ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  facndiv GIF version

Theorem facndiv 10831
Description: No positive integer (greater than one) divides the factorial plus one of an equal or larger number. (Contributed by NM, 3-May-2005.)
Assertion
Ref Expression
facndiv (((𝑀 ∈ ℕ0𝑁 ∈ ℕ) ∧ (1 < 𝑁𝑁𝑀)) → ¬ (((!‘𝑀) + 1) / 𝑁) ∈ ℤ)

Proof of Theorem facndiv
StepHypRef Expression
1 nnre 8997 . . . 4 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
2 recnz 9419 . . . 4 ((𝑁 ∈ ℝ ∧ 1 < 𝑁) → ¬ (1 / 𝑁) ∈ ℤ)
31, 2sylan 283 . . 3 ((𝑁 ∈ ℕ ∧ 1 < 𝑁) → ¬ (1 / 𝑁) ∈ ℤ)
43ad2ant2lr 510 . 2 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ) ∧ (1 < 𝑁𝑁𝑀)) → ¬ (1 / 𝑁) ∈ ℤ)
5 facdiv 10830 . . . . . . 7 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝑁𝑀) → ((!‘𝑀) / 𝑁) ∈ ℕ)
653expa 1205 . . . . . 6 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝑁𝑀) → ((!‘𝑀) / 𝑁) ∈ ℕ)
76nnzd 9447 . . . . 5 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝑁𝑀) → ((!‘𝑀) / 𝑁) ∈ ℤ)
87adantrl 478 . . . 4 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ) ∧ (1 < 𝑁𝑁𝑀)) → ((!‘𝑀) / 𝑁) ∈ ℤ)
9 zsubcl 9367 . . . . 5 (((((!‘𝑀) + 1) / 𝑁) ∈ ℤ ∧ ((!‘𝑀) / 𝑁) ∈ ℤ) → ((((!‘𝑀) + 1) / 𝑁) − ((!‘𝑀) / 𝑁)) ∈ ℤ)
109ex 115 . . . 4 ((((!‘𝑀) + 1) / 𝑁) ∈ ℤ → (((!‘𝑀) / 𝑁) ∈ ℤ → ((((!‘𝑀) + 1) / 𝑁) − ((!‘𝑀) / 𝑁)) ∈ ℤ))
118, 10syl5com 29 . . 3 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ) ∧ (1 < 𝑁𝑁𝑀)) → ((((!‘𝑀) + 1) / 𝑁) ∈ ℤ → ((((!‘𝑀) + 1) / 𝑁) − ((!‘𝑀) / 𝑁)) ∈ ℤ))
12 faccl 10827 . . . . . . . . 9 (𝑀 ∈ ℕ0 → (!‘𝑀) ∈ ℕ)
1312nncnd 9004 . . . . . . . 8 (𝑀 ∈ ℕ0 → (!‘𝑀) ∈ ℂ)
14 peano2cn 8161 . . . . . . . 8 ((!‘𝑀) ∈ ℂ → ((!‘𝑀) + 1) ∈ ℂ)
1513, 14syl 14 . . . . . . 7 (𝑀 ∈ ℕ0 → ((!‘𝑀) + 1) ∈ ℂ)
1615ad2antrr 488 . . . . . 6 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ) ∧ (1 < 𝑁𝑁𝑀)) → ((!‘𝑀) + 1) ∈ ℂ)
1713ad2antrr 488 . . . . . 6 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ) ∧ (1 < 𝑁𝑁𝑀)) → (!‘𝑀) ∈ ℂ)
18 nncn 8998 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
1918ad2antlr 489 . . . . . 6 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ) ∧ (1 < 𝑁𝑁𝑀)) → 𝑁 ∈ ℂ)
20 simplr 528 . . . . . . 7 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ) ∧ (1 < 𝑁𝑁𝑀)) → 𝑁 ∈ ℕ)
2120nnap0d 9036 . . . . . 6 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ) ∧ (1 < 𝑁𝑁𝑀)) → 𝑁 # 0)
2216, 17, 19, 21divsubdirapd 8857 . . . . 5 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ) ∧ (1 < 𝑁𝑁𝑀)) → ((((!‘𝑀) + 1) − (!‘𝑀)) / 𝑁) = ((((!‘𝑀) + 1) / 𝑁) − ((!‘𝑀) / 𝑁)))
23 ax-1cn 7972 . . . . . . . 8 1 ∈ ℂ
24 pncan2 8233 . . . . . . . 8 (((!‘𝑀) ∈ ℂ ∧ 1 ∈ ℂ) → (((!‘𝑀) + 1) − (!‘𝑀)) = 1)
2513, 23, 24sylancl 413 . . . . . . 7 (𝑀 ∈ ℕ0 → (((!‘𝑀) + 1) − (!‘𝑀)) = 1)
2625oveq1d 5937 . . . . . 6 (𝑀 ∈ ℕ0 → ((((!‘𝑀) + 1) − (!‘𝑀)) / 𝑁) = (1 / 𝑁))
2726ad2antrr 488 . . . . 5 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ) ∧ (1 < 𝑁𝑁𝑀)) → ((((!‘𝑀) + 1) − (!‘𝑀)) / 𝑁) = (1 / 𝑁))
2822, 27eqtr3d 2231 . . . 4 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ) ∧ (1 < 𝑁𝑁𝑀)) → ((((!‘𝑀) + 1) / 𝑁) − ((!‘𝑀) / 𝑁)) = (1 / 𝑁))
2928eleq1d 2265 . . 3 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ) ∧ (1 < 𝑁𝑁𝑀)) → (((((!‘𝑀) + 1) / 𝑁) − ((!‘𝑀) / 𝑁)) ∈ ℤ ↔ (1 / 𝑁) ∈ ℤ))
3011, 29sylibd 149 . 2 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ) ∧ (1 < 𝑁𝑁𝑀)) → ((((!‘𝑀) + 1) / 𝑁) ∈ ℤ → (1 / 𝑁) ∈ ℤ))
314, 30mtod 664 1 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ) ∧ (1 < 𝑁𝑁𝑀)) → ¬ (((!‘𝑀) + 1) / 𝑁) ∈ ℤ)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104   = wceq 1364  wcel 2167   class class class wbr 4033  cfv 5258  (class class class)co 5922  cc 7877  cr 7878  1c1 7880   + caddc 7882   < clt 8061  cle 8062  cmin 8197   / cdiv 8699  cn 8990  0cn0 9249  cz 9326  !cfa 10817
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-n0 9250  df-z 9327  df-uz 9602  df-seqfrec 10540  df-fac 10818
This theorem is referenced by:  infpnlem1  12528
  Copyright terms: Public domain W3C validator