ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reapti GIF version

Theorem reapti 8598
Description: Real apartness is tight. Beyond the development of apartness itself, proofs should use apti 8641. (Contributed by Jim Kingdon, 30-Jan-2020.) (New usage is discouraged.)
Assertion
Ref Expression
reapti ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 = 𝐵 ↔ ¬ 𝐴 # 𝐵))

Proof of Theorem reapti
StepHypRef Expression
1 ltnr 8096 . . . . 5 (𝐴 ∈ ℝ → ¬ 𝐴 < 𝐴)
21adantr 276 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ¬ 𝐴 < 𝐴)
3 oridm 758 . . . . . 6 ((𝐴 < 𝐴𝐴 < 𝐴) ↔ 𝐴 < 𝐴)
4 breq2 4033 . . . . . . 7 (𝐴 = 𝐵 → (𝐴 < 𝐴𝐴 < 𝐵))
5 breq1 4032 . . . . . . 7 (𝐴 = 𝐵 → (𝐴 < 𝐴𝐵 < 𝐴))
64, 5orbi12d 794 . . . . . 6 (𝐴 = 𝐵 → ((𝐴 < 𝐴𝐴 < 𝐴) ↔ (𝐴 < 𝐵𝐵 < 𝐴)))
73, 6bitr3id 194 . . . . 5 (𝐴 = 𝐵 → (𝐴 < 𝐴 ↔ (𝐴 < 𝐵𝐵 < 𝐴)))
87notbid 668 . . . 4 (𝐴 = 𝐵 → (¬ 𝐴 < 𝐴 ↔ ¬ (𝐴 < 𝐵𝐵 < 𝐴)))
92, 8syl5ibcom 155 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 = 𝐵 → ¬ (𝐴 < 𝐵𝐵 < 𝐴)))
10 reapval 8595 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 # 𝐵 ↔ (𝐴 < 𝐵𝐵 < 𝐴)))
1110notbid 668 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (¬ 𝐴 # 𝐵 ↔ ¬ (𝐴 < 𝐵𝐵 < 𝐴)))
129, 11sylibrd 169 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 = 𝐵 → ¬ 𝐴 # 𝐵))
13 axapti 8090 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ¬ (𝐴 < 𝐵𝐵 < 𝐴)) → 𝐴 = 𝐵)
14133expia 1207 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (¬ (𝐴 < 𝐵𝐵 < 𝐴) → 𝐴 = 𝐵))
1511, 14sylbid 150 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (¬ 𝐴 # 𝐵𝐴 = 𝐵))
1612, 15impbid 129 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 = 𝐵 ↔ ¬ 𝐴 # 𝐵))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709   = wceq 1364  wcel 2164   class class class wbr 4029  cr 7871   < clt 8054   # creap 8593
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-pre-ltirr 7984  ax-pre-apti 7987
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-xp 4665  df-pnf 8056  df-mnf 8057  df-ltxr 8059  df-reap 8594
This theorem is referenced by:  rimul  8604  apreap  8606  apti  8641
  Copyright terms: Public domain W3C validator