Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > facndiv | GIF version |
Description: No positive integer (greater than one) divides the factorial plus one of an equal or larger number. (Contributed by NM, 3-May-2005.) |
Ref | Expression |
---|---|
facndiv | ⊢ (((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ) ∧ (1 < 𝑁 ∧ 𝑁 ≤ 𝑀)) → ¬ (((!‘𝑀) + 1) / 𝑁) ∈ ℤ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnre 8885 | . . . 4 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℝ) | |
2 | recnz 9305 | . . . 4 ⊢ ((𝑁 ∈ ℝ ∧ 1 < 𝑁) → ¬ (1 / 𝑁) ∈ ℤ) | |
3 | 1, 2 | sylan 281 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 1 < 𝑁) → ¬ (1 / 𝑁) ∈ ℤ) |
4 | 3 | ad2ant2lr 507 | . 2 ⊢ (((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ) ∧ (1 < 𝑁 ∧ 𝑁 ≤ 𝑀)) → ¬ (1 / 𝑁) ∈ ℤ) |
5 | facdiv 10672 | . . . . . . 7 ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ 𝑁 ≤ 𝑀) → ((!‘𝑀) / 𝑁) ∈ ℕ) | |
6 | 5 | 3expa 1198 | . . . . . 6 ⊢ (((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ) ∧ 𝑁 ≤ 𝑀) → ((!‘𝑀) / 𝑁) ∈ ℕ) |
7 | 6 | nnzd 9333 | . . . . 5 ⊢ (((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ) ∧ 𝑁 ≤ 𝑀) → ((!‘𝑀) / 𝑁) ∈ ℤ) |
8 | 7 | adantrl 475 | . . . 4 ⊢ (((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ) ∧ (1 < 𝑁 ∧ 𝑁 ≤ 𝑀)) → ((!‘𝑀) / 𝑁) ∈ ℤ) |
9 | zsubcl 9253 | . . . . 5 ⊢ (((((!‘𝑀) + 1) / 𝑁) ∈ ℤ ∧ ((!‘𝑀) / 𝑁) ∈ ℤ) → ((((!‘𝑀) + 1) / 𝑁) − ((!‘𝑀) / 𝑁)) ∈ ℤ) | |
10 | 9 | ex 114 | . . . 4 ⊢ ((((!‘𝑀) + 1) / 𝑁) ∈ ℤ → (((!‘𝑀) / 𝑁) ∈ ℤ → ((((!‘𝑀) + 1) / 𝑁) − ((!‘𝑀) / 𝑁)) ∈ ℤ)) |
11 | 8, 10 | syl5com 29 | . . 3 ⊢ (((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ) ∧ (1 < 𝑁 ∧ 𝑁 ≤ 𝑀)) → ((((!‘𝑀) + 1) / 𝑁) ∈ ℤ → ((((!‘𝑀) + 1) / 𝑁) − ((!‘𝑀) / 𝑁)) ∈ ℤ)) |
12 | faccl 10669 | . . . . . . . . 9 ⊢ (𝑀 ∈ ℕ0 → (!‘𝑀) ∈ ℕ) | |
13 | 12 | nncnd 8892 | . . . . . . . 8 ⊢ (𝑀 ∈ ℕ0 → (!‘𝑀) ∈ ℂ) |
14 | peano2cn 8054 | . . . . . . . 8 ⊢ ((!‘𝑀) ∈ ℂ → ((!‘𝑀) + 1) ∈ ℂ) | |
15 | 13, 14 | syl 14 | . . . . . . 7 ⊢ (𝑀 ∈ ℕ0 → ((!‘𝑀) + 1) ∈ ℂ) |
16 | 15 | ad2antrr 485 | . . . . . 6 ⊢ (((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ) ∧ (1 < 𝑁 ∧ 𝑁 ≤ 𝑀)) → ((!‘𝑀) + 1) ∈ ℂ) |
17 | 13 | ad2antrr 485 | . . . . . 6 ⊢ (((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ) ∧ (1 < 𝑁 ∧ 𝑁 ≤ 𝑀)) → (!‘𝑀) ∈ ℂ) |
18 | nncn 8886 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℂ) | |
19 | 18 | ad2antlr 486 | . . . . . 6 ⊢ (((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ) ∧ (1 < 𝑁 ∧ 𝑁 ≤ 𝑀)) → 𝑁 ∈ ℂ) |
20 | simplr 525 | . . . . . . 7 ⊢ (((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ) ∧ (1 < 𝑁 ∧ 𝑁 ≤ 𝑀)) → 𝑁 ∈ ℕ) | |
