| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > peano2cn | GIF version | ||
| Description: A theorem for complex numbers analogous the second Peano postulate peano2 4632. (Contributed by NM, 17-Aug-2005.) |
| Ref | Expression |
|---|---|
| peano2cn | ⊢ (𝐴 ∈ ℂ → (𝐴 + 1) ∈ ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1cn 7991 | . 2 ⊢ 1 ∈ ℂ | |
| 2 | addcl 8023 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → (𝐴 + 1) ∈ ℂ) | |
| 3 | 1, 2 | mpan2 425 | 1 ⊢ (𝐴 ∈ ℂ → (𝐴 + 1) ∈ ℂ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2167 (class class class)co 5925 ℂcc 7896 1c1 7899 + caddc 7901 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 ax-1cn 7991 ax-addcl 7994 |
| This theorem is referenced by: xp1d2m1eqxm1d2 9263 nneo 9448 zeo 9450 zeo2 9451 zesq 10769 facndiv 10850 faclbnd 10852 faclbnd6 10855 bcxmas 11673 trireciplem 11684 odd2np1 12057 abssinper 15190 lgseisenlem1 15419 lgsquadlem1 15426 |
| Copyright terms: Public domain | W3C validator |