ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  peano2cn GIF version

Theorem peano2cn 8269
Description: A theorem for complex numbers analogous the second Peano postulate peano2 4684. (Contributed by NM, 17-Aug-2005.)
Assertion
Ref Expression
peano2cn (𝐴 ∈ ℂ → (𝐴 + 1) ∈ ℂ)

Proof of Theorem peano2cn
StepHypRef Expression
1 ax-1cn 8080 . 2 1 ∈ ℂ
2 addcl 8112 . 2 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → (𝐴 + 1) ∈ ℂ)
31, 2mpan2 425 1 (𝐴 ∈ ℂ → (𝐴 + 1) ∈ ℂ)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2200  (class class class)co 5994  cc 7985  1c1 7988   + caddc 7990
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia3 108  ax-1cn 8080  ax-addcl 8083
This theorem is referenced by:  xp1d2m1eqxm1d2  9352  nneo  9538  zeo  9540  zeo2  9541  zesq  10867  facndiv  10948  faclbnd  10950  faclbnd6  10953  bcxmas  11986  trireciplem  11997  odd2np1  12370  abssinper  15505  lgseisenlem1  15734  lgsquadlem1  15741
  Copyright terms: Public domain W3C validator