21 | 20 | nnap0d 8924 | . . . . . 6 ⊢ (((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ) ∧ (1 < 𝑁 ∧ 𝑁 ≤ 𝑀)) → 𝑁 # 0) |
22 | 16, 17, 19, 21 | divsubdirapd 8747 | . . . . 5 ⊢ (((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ) ∧ (1 < 𝑁 ∧ 𝑁 ≤ 𝑀)) → ((((!‘𝑀) + 1) − (!‘𝑀)) / 𝑁) = ((((!‘𝑀) + 1) / 𝑁) − ((!‘𝑀) / 𝑁))) |
23 | ax-1cn 7867 | . . . . . . . 8 ⊢ 1 ∈ ℂ | |
24 | pncan2 8126 | . . . . . . . 8 ⊢ (((!‘𝑀) ∈ ℂ ∧ 1 ∈ ℂ) → (((!‘𝑀) + 1) − (!‘𝑀)) = 1) | |
25 | 13, 23, 24 | sylancl 411 | . . . . . . 7 ⊢ (𝑀 ∈ ℕ0 → (((!‘𝑀) + 1) − (!‘𝑀)) = 1) |
26 | 25 | oveq1d 5868 | . . . . . 6 ⊢ (𝑀 ∈ ℕ0 → ((((!‘𝑀) + 1) − (!‘𝑀)) / 𝑁) = (1 / 𝑁)) |
27 | 26 | ad2antrr 485 | . . . . 5 ⊢ (((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ) ∧ (1 < 𝑁 ∧ 𝑁 ≤ 𝑀)) → ((((!‘𝑀) + 1) − (!‘𝑀)) / 𝑁) = (1 / 𝑁)) |
28 | 22, 27 | eqtr3d 2205 | . . . 4 ⊢ (((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ) ∧ (1 < 𝑁 ∧ 𝑁 ≤ 𝑀)) → ((((!‘𝑀) + 1) / 𝑁) − ((!‘𝑀) / 𝑁)) = (1 / 𝑁)) |
29 | 28 | eleq1d 2239 | . . 3 ⊢ (((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ) ∧ (1 < 𝑁 ∧ 𝑁 ≤ 𝑀)) → (((((!‘𝑀) + 1) / 𝑁) − ((!‘𝑀) / 𝑁)) ∈ ℤ ↔ (1 / 𝑁) ∈ ℤ)) |
30 | 11, 29 | sylibd 148 | . 2 ⊢ (((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ) ∧ (1 < 𝑁 ∧ 𝑁 ≤ 𝑀)) → ((((!‘𝑀) + 1) / 𝑁) ∈ ℤ → (1 / 𝑁) ∈ ℤ)) |
31 | 4, 30 | mtod 658 | 1 ⊢ (((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ) ∧ (1 < 𝑁 ∧ 𝑁 ≤ 𝑀)) → ¬ (((!‘𝑀) + 1) / 𝑁) ∈ ℤ) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 = wceq 1348 ∈ wcel 2141 class class class wbr 3989 ‘cfv 5198 (class class class)co 5853 ℂcc 7772 ℝcr 7773 1c1 7775 + caddc 7777 < clt 7954 ≤ cle 7955 − cmin 8090 / cdiv 8589 ℕcn 8878 ℕ0cn0 9135 ℤcz 9212 !cfa 10659 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-mulrcl 7873 ax-addcom 7874 ax-mulcom 7875 ax-addass 7876 ax-mulass 7877 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-1rid 7881 ax-0id 7882 ax-rnegex 7883 ax-precex 7884 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-apti 7889 ax-pre-ltadd 7890 ax-pre-mulgt0 7891 ax-pre-mulext 7892 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-id 4278 df-po 4281 df-iso 4282 df-iord 4351 df-on 4353 df-ilim 4354 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-recs 6284 df-frec 6370 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-reap 8494 df-ap 8501 df-div 8590 df-inn 8879 df-n0 9136 df-z 9213 df-uz 9488 df-seqfrec 10402 df-fac 10660 |
This theorem is referenced by: infpnlem1 12311 |
Copyright terms: Public domain | W3C validator |