ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  facndiv GIF version

Theorem facndiv 10641
Description: No positive integer (greater than one) divides the factorial plus one of an equal or larger number. (Contributed by NM, 3-May-2005.)
Assertion
Ref Expression
facndiv (((𝑀 ∈ ℕ0𝑁 ∈ ℕ) ∧ (1 < 𝑁𝑁𝑀)) → ¬ (((!‘𝑀) + 1) / 𝑁) ∈ ℤ)

Proof of Theorem facndiv
StepHypRef Expression
1 nnre 8855 . . . 4 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
2 recnz 9275 . . . 4 ((𝑁 ∈ ℝ ∧ 1 < 𝑁) → ¬ (1 / 𝑁) ∈ ℤ)
31, 2sylan 281 . . 3 ((𝑁 ∈ ℕ ∧ 1 < 𝑁) → ¬ (1 / 𝑁) ∈ ℤ)
43ad2ant2lr 502 . 2 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ) ∧ (1 < 𝑁𝑁𝑀)) → ¬ (1 / 𝑁) ∈ ℤ)
5 facdiv 10640 . . . . . . 7 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝑁𝑀) → ((!‘𝑀) / 𝑁) ∈ ℕ)
653expa 1192 . . . . . 6 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝑁𝑀) → ((!‘𝑀) / 𝑁) ∈ ℕ)
76nnzd 9303 . . . . 5 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝑁𝑀) → ((!‘𝑀) / 𝑁) ∈ ℤ)
87adantrl 470 . . . 4 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ) ∧ (1 < 𝑁𝑁𝑀)) → ((!‘𝑀) / 𝑁) ∈ ℤ)
9 zsubcl 9223 . . . . 5 (((((!‘𝑀) + 1) / 𝑁) ∈ ℤ ∧ ((!‘𝑀) / 𝑁) ∈ ℤ) → ((((!‘𝑀) + 1) / 𝑁) − ((!‘𝑀) / 𝑁)) ∈ ℤ)
109ex 114 . . . 4 ((((!‘𝑀) + 1) / 𝑁) ∈ ℤ → (((!‘𝑀) / 𝑁) ∈ ℤ → ((((!‘𝑀) + 1) / 𝑁) − ((!‘𝑀) / 𝑁)) ∈ ℤ))
118, 10syl5com 29 . . 3 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ) ∧ (1 < 𝑁𝑁𝑀)) → ((((!‘𝑀) + 1) / 𝑁) ∈ ℤ → ((((!‘𝑀) + 1) / 𝑁) − ((!‘𝑀) / 𝑁)) ∈ ℤ))
12 faccl 10637 . . . . . . . . 9 (𝑀 ∈ ℕ0 → (!‘𝑀) ∈ ℕ)
1312nncnd 8862 . . . . . . . 8 (𝑀 ∈ ℕ0 → (!‘𝑀) ∈ ℂ)
14 peano2cn 8024 . . . . . . . 8 ((!‘𝑀) ∈ ℂ → ((!‘𝑀) + 1) ∈ ℂ)
1513, 14syl 14 . . . . . . 7 (𝑀 ∈ ℕ0 → ((!‘𝑀) + 1) ∈ ℂ)
1615ad2antrr 480 . . . . . 6 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ) ∧ (1 < 𝑁𝑁𝑀)) → ((!‘𝑀) + 1) ∈ ℂ)
1713ad2antrr 480 . . . . . 6 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ) ∧ (1 < 𝑁𝑁𝑀)) → (!‘𝑀) ∈ ℂ)
18 nncn 8856 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
1918ad2antlr 481 . . . . . 6 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ) ∧ (1 < 𝑁𝑁𝑀)) → 𝑁 ∈ ℂ)
20 simplr 520 . . . . . . 7 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ) ∧ (1 < 𝑁𝑁𝑀)) → 𝑁 ∈ ℕ)
2120nnap0d 8894 . . . . . 6 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ) ∧ (1 < 𝑁𝑁𝑀)) → 𝑁 # 0)
2216, 17, 19, 21divsubdirapd 8717 . . . . 5 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ) ∧ (1 < 𝑁𝑁𝑀)) → ((((!‘𝑀) + 1) − (!‘𝑀)) / 𝑁) = ((((!‘𝑀) + 1) / 𝑁) − ((!‘𝑀) / 𝑁)))
23 ax-1cn 7837 . . . . . . . 8 1 ∈ ℂ
24 pncan2 8096 . . . . . . . 8 (((!‘𝑀) ∈ ℂ ∧ 1 ∈ ℂ) → (((!‘𝑀) + 1) − (!‘𝑀)) = 1)
2513, 23, 24sylancl 410 . . . . . . 7 (𝑀 ∈ ℕ0 → (((!‘𝑀) + 1) − (!‘𝑀)) = 1)
