| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > reapti | GIF version | ||
| Description: Real apartness is tight. Beyond the development of apartness itself, proofs should use apti 8765. (Contributed by Jim Kingdon, 30-Jan-2020.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| reapti | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 = 𝐵 ↔ ¬ 𝐴 #ℝ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltnr 8219 | . . . . 5 ⊢ (𝐴 ∈ ℝ → ¬ 𝐴 < 𝐴) | |
| 2 | 1 | adantr 276 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ¬ 𝐴 < 𝐴) |
| 3 | oridm 762 | . . . . . 6 ⊢ ((𝐴 < 𝐴 ∨ 𝐴 < 𝐴) ↔ 𝐴 < 𝐴) | |
| 4 | breq2 4086 | . . . . . . 7 ⊢ (𝐴 = 𝐵 → (𝐴 < 𝐴 ↔ 𝐴 < 𝐵)) | |
| 5 | breq1 4085 | . . . . . . 7 ⊢ (𝐴 = 𝐵 → (𝐴 < 𝐴 ↔ 𝐵 < 𝐴)) | |
| 6 | 4, 5 | orbi12d 798 | . . . . . 6 ⊢ (𝐴 = 𝐵 → ((𝐴 < 𝐴 ∨ 𝐴 < 𝐴) ↔ (𝐴 < 𝐵 ∨ 𝐵 < 𝐴))) |
| 7 | 3, 6 | bitr3id 194 | . . . . 5 ⊢ (𝐴 = 𝐵 → (𝐴 < 𝐴 ↔ (𝐴 < 𝐵 ∨ 𝐵 < 𝐴))) |
| 8 | 7 | notbid 671 | . . . 4 ⊢ (𝐴 = 𝐵 → (¬ 𝐴 < 𝐴 ↔ ¬ (𝐴 < 𝐵 ∨ 𝐵 < 𝐴))) |
| 9 | 2, 8 | syl5ibcom 155 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 = 𝐵 → ¬ (𝐴 < 𝐵 ∨ 𝐵 < 𝐴))) |
| 10 | reapval 8719 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 #ℝ 𝐵 ↔ (𝐴 < 𝐵 ∨ 𝐵 < 𝐴))) | |
| 11 | 10 | notbid 671 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (¬ 𝐴 #ℝ 𝐵 ↔ ¬ (𝐴 < 𝐵 ∨ 𝐵 < 𝐴))) |
| 12 | 9, 11 | sylibrd 169 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 = 𝐵 → ¬ 𝐴 #ℝ 𝐵)) |
| 13 | axapti 8213 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ¬ (𝐴 < 𝐵 ∨ 𝐵 < 𝐴)) → 𝐴 = 𝐵) | |
| 14 | 13 | 3expia 1229 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (¬ (𝐴 < 𝐵 ∨ 𝐵 < 𝐴) → 𝐴 = 𝐵)) |
| 15 | 11, 14 | sylbid 150 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (¬ 𝐴 #ℝ 𝐵 → 𝐴 = 𝐵)) |
| 16 | 12, 15 | impbid 129 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 = 𝐵 ↔ ¬ 𝐴 #ℝ 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 713 = wceq 1395 ∈ wcel 2200 class class class wbr 4082 ℝcr 7994 < clt 8177 #ℝ creap 8717 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 ax-pre-ltirr 8107 ax-pre-apti 8110 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-xp 4724 df-pnf 8179 df-mnf 8180 df-ltxr 8182 df-reap 8718 |
| This theorem is referenced by: rimul 8728 apreap 8730 apti 8765 |
| Copyright terms: Public domain | W3C validator |