ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  peano2cn GIF version

Theorem peano2cn 8220
Description: A theorem for complex numbers analogous the second Peano postulate peano2 4648. (Contributed by NM, 17-Aug-2005.)
Assertion
Ref Expression
peano2cn (𝐴 ∈ ℂ → (𝐴 + 1) ∈ ℂ)

Proof of Theorem peano2cn
StepHypRef Expression
1 ax-1cn 8031 . 2 1 ∈ ℂ
2 addcl 8063 . 2 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → (𝐴 + 1) ∈ ℂ)
31, 2mpan2 425 1 (𝐴 ∈ ℂ → (𝐴 + 1) ∈ ℂ)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2177  (class class class)co 5954  cc 7936  1c1 7939   + caddc 7941
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia3 108  ax-1cn 8031  ax-addcl 8034
This theorem is referenced by:  xp1d2m1eqxm1d2  9303  nneo  9489  zeo  9491  zeo2  9492  zesq  10816  facndiv  10897  faclbnd  10899  faclbnd6  10902  bcxmas  11850  trireciplem  11861  odd2np1  12234  abssinper  15368  lgseisenlem1  15597  lgsquadlem1  15604
  Copyright terms: Public domain W3C validator