2625oveq1d 5851 . . . . . 6 (𝑀 ∈ ℕ0 → ((((!‘𝑀) + 1) − (!‘𝑀)) / 𝑁) = (1 / 𝑁))
2726ad2antrr 480 . . . . 5 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ) ∧ (1 < 𝑁𝑁𝑀)) → ((((!‘𝑀) + 1) − (!‘𝑀)) / 𝑁) = (1 / 𝑁))
2822, 27eqtr3d 2199 . . . 4 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ) ∧ (1 < 𝑁𝑁𝑀)) → ((((!‘𝑀) + 1) / 𝑁) − ((!‘𝑀) / 𝑁)) = (1 / 𝑁))
2928eleq1d 2233 . . 3 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ) ∧ (1 < 𝑁𝑁𝑀)) → (((((!‘𝑀) + 1) / 𝑁) − ((!‘𝑀) / 𝑁)) ∈ ℤ ↔ (1 / 𝑁) ∈ ℤ))
3011, 29sylibd 148 . 2 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ) ∧ (1 < 𝑁𝑁𝑀)) → ((((!‘𝑀) + 1) / 𝑁) ∈ ℤ → (1 / 𝑁) ∈ ℤ))
314, 30mtod 653 1 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ) ∧ (1 < 𝑁𝑁𝑀)) → ¬ (((!‘𝑀) + 1) / 𝑁) ∈ ℤ)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103   = wceq 1342  wcel 2135   class class class wbr 3976  cfv 5182  (class class class)co 5836  cc 7742  cr 7743  1c1 7745   + caddc 7747   < clt 7924  cle 7925  cmin 8060   / cdiv 8559  cn 8848  0cn0 9105  cz 9182  !cfa 10627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-coll 4091  ax-sep 4094  ax-nul 4102  ax-pow 4147  ax-pr 4181  ax-un 4405  ax-setind 4508  ax-iinf 4559  ax-cnex 7835  ax-resscn 7836  ax-1cn 7837  ax-1re 7838  ax-icn 7839  ax-addcl 7840  ax-addrcl 7841  ax-mulcl 7842  ax-mulrcl 7843  ax-addcom 7844  ax-mulcom 7845  ax-addass 7846  ax-mulass 7847  ax-distr 7848  ax-i2m1 7849  ax-0lt1 7850  ax-1rid 7851  ax-0id 7852  ax-rnegex 7853  ax-precex 7854  ax-cnre 7855  ax-pre-ltirr 7856  ax-pre-ltwlin 7857  ax-pre-lttrn 7858  ax-pre-apti 7859  ax-pre-ltadd 7860  ax-pre-mulgt0 7861  ax-pre-mulext 7862
This theorem depends on definitions:  df-bi 116  df-3or 968  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-nel 2430  df-ral 2447  df-rex 2448  df-reu 2449  df-rmo 2450  df-rab 2451  df-v 2723  df-sbc 2947  df-csb 3041  df-dif 3113  df-un 3115  df-in 3117  df-ss 3124  df-nul 3405  df-pw 3555  df-sn 3576  df-pr 3577  df-op 3579  df-uni 3784  df-int 3819  df-iun 3862  df-br 3977  df-opab 4038  df-mpt 4039  df-tr 4075  df-id 4265  df-po 4268  df-iso 4269  df-iord 4338  df-on 4340  df-ilim 4341  df-suc 4343  df-iom 4562  df-xp 4604  df-rel 4605  df-cnv 4606  df-co 4607  df-dm 4608  df-rn 4609  df-res 4610  df-ima 4611  df-iota 5147  df-fun 5184  df-fn 5185  df-f 5186  df-f1 5187  df-fo 5188  df-f1o 5189  df-fv 5190  df-riota 5792  df-ov 5839  df-oprab 5840  df-mpo 5841  df-1st 6100  df-2nd 6101  df-recs 6264  df-frec 6350  df-pnf 7926  df-mnf 7927  df-xr 7928  df-ltxr 7929  df-le 7930  df-sub 8062  df-neg 8063  df-reap 8464  df-ap 8471  df-div 8560  df-inn 8849  df-n0 9106  df-z 9183  df-uz 9458  df-seqfrec 10371  df-fac 10628
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator