| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > peano2cn | GIF version | ||
| Description: A theorem for complex numbers analogous the second Peano postulate peano2 4687. (Contributed by NM, 17-Aug-2005.) |
| Ref | Expression |
|---|---|
| peano2cn | ⊢ (𝐴 ∈ ℂ → (𝐴 + 1) ∈ ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1cn 8100 | . 2 ⊢ 1 ∈ ℂ | |
| 2 | addcl 8132 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → (𝐴 + 1) ∈ ℂ) | |
| 3 | 1, 2 | mpan2 425 | 1 ⊢ (𝐴 ∈ ℂ → (𝐴 + 1) ∈ ℂ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2200 (class class class)co 6007 ℂcc 8005 1c1 8008 + caddc 8010 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 ax-1cn 8100 ax-addcl 8103 |
| This theorem is referenced by: xp1d2m1eqxm1d2 9372 nneo 9558 zeo 9560 zeo2 9561 zesq 10888 facndiv 10969 faclbnd 10971 faclbnd6 10974 bcxmas 12008 trireciplem 12019 odd2np1 12392 abssinper 15528 lgseisenlem1 15757 lgsquadlem1 15764 |
| Copyright terms: Public domain | W3C validator |