![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > peano2cn | GIF version |
Description: A theorem for complex numbers analogous the second Peano postulate peano2 4628. (Contributed by NM, 17-Aug-2005.) |
Ref | Expression |
---|---|
peano2cn | ⊢ (𝐴 ∈ ℂ → (𝐴 + 1) ∈ ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1cn 7967 | . 2 ⊢ 1 ∈ ℂ | |
2 | addcl 7999 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → (𝐴 + 1) ∈ ℂ) | |
3 | 1, 2 | mpan2 425 | 1 ⊢ (𝐴 ∈ ℂ → (𝐴 + 1) ∈ ℂ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2164 (class class class)co 5919 ℂcc 7872 1c1 7875 + caddc 7877 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 ax-1cn 7967 ax-addcl 7970 |
This theorem is referenced by: xp1d2m1eqxm1d2 9238 nneo 9423 zeo 9425 zeo2 9426 zesq 10732 facndiv 10813 faclbnd 10815 faclbnd6 10818 bcxmas 11635 trireciplem 11646 odd2np1 12017 abssinper 15022 lgseisenlem1 15227 lgsquadlem1 15234 |
Copyright terms: Public domain | W3C validator |