ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  peano2cn GIF version

Theorem peano2cn 8180
Description: A theorem for complex numbers analogous the second Peano postulate peano2 4632. (Contributed by NM, 17-Aug-2005.)
Assertion
Ref Expression
peano2cn (𝐴 ∈ ℂ → (𝐴 + 1) ∈ ℂ)

Proof of Theorem peano2cn
StepHypRef Expression
1 ax-1cn 7991 . 2 1 ∈ ℂ
2 addcl 8023 . 2 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → (𝐴 + 1) ∈ ℂ)
31, 2mpan2 425 1 (𝐴 ∈ ℂ → (𝐴 + 1) ∈ ℂ)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2167  (class class class)co 5925  cc 7896  1c1 7899   + caddc 7901
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia3 108  ax-1cn 7991  ax-addcl 7994
This theorem is referenced by:  xp1d2m1eqxm1d2  9263  nneo  9448  zeo  9450  zeo2  9451  zesq  10769  facndiv  10850  faclbnd  10852  faclbnd6  10855  bcxmas  11673  trireciplem  11684  odd2np1  12057  abssinper  15190  lgseisenlem1  15419  lgsquadlem1  15426
  Copyright terms: Public domain W3C validator