ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  peano2cn GIF version

Theorem peano2cn 8289
Description: A theorem for complex numbers analogous the second Peano postulate peano2 4687. (Contributed by NM, 17-Aug-2005.)
Assertion
Ref Expression
peano2cn (𝐴 ∈ ℂ → (𝐴 + 1) ∈ ℂ)

Proof of Theorem peano2cn
StepHypRef Expression
1 ax-1cn 8100 . 2 1 ∈ ℂ
2 addcl 8132 . 2 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → (𝐴 + 1) ∈ ℂ)
31, 2mpan2 425 1 (𝐴 ∈ ℂ → (𝐴 + 1) ∈ ℂ)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2200  (class class class)co 6007  cc 8005  1c1 8008   + caddc 8010
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia3 108  ax-1cn 8100  ax-addcl 8103
This theorem is referenced by:  xp1d2m1eqxm1d2  9372  nneo  9558  zeo  9560  zeo2  9561  zesq  10888  facndiv  10969  faclbnd  10971  faclbnd6  10974  bcxmas  12008  trireciplem  12019  odd2np1  12392  abssinper  15528  lgseisenlem1  15757  lgsquadlem1  15764
  Copyright terms: Public domain W3C validator