![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > reapti | GIF version |
Description: Real apartness is tight. Beyond the development of apartness itself, proofs should use apti 8153. (Contributed by Jim Kingdon, 30-Jan-2020.) (New usage is discouraged.) |
Ref | Expression |
---|---|
reapti | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 = 𝐵 ↔ ¬ 𝐴 #ℝ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltnr 7616 | . . . . 5 ⊢ (𝐴 ∈ ℝ → ¬ 𝐴 < 𝐴) | |
2 | 1 | adantr 271 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ¬ 𝐴 < 𝐴) |
3 | oridm 710 | . . . . . 6 ⊢ ((𝐴 < 𝐴 ∨ 𝐴 < 𝐴) ↔ 𝐴 < 𝐴) | |
4 | breq2 3855 | . . . . . . 7 ⊢ (𝐴 = 𝐵 → (𝐴 < 𝐴 ↔ 𝐴 < 𝐵)) | |
5 | breq1 3854 | . . . . . . 7 ⊢ (𝐴 = 𝐵 → (𝐴 < 𝐴 ↔ 𝐵 < 𝐴)) | |
6 | 4, 5 | orbi12d 743 | . . . . . 6 ⊢ (𝐴 = 𝐵 → ((𝐴 < 𝐴 ∨ 𝐴 < 𝐴) ↔ (𝐴 < 𝐵 ∨ 𝐵 < 𝐴))) |
7 | 3, 6 | syl5bbr 193 | . . . . 5 ⊢ (𝐴 = 𝐵 → (𝐴 < 𝐴 ↔ (𝐴 < 𝐵 ∨ 𝐵 < 𝐴))) |
8 | 7 | notbid 628 | . . . 4 ⊢ (𝐴 = 𝐵 → (¬ 𝐴 < 𝐴 ↔ ¬ (𝐴 < 𝐵 ∨ 𝐵 < 𝐴))) |
9 | 2, 8 | syl5ibcom 154 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 = 𝐵 → ¬ (𝐴 < 𝐵 ∨ 𝐵 < 𝐴))) |
10 | reapval 8107 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 #ℝ 𝐵 ↔ (𝐴 < 𝐵 ∨ 𝐵 < 𝐴))) | |
11 | 10 | notbid 628 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (¬ 𝐴 #ℝ 𝐵 ↔ ¬ (𝐴 < 𝐵 ∨ 𝐵 < 𝐴))) |
12 | 9, 11 | sylibrd 168 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 = 𝐵 → ¬ 𝐴 #ℝ 𝐵)) |
13 | axapti 7611 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ¬ (𝐴 < 𝐵 ∨ 𝐵 < 𝐴)) → 𝐴 = 𝐵) | |
14 | 13 | 3expia 1146 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (¬ (𝐴 < 𝐵 ∨ 𝐵 < 𝐴) → 𝐴 = 𝐵)) |
15 | 11, 14 | sylbid 149 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (¬ 𝐴 #ℝ 𝐵 → 𝐴 = 𝐵)) |
16 | 12, 15 | impbid 128 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 = 𝐵 ↔ ¬ 𝐴 #ℝ 𝐵)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ↔ wb 104 ∨ wo 665 = wceq 1290 ∈ wcel 1439 class class class wbr 3851 ℝcr 7403 < clt 7576 #ℝ creap 8105 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 580 ax-in2 581 ax-io 666 ax-5 1382 ax-7 1383 ax-gen 1384 ax-ie1 1428 ax-ie2 1429 ax-8 1441 ax-10 1442 ax-11 1443 ax-i12 1444 ax-bndl 1445 ax-4 1446 ax-13 1450 ax-14 1451 ax-17 1465 ax-i9 1469 ax-ial 1473 ax-i5r 1474 ax-ext 2071 ax-sep 3963 ax-pow 4015 ax-pr 4045 ax-un 4269 ax-setind 4366 ax-cnex 7490 ax-resscn 7491 ax-pre-ltirr 7511 ax-pre-apti 7514 |
This theorem depends on definitions: df-bi 116 df-3an 927 df-tru 1293 df-fal 1296 df-nf 1396 df-sb 1694 df-eu 1952 df-mo 1953 df-clab 2076 df-cleq 2082 df-clel 2085 df-nfc 2218 df-ne 2257 df-nel 2352 df-ral 2365 df-rex 2366 df-rab 2369 df-v 2622 df-dif 3002 df-un 3004 df-in 3006 df-ss 3013 df-pw 3435 df-sn 3456 df-pr 3457 df-op 3459 df-uni 3660 df-br 3852 df-opab 3906 df-xp 4457 df-pnf 7578 df-mnf 7579 df-ltxr 7581 df-reap 8106 |
This theorem is referenced by: rimul 8116 apreap 8118 apti 8153 |
Copyright terms: Public domain | W3C validator |