ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  peano2cn GIF version

Theorem peano2cn 7814
Description: A theorem for complex numbers analogous the second Peano postulate peano2 4467. (Contributed by NM, 17-Aug-2005.)
Assertion
Ref Expression
peano2cn (𝐴 ∈ ℂ → (𝐴 + 1) ∈ ℂ)

Proof of Theorem peano2cn
StepHypRef Expression
1 ax-1cn 7632 . 2 1 ∈ ℂ
2 addcl 7663 . 2 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → (𝐴 + 1) ∈ ℂ)
31, 2mpan2 419 1 (𝐴 ∈ ℂ → (𝐴 + 1) ∈ ℂ)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 1461  (class class class)co 5726  cc 7539  1c1 7542   + caddc 7544
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia3 107  ax-1cn 7632  ax-addcl 7635
This theorem is referenced by:  xp1d2m1eqxm1d2  8870  nneo  9052  zeo  9054  zeo2  9055  zesq  10297  facndiv  10372  faclbnd  10374  faclbnd6  10377  bcxmas  11144  trireciplem  11155  odd2np1  11412
  Copyright terms: Public domain W3C validator