![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > peano2cn | GIF version |
Description: A theorem for complex numbers analogous the second Peano postulate peano2 4596. (Contributed by NM, 17-Aug-2005.) |
Ref | Expression |
---|---|
peano2cn | ⊢ (𝐴 ∈ ℂ → (𝐴 + 1) ∈ ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1cn 7907 | . 2 ⊢ 1 ∈ ℂ | |
2 | addcl 7939 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → (𝐴 + 1) ∈ ℂ) | |
3 | 1, 2 | mpan2 425 | 1 ⊢ (𝐴 ∈ ℂ → (𝐴 + 1) ∈ ℂ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2148 (class class class)co 5878 ℂcc 7812 1c1 7815 + caddc 7817 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 ax-1cn 7907 ax-addcl 7910 |
This theorem is referenced by: xp1d2m1eqxm1d2 9174 nneo 9359 zeo 9361 zeo2 9362 zesq 10642 facndiv 10722 faclbnd 10724 faclbnd6 10727 bcxmas 11500 trireciplem 11511 odd2np1 11881 abssinper 14407 lgseisenlem1 14590 |
Copyright terms: Public domain | W3C validator |