| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > reapti | GIF version | ||
| Description: Real apartness is tight. Beyond the development of apartness itself, proofs should use apti 8715. (Contributed by Jim Kingdon, 30-Jan-2020.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| reapti | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 = 𝐵 ↔ ¬ 𝐴 #ℝ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltnr 8169 | . . . . 5 ⊢ (𝐴 ∈ ℝ → ¬ 𝐴 < 𝐴) | |
| 2 | 1 | adantr 276 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ¬ 𝐴 < 𝐴) |
| 3 | oridm 759 | . . . . . 6 ⊢ ((𝐴 < 𝐴 ∨ 𝐴 < 𝐴) ↔ 𝐴 < 𝐴) | |
| 4 | breq2 4055 | . . . . . . 7 ⊢ (𝐴 = 𝐵 → (𝐴 < 𝐴 ↔ 𝐴 < 𝐵)) | |
| 5 | breq1 4054 | . . . . . . 7 ⊢ (𝐴 = 𝐵 → (𝐴 < 𝐴 ↔ 𝐵 < 𝐴)) | |
| 6 | 4, 5 | orbi12d 795 | . . . . . 6 ⊢ (𝐴 = 𝐵 → ((𝐴 < 𝐴 ∨ 𝐴 < 𝐴) ↔ (𝐴 < 𝐵 ∨ 𝐵 < 𝐴))) |
| 7 | 3, 6 | bitr3id 194 | . . . . 5 ⊢ (𝐴 = 𝐵 → (𝐴 < 𝐴 ↔ (𝐴 < 𝐵 ∨ 𝐵 < 𝐴))) |
| 8 | 7 | notbid 669 | . . . 4 ⊢ (𝐴 = 𝐵 → (¬ 𝐴 < 𝐴 ↔ ¬ (𝐴 < 𝐵 ∨ 𝐵 < 𝐴))) |
| 9 | 2, 8 | syl5ibcom 155 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 = 𝐵 → ¬ (𝐴 < 𝐵 ∨ 𝐵 < 𝐴))) |
| 10 | reapval 8669 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 #ℝ 𝐵 ↔ (𝐴 < 𝐵 ∨ 𝐵 < 𝐴))) | |
| 11 | 10 | notbid 669 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (¬ 𝐴 #ℝ 𝐵 ↔ ¬ (𝐴 < 𝐵 ∨ 𝐵 < 𝐴))) |
| 12 | 9, 11 | sylibrd 169 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 = 𝐵 → ¬ 𝐴 #ℝ 𝐵)) |
| 13 | axapti 8163 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ¬ (𝐴 < 𝐵 ∨ 𝐵 < 𝐴)) → 𝐴 = 𝐵) | |
| 14 | 13 | 3expia 1208 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (¬ (𝐴 < 𝐵 ∨ 𝐵 < 𝐴) → 𝐴 = 𝐵)) |
| 15 | 11, 14 | sylbid 150 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (¬ 𝐴 #ℝ 𝐵 → 𝐴 = 𝐵)) |
| 16 | 12, 15 | impbid 129 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 = 𝐵 ↔ ¬ 𝐴 #ℝ 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 710 = wceq 1373 ∈ wcel 2177 class class class wbr 4051 ℝcr 7944 < clt 8127 #ℝ creap 8667 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 ax-cnex 8036 ax-resscn 8037 ax-pre-ltirr 8057 ax-pre-apti 8060 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-br 4052 df-opab 4114 df-xp 4689 df-pnf 8129 df-mnf 8130 df-ltxr 8132 df-reap 8668 |
| This theorem is referenced by: rimul 8678 apreap 8680 apti 8715 |
| Copyright terms: Public domain | W3C validator |