ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  peano2cn GIF version

Theorem peano2cn 8178
Description: A theorem for complex numbers analogous the second Peano postulate peano2 4632. (Contributed by NM, 17-Aug-2005.)
Assertion
Ref Expression
peano2cn (𝐴 ∈ ℂ → (𝐴 + 1) ∈ ℂ)

Proof of Theorem peano2cn
StepHypRef Expression
1 ax-1cn 7989 . 2 1 ∈ ℂ
2 addcl 8021 . 2 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → (𝐴 + 1) ∈ ℂ)
31, 2mpan2 425 1 (𝐴 ∈ ℂ → (𝐴 + 1) ∈ ℂ)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2167  (class class class)co 5925  cc 7894  1c1 7897   + caddc 7899
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia3 108  ax-1cn 7989  ax-addcl 7992
This theorem is referenced by:  xp1d2m1eqxm1d2  9261  nneo  9446  zeo  9448  zeo2  9449  zesq  10767  facndiv  10848  faclbnd  10850  faclbnd6  10853  bcxmas  11671  trireciplem  11682  odd2np1  12055  abssinper  15166  lgseisenlem1  15395  lgsquadlem1  15402
  Copyright terms: Public domain W3C validator