ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  facndiv GIF version

Theorem facndiv 10112
Description: No positive integer (greater than one) divides the factorial plus one of an equal or larger number. (Contributed by NM, 3-May-2005.)
Assertion
Ref Expression
facndiv (((𝑀 ∈ ℕ0𝑁 ∈ ℕ) ∧ (1 < 𝑁𝑁𝑀)) → ¬ (((!‘𝑀) + 1) / 𝑁) ∈ ℤ)

Proof of Theorem facndiv
StepHypRef Expression
1 nnre 8401 . . . 4 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
2 recnz 8809 . . . 4 ((𝑁 ∈ ℝ ∧ 1 < 𝑁) → ¬ (1 / 𝑁) ∈ ℤ)
31, 2sylan 277 . . 3 ((𝑁 ∈ ℕ ∧ 1 < 𝑁) → ¬ (1 / 𝑁) ∈ ℤ)
43ad2ant2lr 494 . 2 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ) ∧ (1 < 𝑁𝑁𝑀)) → ¬ (1 / 𝑁) ∈ ℤ)
5 facdiv 10111 . . . . . . 7 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝑁𝑀) → ((!‘𝑀) / 𝑁) ∈ ℕ)
653expa 1143 . . . . . 6 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝑁𝑀) → ((!‘𝑀) / 𝑁) ∈ ℕ)
76nnzd 8837 . . . . 5 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝑁𝑀) → ((!‘𝑀) / 𝑁) ∈ ℤ)
87adantrl 462 . . . 4 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ) ∧ (1 < 𝑁𝑁𝑀)) → ((!‘𝑀) / 𝑁) ∈ ℤ)
9 zsubcl 8761 . . . . 5 (((((!‘𝑀) + 1) / 𝑁) ∈ ℤ ∧ ((!‘𝑀) / 𝑁) ∈ ℤ) → ((((!‘𝑀) + 1) / 𝑁) − ((!‘𝑀) / 𝑁)) ∈ ℤ)
109ex 113 . . . 4 ((((!‘𝑀) + 1) / 𝑁) ∈ ℤ → (((!‘𝑀) / 𝑁) ∈ ℤ → ((((!‘𝑀) + 1) / 𝑁) − ((!‘𝑀) / 𝑁)) ∈ ℤ))
118, 10syl5com 29 . . 3 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ) ∧ (1 < 𝑁𝑁𝑀)) → ((((!‘𝑀) + 1) / 𝑁) ∈ ℤ → ((((!‘𝑀) + 1) / 𝑁) − ((!‘𝑀) / 𝑁)) ∈ ℤ))
12 faccl 10108 . . . . . . . . 9 (𝑀 ∈ ℕ0 → (!‘𝑀) ∈ ℕ)
1312nncnd 8408 . . . . . . . 8 (𝑀 ∈ ℕ0 → (!‘𝑀) ∈ ℂ)
14 peano2cn 7596 . . . . . . . 8 ((!‘𝑀) ∈ ℂ → ((!‘𝑀) + 1) ∈ ℂ)
1513, 14syl 14 . . . . . . 7 (𝑀 ∈ ℕ0 → ((!‘𝑀) + 1) ∈ ℂ)
1615ad2antrr 472 . . . . . 6 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ) ∧ (1 < 𝑁𝑁𝑀)) → ((!‘𝑀) + 1) ∈ ℂ)
1713ad2antrr 472 . . . . . 6 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ) ∧ (1 < 𝑁𝑁𝑀)) → (!‘𝑀) ∈ ℂ)
18 nncn 8402 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
1918ad2antlr 473 . . . . . 6 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ) ∧ (1 < 𝑁𝑁𝑀)) → 𝑁 ∈ ℂ)
20 simplr 497 . . . . . . 7 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ) ∧ (1 < 𝑁𝑁𝑀)) → 𝑁 ∈ ℕ)
2120nnap0d 8439 . . . . . 6 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ) ∧ (1 < 𝑁𝑁𝑀)) → 𝑁 # 0)
2216, 17, 19, 21divsubdirapd 8269 . . . . 5 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ) ∧ (1 < 𝑁𝑁𝑀)) → ((((!‘𝑀) + 1) − (!‘𝑀)) / 𝑁) = ((((!‘𝑀) + 1) / 𝑁) − ((!‘𝑀) / 𝑁)))
23 ax-1cn 7417 . . . . . . . 8 1 ∈ ℂ
24 pncan2 7668 . . . . . . . 8 (((!‘𝑀) ∈ ℂ ∧ 1 ∈ ℂ) → (((!‘𝑀) + 1) − (!‘𝑀)) = 1)
2513, 23, 24sylancl 404 . . . . . . 7 (𝑀 ∈ ℕ0 → (((!‘𝑀) + 1) − (!‘𝑀)) = 1)
