ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  peano2cn GIF version

Theorem peano2cn 8156
Description: A theorem for complex numbers analogous the second Peano postulate peano2 4628. (Contributed by NM, 17-Aug-2005.)
Assertion
Ref Expression
peano2cn (𝐴 ∈ ℂ → (𝐴 + 1) ∈ ℂ)

Proof of Theorem peano2cn
StepHypRef Expression
1 ax-1cn 7967 . 2 1 ∈ ℂ
2 addcl 7999 . 2 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → (𝐴 + 1) ∈ ℂ)
31, 2mpan2 425 1 (𝐴 ∈ ℂ → (𝐴 + 1) ∈ ℂ)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2164  (class class class)co 5919  cc 7872  1c1 7875   + caddc 7877
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia3 108  ax-1cn 7967  ax-addcl 7970
This theorem is referenced by:  xp1d2m1eqxm1d2  9238  nneo  9423  zeo  9425  zeo2  9426  zesq  10732  facndiv  10813  faclbnd  10815  faclbnd6  10818  bcxmas  11635  trireciplem  11646  odd2np1  12017  abssinper  15022  lgseisenlem1  15227  lgsquadlem1  15234
  Copyright terms: Public domain W3C validator