐵 ↔ ¬ 𝐵 < 𝐴))
159, 13, 143imtr4d 203 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴 · 𝐴) ≤ (𝐵 · 𝐵) → 𝐴𝐵))
165recnd 8083 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → 𝐴 ∈ ℂ)
1711recnd 8083 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → 𝐵 ∈ ℂ)
18 mulext 8669 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐴 ∈ ℂ) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ∈ ℂ)) → ((𝐴 · 𝐴) # (𝐵 · 𝐵) → (𝐴 # 𝐵𝐴 # 𝐵)))
1916, 16, 17, 17, 18syl22anc 1250 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴 · 𝐴) # (𝐵 · 𝐵) → (𝐴 # 𝐵𝐴 # 𝐵)))
20 oridm 758 . . . . 5 ((𝐴 # 𝐵𝐴 # 𝐵) ↔ 𝐴 # 𝐵)
2119, 20imbitrdi 161 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴 · 𝐴) # (𝐵 · 𝐵) → 𝐴 # 𝐵))
2215, 21anim12d 335 . . 3 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (((𝐴 · 𝐴) ≤ (𝐵 · 𝐵) ∧ (𝐴 · 𝐴) # (𝐵 · 𝐵)) → (𝐴𝐵𝐴 # 𝐵)))
23 ltleap 8687 . . . 4 (((𝐴 · 𝐴) ∈ ℝ ∧ (𝐵 · 𝐵) ∈ ℝ) → ((𝐴 · 𝐴) < (𝐵 · 𝐵) ↔ ((𝐴 · 𝐴) ≤ (𝐵 · 𝐵) ∧ (𝐴 · 𝐴) # (𝐵 · 𝐵))))
2410, 12, 23syl2anc 411 . . 3 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴 · 𝐴) < (𝐵 · 𝐵) ↔ ((𝐴 · 𝐴) ≤ (𝐵 · 𝐵) ∧ (𝐴 · 𝐴) # (𝐵 · 𝐵))))
25 ltleap 8687 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ (𝐴𝐵𝐴 # 𝐵)))
265, 11, 25syl2anc 411 . . 3 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (𝐴 < 𝐵 ↔ (𝐴𝐵𝐴 # 𝐵)))
2722, 24, 263imtr4d 203 . 2 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴 · 𝐴) < (𝐵 · 𝐵) → 𝐴 < 𝐵))
283, 27impbid 129 1 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (𝐴 < 𝐵 ↔ (𝐴 · 𝐴) < (𝐵 · 𝐵)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709  wcel 2175   class class class wbr 4043  (class class class)co 5934  cc 7905  cr 7906  0cc0 7907   · cmul 7912   < clt 8089  cle 8090   # cap 8636
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-setind 4583  ax-cnex 7998  ax-resscn 7999  ax-1cn 8000  ax-1re 8001  ax-icn 8002  ax-addcl 8003  ax-addrcl 8004  ax-mulcl 8005  ax-mulrcl 8006  ax-addcom 8007  ax-mulcom 8008  ax-addass 8009  ax-mulass 8010  ax-distr 8011  ax-i2m1 8012  ax-0lt1 8013  ax-1rid 8014  ax-0id 8015  ax-rnegex 8016  ax-precex 8017  ax-cnre 8018  ax-pre-ltirr 8019  ax-pre-ltwlin 8020  ax-pre-lttrn 8021  ax-pre-apti 8022  ax-pre-ltadd 8023  ax-pre-mulgt0 8024  ax-pre-mulext 8025
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-opab 4105  df-id 4338  df-po 4341  df-iso 4342  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-iota 5229  df-fun 5270  df-fv 5276  df-riota 5889  df-ov 5937  df-oprab 5938  df-mpo 5939  df-pnf 8091  df-mnf 8092  df-xr 8093  df-ltxr 8094  df-le 8095  df-sub 8227  df-neg 8228  df-reap 8630  df-ap 8637
This theorem is referenced by:  le2msq  8956  lt2msqi  8969  lt2sq  10739
  Copyright terms: Public domain W3C validator