![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > xp1d2m1eqxm1d2 | GIF version |
Description: A complex number increased by 1, then divided by 2, then decreased by 1 equals the complex number decreased by 1 and then divided by 2. (Contributed by AV, 24-May-2020.) |
Ref | Expression |
---|---|
xp1d2m1eqxm1d2 | ⊢ (𝑋 ∈ ℂ → (((𝑋 + 1) / 2) − 1) = ((𝑋 − 1) / 2)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | peano2cn 7768 | . . . 4 ⊢ (𝑋 ∈ ℂ → (𝑋 + 1) ∈ ℂ) | |
2 | 1 | halfcld 8816 | . . 3 ⊢ (𝑋 ∈ ℂ → ((𝑋 + 1) / 2) ∈ ℂ) |
3 | peano2cnm 7899 | . . 3 ⊢ (((𝑋 + 1) / 2) ∈ ℂ → (((𝑋 + 1) / 2) − 1) ∈ ℂ) | |
4 | 2, 3 | syl 14 | . 2 ⊢ (𝑋 ∈ ℂ → (((𝑋 + 1) / 2) − 1) ∈ ℂ) |
5 | peano2cnm 7899 | . . 3 ⊢ (𝑋 ∈ ℂ → (𝑋 − 1) ∈ ℂ) | |
6 | 5 | halfcld 8816 | . 2 ⊢ (𝑋 ∈ ℂ → ((𝑋 − 1) / 2) ∈ ℂ) |
7 | 2cnd 8651 | . 2 ⊢ (𝑋 ∈ ℂ → 2 ∈ ℂ) | |
8 | 2ap0 8671 | . . 3 ⊢ 2 # 0 | |
9 | 8 | a1i 9 | . 2 ⊢ (𝑋 ∈ ℂ → 2 # 0) |
10 | 1cnd 7654 | . . . 4 ⊢ (𝑋 ∈ ℂ → 1 ∈ ℂ) | |
11 | 2, 10, 7 | subdird 8044 | . . 3 ⊢ (𝑋 ∈ ℂ → ((((𝑋 + 1) / 2) − 1) · 2) = ((((𝑋 + 1) / 2) · 2) − (1 · 2))) |
12 | 1, 7, 9 | divcanap1d 8412 | . . . 4 ⊢ (𝑋 ∈ ℂ → (((𝑋 + 1) / 2) · 2) = (𝑋 + 1)) |
13 | 7 | mulid2d 7656 | . . . 4 ⊢ (𝑋 ∈ ℂ → (1 · 2) = 2) |
14 | 12, 13 | oveq12d 5724 | . . 3 ⊢ (𝑋 ∈ ℂ → ((((𝑋 + 1) / 2) · 2) − (1 · 2)) = ((𝑋 + 1) − 2)) |
15 | 5, 7, 9 | divcanap1d 8412 | . . . 4 ⊢ (𝑋 ∈ ℂ → (((𝑋 − 1) / 2) · 2) = (𝑋 − 1)) |
16 | 2m1e1 8696 | . . . . . 6 ⊢ (2 − 1) = 1 | |
17 | 16 | a1i 9 | . . . . 5 ⊢ (𝑋 ∈ ℂ → (2 − 1) = 1) |
18 | 17 | oveq2d 5722 | . . . 4 ⊢ (𝑋 ∈ ℂ → (𝑋 − (2 − 1)) = (𝑋 − 1)) |
19 | id 19 | . . . . 5 ⊢ (𝑋 ∈ ℂ → 𝑋 ∈ ℂ) | |
20 | 19, 7, 10 | subsub3d 7974 | . . . 4 ⊢ (𝑋 ∈ ℂ → (𝑋 − (2 − 1)) = ((𝑋 + 1) − 2)) |
21 | 15, 18, 20 | 3eqtr2rd 2139 | . . 3 ⊢ (𝑋 ∈ ℂ → ((𝑋 + 1) − 2) = (((𝑋 − 1) / 2) · 2)) |
22 | 11, 14, 21 | 3eqtrd 2136 | . 2 ⊢ (𝑋 ∈ ℂ → ((((𝑋 + 1) / 2) − 1) · 2) = (((𝑋 − 1) / 2) · 2)) |
23 | 4, 6, 7, 9, 22 | mulcanap2ad 8286 | 1 ⊢ (𝑋 ∈ ℂ → (((𝑋 + 1) / 2) − 1) = ((𝑋 − 1) / 2)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1299 ∈ wcel 1448 class class class wbr 3875 (class class class)co 5706 ℂcc 7498 0cc0 7500 1c1 7501 + caddc 7503 · cmul 7505 − cmin 7804 # cap 8209 / cdiv 8293 2c2 8629 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 584 ax-in2 585 ax-io 671 ax-5 1391 ax-7 1392 ax-gen 1393 ax-ie1 1437 ax-ie2 1438 ax-8 1450 ax-10 1451 ax-11 1452 ax-i12 1453 ax-bndl 1454 ax-4 1455 ax-13 1459 ax-14 1460 ax-17 1474 ax-i9 1478 ax-ial 1482 ax-i5r 1483 ax-ext 2082 ax-sep 3986 ax-pow 4038 ax-pr 4069 ax-un 4293 ax-setind 4390 ax-cnex 7586 ax-resscn 7587 ax-1cn 7588 ax-1re 7589 ax-icn 7590 ax-addcl 7591 ax-addrcl 7592 ax-mulcl 7593 ax-mulrcl 7594 ax-addcom 7595 ax-mulcom 7596 ax-addass 7597 ax-mulass 7598 ax-distr 7599 ax-i2m1 7600 ax-0lt1 7601 ax-1rid 7602 ax-0id 7603 ax-rnegex 7604 ax-precex 7605 ax-cnre 7606 ax-pre-ltirr 7607 ax-pre-ltwlin 7608 ax-pre-lttrn 7609 ax-pre-apti 7610 ax-pre-ltadd 7611 ax-pre-mulgt0 7612 ax-pre-mulext 7613 |
This theorem depends on definitions: df-bi 116 df-3an 932 df-tru 1302 df-fal 1305 df-nf 1405 df-sb 1704 df-eu 1963 df-mo 1964 df-clab 2087 df-cleq 2093 df-clel 2096 df-nfc 2229 df-ne 2268 df-nel 2363 df-ral 2380 df-rex 2381 df-reu 2382 df-rmo 2383 df-rab 2384 df-v 2643 df-sbc 2863 df-dif 3023 df-un 3025 df-in 3027 df-ss 3034 df-pw 3459 df-sn 3480 df-pr 3481 df-op 3483 df-uni 3684 df-br 3876 df-opab 3930 df-id 4153 df-po 4156 df-iso 4157 df-xp 4483 df-rel 4484 df-cnv 4485 df-co 4486 df-dm 4487 df-iota 5024 df-fun 5061 df-fv 5067 df-riota 5662 df-ov 5709 df-oprab 5710 df-mpo 5711 df-pnf 7674 df-mnf 7675 df-xr 7676 df-ltxr 7677 df-le 7678 df-sub 7806 df-neg 7807 df-reap 8203 df-ap 8210 df-div 8294 df-2 8637 |
This theorem is referenced by: zob 11383 nno 11398 nn0ob 11400 |
Copyright terms: Public domain | W3C validator |