![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > reapti | GIF version |
Description: Real apartness is tight. Beyond the development of apartness itself, proofs should use apti 8643. (Contributed by Jim Kingdon, 30-Jan-2020.) (New usage is discouraged.) |
Ref | Expression |
---|---|
reapti | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 = 𝐵 ↔ ¬ 𝐴 #ℝ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltnr 8098 | . . . . 5 ⊢ (𝐴 ∈ ℝ → ¬ 𝐴 < 𝐴) | |
2 | 1 | adantr 276 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ¬ 𝐴 < 𝐴) |
3 | oridm 758 | . . . . . 6 ⊢ ((𝐴 < 𝐴 ∨ 𝐴 < 𝐴) ↔ 𝐴 < 𝐴) | |
4 | breq2 4034 | . . . . . . 7 ⊢ (𝐴 = 𝐵 → (𝐴 < 𝐴 ↔ 𝐴 < 𝐵)) | |
5 | breq1 4033 | . . . . . . 7 ⊢ (𝐴 = 𝐵 → (𝐴 < 𝐴 ↔ 𝐵 < 𝐴)) | |
6 | 4, 5 | orbi12d 794 | . . . . . 6 ⊢ (𝐴 = 𝐵 → ((𝐴 < 𝐴 ∨ 𝐴 < 𝐴) ↔ (𝐴 < 𝐵 ∨ 𝐵 < 𝐴))) |
7 | 3, 6 | bitr3id 194 | . . . . 5 ⊢ (𝐴 = 𝐵 → (𝐴 < 𝐴 ↔ (𝐴 < 𝐵 ∨ 𝐵 < 𝐴))) |
8 | 7 | notbid 668 | . . . 4 ⊢ (𝐴 = 𝐵 → (¬ 𝐴 < 𝐴 ↔ ¬ (𝐴 < 𝐵 ∨ 𝐵 < 𝐴))) |
9 | 2, 8 | syl5ibcom 155 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 = 𝐵 → ¬ (𝐴 < 𝐵 ∨ 𝐵 < 𝐴))) |
10 | reapval 8597 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 #ℝ 𝐵 ↔ (𝐴 < 𝐵 ∨ 𝐵 < 𝐴))) | |
11 | 10 | notbid 668 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (¬ 𝐴 #ℝ 𝐵 ↔ ¬ (𝐴 < 𝐵 ∨ 𝐵 < 𝐴))) |
12 | 9, 11 | sylibrd 169 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 = 𝐵 → ¬ 𝐴 #ℝ 𝐵)) |
13 | axapti 8092 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ¬ (𝐴 < 𝐵 ∨ 𝐵 < 𝐴)) → 𝐴 = 𝐵) | |
14 | 13 | 3expia 1207 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (¬ (𝐴 < 𝐵 ∨ 𝐵 < 𝐴) → 𝐴 = 𝐵)) |
15 | 11, 14 | sylbid 150 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (¬ 𝐴 #ℝ 𝐵 → 𝐴 = 𝐵)) |
16 | 12, 15 | impbid 129 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 = 𝐵 ↔ ¬ 𝐴 #ℝ 𝐵)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 709 = wceq 1364 ∈ wcel 2164 class class class wbr 4030 ℝcr 7873 < clt 8056 #ℝ creap 8595 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-cnex 7965 ax-resscn 7966 ax-pre-ltirr 7986 ax-pre-apti 7989 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-br 4031 df-opab 4092 df-xp 4666 df-pnf 8058 df-mnf 8059 df-ltxr 8061 df-reap 8596 |
This theorem is referenced by: rimul 8606 apreap 8608 apti 8643 |
Copyright terms: Public domain | W3C validator |