| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > peano2cn | GIF version | ||
| Description: A theorem for complex numbers analogous the second Peano postulate peano2 4632. (Contributed by NM, 17-Aug-2005.) |
| Ref | Expression |
|---|---|
| peano2cn | ⊢ (𝐴 ∈ ℂ → (𝐴 + 1) ∈ ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1cn 7989 | . 2 ⊢ 1 ∈ ℂ | |
| 2 | addcl 8021 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → (𝐴 + 1) ∈ ℂ) | |
| 3 | 1, 2 | mpan2 425 | 1 ⊢ (𝐴 ∈ ℂ → (𝐴 + 1) ∈ ℂ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2167 (class class class)co 5925 ℂcc 7894 1c1 7897 + caddc 7899 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 ax-1cn 7989 ax-addcl 7992 |
| This theorem is referenced by: xp1d2m1eqxm1d2 9261 nneo 9446 zeo 9448 zeo2 9449 zesq 10767 facndiv 10848 faclbnd 10850 faclbnd6 10853 bcxmas 11671 trireciplem 11682 odd2np1 12055 abssinper 15166 lgseisenlem1 15395 lgsquadlem1 15402 |
| Copyright terms: Public domain | W3C validator |