Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > peano2cn | GIF version |
Description: A theorem for complex numbers analogous the second Peano postulate peano2 4572. (Contributed by NM, 17-Aug-2005.) |
Ref | Expression |
---|---|
peano2cn | ⊢ (𝐴 ∈ ℂ → (𝐴 + 1) ∈ ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1cn 7846 | . 2 ⊢ 1 ∈ ℂ | |
2 | addcl 7878 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → (𝐴 + 1) ∈ ℂ) | |
3 | 1, 2 | mpan2 422 | 1 ⊢ (𝐴 ∈ ℂ → (𝐴 + 1) ∈ ℂ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2136 (class class class)co 5842 ℂcc 7751 1c1 7754 + caddc 7756 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 107 ax-1cn 7846 ax-addcl 7849 |
This theorem is referenced by: xp1d2m1eqxm1d2 9109 nneo 9294 zeo 9296 zeo2 9297 zesq 10573 facndiv 10652 faclbnd 10654 faclbnd6 10657 bcxmas 11430 trireciplem 11441 odd2np1 11810 abssinper 13407 |
Copyright terms: Public domain | W3C validator |