ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  peano2cn GIF version

Theorem peano2cn 8095
Description: A theorem for complex numbers analogous the second Peano postulate peano2 4596. (Contributed by NM, 17-Aug-2005.)
Assertion
Ref Expression
peano2cn (𝐴 ∈ ℂ → (𝐴 + 1) ∈ ℂ)

Proof of Theorem peano2cn
StepHypRef Expression
1 ax-1cn 7907 . 2 1 ∈ ℂ
2 addcl 7939 . 2 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → (𝐴 + 1) ∈ ℂ)
31, 2mpan2 425 1 (𝐴 ∈ ℂ → (𝐴 + 1) ∈ ℂ)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2148  (class class class)co 5878  cc 7812  1c1 7815   + caddc 7817
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia3 108  ax-1cn 7907  ax-addcl 7910
This theorem is referenced by:  xp1d2m1eqxm1d2  9174  nneo  9359  zeo  9361  zeo2  9362  zesq  10642  facndiv  10722  faclbnd  10724  faclbnd6  10727  bcxmas  11500  trireciplem  11511  odd2np1  11881  abssinper  14407  lgseisenlem1  14590
  Copyright terms: Public domain W3C validator