2625oveq1d 5649 . . . . . 6 (𝑀 ∈ ℕ0 → ((((!‘𝑀) + 1) − (!‘𝑀)) / 𝑁) = (1 / 𝑁))
2726ad2antrr 472 . . . . 5 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ) ∧ (1 < 𝑁𝑁𝑀)) → ((((!‘𝑀) + 1) − (!‘𝑀)) / 𝑁) = (1 / 𝑁))
2822, 27eqtr3d 2122 . . . 4 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ) ∧ (1 < 𝑁𝑁𝑀)) → ((((!‘𝑀) + 1) / 𝑁) − ((!‘𝑀) / 𝑁)) = (1 / 𝑁))
2928eleq1d 2156 . . 3 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ) ∧ (1 < 𝑁𝑁𝑀)) → (((((!‘𝑀) + 1) / 𝑁) − ((!‘𝑀) / 𝑁)) ∈ ℤ ↔ (1 / 𝑁) ∈ ℤ))
3011, 29sylibd 147 . 2 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ) ∧ (1 < 𝑁𝑁𝑀)) → ((((!‘𝑀) + 1) / 𝑁) ∈ ℤ → (1 / 𝑁) ∈ ℤ))
314, 30mtod 624 1 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ) ∧ (1 < 𝑁𝑁𝑀)) → ¬ (((!‘𝑀) + 1) / 𝑁) ∈ ℤ)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 102   = wceq 1289  wcel 1438   class class class wbr 3837  cfv 5002  (class class class)co 5634  cc 7327  cr 7328  1c1 7330   + caddc 7332   < clt 7501  cle 7502  cmin 7632   / cdiv 8113  cn 8394  0cn0 8643  cz 8720  !cfa 10098
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-coll 3946  ax-sep 3949  ax-nul 3957  ax-pow 4001  ax-pr 4027  ax-un 4251  ax-setind 4343  ax-iinf 4393  ax-cnex 7415  ax-resscn 7416  ax-1cn 7417  ax-1re 7418  ax-icn 7419  ax-addcl 7420  ax-addrcl 7421  ax-mulcl 7422  ax-mulrcl 7423  ax-addcom 7424  ax-mulcom 7425  ax-addass 7426  ax-mulass 7427  ax-distr 7428  ax-i2m1 7429  ax-0lt1 7430  ax-1rid 7431  ax-0id 7432  ax-rnegex 7433  ax-precex 7434  ax-cnre 7435  ax-pre-ltirr 7436  ax-pre-ltwlin 7437  ax-pre-lttrn 7438  ax-pre-apti 7439  ax-pre-ltadd 7440  ax-pre-mulgt0 7441  ax-pre-mulext 7442
This theorem depends on definitions:  df-bi 115  df-3or 925  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-nel 2351  df-ral 2364  df-rex 2365  df-reu 2366  df-rmo 2367  df-rab 2368  df-v 2621  df-sbc 2839  df-csb 2932  df-dif 2999  df-un 3001  df-in 3003  df-ss 3010  df-nul 3285  df-pw 3427  df-sn 3447  df-pr 3448  df-op 3450  df-uni 3649  df-int 3684  df-iun 3727  df-br 3838  df-opab 3892  df-mpt 3893  df-tr 3929  df-id 4111  df-po 4114  df-iso 4115  df-iord 4184  df-on 4186  df-ilim 4187  df-suc 4189  df-iom 4396  df-xp 4434  df-rel 4435  df-cnv 4436  df-co 4437  df-dm 4438  df-rn 4439  df-res 4440  df-ima 4441  df-iota 4967  df-fun 5004  df-fn 5005  df-f 5006  df-f1 5007  df-fo 5008  df-f1o 5009  df-fv 5010  df-riota 5590  df-ov 5637  df-oprab 5638  df-mpt2 5639  df-1st 5893  df-2nd 5894  df-recs 6052  df-frec 6138  df-pnf 7503  df-mnf 7504  df-xr 7505  df-ltxr 7506  df-le 7507  df-sub 7634  df-neg 7635  df-reap 8028  df-ap 8035  df-div 8114  df-inn 8395  df-n0 8644  df-z 8721  df-uz 8989  df-iseq 9818  df-fac 10099
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator