| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xp1d2m1eqxm1d2 | GIF version | ||
| Description: A complex number increased by 1, then divided by 2, then decreased by 1 equals the complex number decreased by 1 and then divided by 2. (Contributed by AV, 24-May-2020.) |
| Ref | Expression |
|---|---|
| xp1d2m1eqxm1d2 | ⊢ (𝑋 ∈ ℂ → (((𝑋 + 1) / 2) − 1) = ((𝑋 − 1) / 2)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | peano2cn 8220 | . . . 4 ⊢ (𝑋 ∈ ℂ → (𝑋 + 1) ∈ ℂ) | |
| 2 | 1 | halfcld 9295 | . . 3 ⊢ (𝑋 ∈ ℂ → ((𝑋 + 1) / 2) ∈ ℂ) |
| 3 | peano2cnm 8351 | . . 3 ⊢ (((𝑋 + 1) / 2) ∈ ℂ → (((𝑋 + 1) / 2) − 1) ∈ ℂ) | |
| 4 | 2, 3 | syl 14 | . 2 ⊢ (𝑋 ∈ ℂ → (((𝑋 + 1) / 2) − 1) ∈ ℂ) |
| 5 | peano2cnm 8351 | . . 3 ⊢ (𝑋 ∈ ℂ → (𝑋 − 1) ∈ ℂ) | |
| 6 | 5 | halfcld 9295 | . 2 ⊢ (𝑋 ∈ ℂ → ((𝑋 − 1) / 2) ∈ ℂ) |
| 7 | 2cnd 9122 | . 2 ⊢ (𝑋 ∈ ℂ → 2 ∈ ℂ) | |
| 8 | 2ap0 9142 | . . 3 ⊢ 2 # 0 | |
| 9 | 8 | a1i 9 | . 2 ⊢ (𝑋 ∈ ℂ → 2 # 0) |
| 10 | 1cnd 8101 | . . . 4 ⊢ (𝑋 ∈ ℂ → 1 ∈ ℂ) | |
| 11 | 2, 10, 7 | subdird 8500 | . . 3 ⊢ (𝑋 ∈ ℂ → ((((𝑋 + 1) / 2) − 1) · 2) = ((((𝑋 + 1) / 2) · 2) − (1 · 2))) |
| 12 | 1, 7, 9 | divcanap1d 8877 | . . . 4 ⊢ (𝑋 ∈ ℂ → (((𝑋 + 1) / 2) · 2) = (𝑋 + 1)) |
| 13 | 7 | mulid2d 8104 | . . . 4 ⊢ (𝑋 ∈ ℂ → (1 · 2) = 2) |
| 14 | 12, 13 | oveq12d 5972 | . . 3 ⊢ (𝑋 ∈ ℂ → ((((𝑋 + 1) / 2) · 2) − (1 · 2)) = ((𝑋 + 1) − 2)) |
| 15 | 5, 7, 9 | divcanap1d 8877 | . . . 4 ⊢ (𝑋 ∈ ℂ → (((𝑋 − 1) / 2) · 2) = (𝑋 − 1)) |
| 16 | 2m1e1 9167 | . . . . . 6 ⊢ (2 − 1) = 1 | |
| 17 | 16 | a1i 9 | . . . . 5 ⊢ (𝑋 ∈ ℂ → (2 − 1) = 1) |
| 18 | 17 | oveq2d 5970 | . . . 4 ⊢ (𝑋 ∈ ℂ → (𝑋 − (2 − 1)) = (𝑋 − 1)) |
| 19 | id 19 | . . . . 5 ⊢ (𝑋 ∈ ℂ → 𝑋 ∈ ℂ) | |
| 20 | 19, 7, 10 | subsub3d 8426 | . . . 4 ⊢ (𝑋 ∈ ℂ → (𝑋 − (2 − 1)) = ((𝑋 + 1) − 2)) |
| 21 | 15, 18, 20 | 3eqtr2rd 2246 | . . 3 ⊢ (𝑋 ∈ ℂ → ((𝑋 + 1) − 2) = (((𝑋 − 1) / 2) · 2)) |
| 22 | 11, 14, 21 | 3eqtrd 2243 | . 2 ⊢ (𝑋 ∈ ℂ → ((((𝑋 + 1) / 2) − 1) · 2) = (((𝑋 − 1) / 2) · 2)) |
| 23 | 4, 6, 7, 9, 22 | mulcanap2ad 8750 | 1 ⊢ (𝑋 ∈ ℂ → (((𝑋 + 1) / 2) − 1) = ((𝑋 − 1) / 2)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2177 class class class wbr 4048 (class class class)co 5954 ℂcc 7936 0cc0 7938 1c1 7939 + caddc 7941 · cmul 7943 − cmin 8256 # cap 8667 / cdiv 8758 2c2 9100 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4167 ax-pow 4223 ax-pr 4258 ax-un 4485 ax-setind 4590 ax-cnex 8029 ax-resscn 8030 ax-1cn 8031 ax-1re 8032 ax-icn 8033 ax-addcl 8034 ax-addrcl 8035 ax-mulcl 8036 ax-mulrcl 8037 ax-addcom 8038 ax-mulcom 8039 ax-addass 8040 ax-mulass 8041 ax-distr 8042 ax-i2m1 8043 ax-0lt1 8044 ax-1rid 8045 ax-0id 8046 ax-rnegex 8047 ax-precex 8048 ax-cnre 8049 ax-pre-ltirr 8050 ax-pre-ltwlin 8051 ax-pre-lttrn 8052 ax-pre-apti 8053 ax-pre-ltadd 8054 ax-pre-mulgt0 8055 ax-pre-mulext 8056 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3001 df-dif 3170 df-un 3172 df-in 3174 df-ss 3181 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-uni 3854 df-br 4049 df-opab 4111 df-id 4345 df-po 4348 df-iso 4349 df-xp 4686 df-rel 4687 df-cnv 4688 df-co 4689 df-dm 4690 df-iota 5238 df-fun 5279 df-fv 5285 df-riota 5909 df-ov 5957 df-oprab 5958 df-mpo 5959 df-pnf 8122 df-mnf 8123 df-xr 8124 df-ltxr 8125 df-le 8126 df-sub 8258 df-neg 8259 df-reap 8661 df-ap 8668 df-div 8759 df-2 9108 |
| This theorem is referenced by: zob 12252 nno 12267 nn0ob 12269 |
| Copyright terms: Public domain | W3C validator |