Step | Hyp | Ref
| Expression |
1 | | bcxmaslem1 11429 |
. . . . 5
⊢ (𝑚 = 0 → (((𝑁 + 1) + 𝑚)C𝑚) = (((𝑁 + 1) + 0)C0)) |
2 | | oveq2 5850 |
. . . . . 6
⊢ (𝑚 = 0 → (0...𝑚) = (0...0)) |
3 | 2 | sumeq1d 11307 |
. . . . 5
⊢ (𝑚 = 0 → Σ𝑗 ∈ (0...𝑚)((𝑁 + 𝑗)C𝑗) = Σ𝑗 ∈ (0...0)((𝑁 + 𝑗)C𝑗)) |
4 | 1, 3 | eqeq12d 2180 |
. . . 4
⊢ (𝑚 = 0 → ((((𝑁 + 1) + 𝑚)C𝑚) = Σ𝑗 ∈ (0...𝑚)((𝑁 + 𝑗)C𝑗) ↔ (((𝑁 + 1) + 0)C0) = Σ𝑗 ∈ (0...0)((𝑁 + 𝑗)C𝑗))) |
5 | 4 | imbi2d 229 |
. . 3
⊢ (𝑚 = 0 → ((𝑁 ∈ ℕ0 → (((𝑁 + 1) + 𝑚)C𝑚) = Σ𝑗 ∈ (0...𝑚)((𝑁 + 𝑗)C𝑗)) ↔ (𝑁 ∈ ℕ0 → (((𝑁 + 1) + 0)C0) = Σ𝑗 ∈ (0...0)((𝑁 + 𝑗)C𝑗)))) |
6 | | bcxmaslem1 11429 |
. . . . 5
⊢ (𝑚 = 𝑘 → (((𝑁 + 1) + 𝑚)C𝑚) = (((𝑁 + 1) + 𝑘)C𝑘)) |
7 | | oveq2 5850 |
. . . . . 6
⊢ (𝑚 = 𝑘 → (0...𝑚) = (0...𝑘)) |
8 | 7 | sumeq1d 11307 |
. . . . 5
⊢ (𝑚 = 𝑘 → Σ𝑗 ∈ (0...𝑚)((𝑁 + 𝑗)C𝑗) = Σ𝑗 ∈ (0...𝑘)((𝑁 + 𝑗)C𝑗)) |
9 | 6, 8 | eqeq12d 2180 |
. . . 4
⊢ (𝑚 = 𝑘 → ((((𝑁 + 1) + 𝑚)C𝑚) = Σ𝑗 ∈ (0...𝑚)((𝑁 + 𝑗)C𝑗) ↔ (((𝑁 + 1) + 𝑘)C𝑘) = Σ𝑗 ∈ (0...𝑘)((𝑁 + 𝑗)C𝑗))) |
10 | 9 | imbi2d 229 |
. . 3
⊢ (𝑚 = 𝑘 → ((𝑁 ∈ ℕ0 → (((𝑁 + 1) + 𝑚)C𝑚) = Σ𝑗 ∈ (0...𝑚)((𝑁 + 𝑗)C𝑗)) ↔ (𝑁 ∈ ℕ0 → (((𝑁 + 1) + 𝑘)C𝑘) = Σ𝑗 ∈ (0...𝑘)((𝑁 + 𝑗)C𝑗)))) |
11 | | bcxmaslem1 11429 |
. . . . 5
⊢ (𝑚 = (𝑘 + 1) → (((𝑁 + 1) + 𝑚)C𝑚) = (((𝑁 + 1) + (𝑘 + 1))C(𝑘 + 1))) |
12 | | oveq2 5850 |
. . . . . 6
⊢ (𝑚 = (𝑘 + 1) → (0...𝑚) = (0...(𝑘 + 1))) |
13 | 12 | sumeq1d 11307 |
. . . . 5
⊢ (𝑚 = (𝑘 + 1) → Σ𝑗 ∈ (0...𝑚)((𝑁 + 𝑗)C𝑗) = Σ𝑗 ∈ (0...(𝑘 + 1))((𝑁 + 𝑗)C𝑗)) |
14 | 11, 13 | eqeq12d 2180 |
. . . 4
⊢ (𝑚 = (𝑘 + 1) → ((((𝑁 + 1) + 𝑚)C𝑚) = Σ𝑗 ∈ (0...𝑚)((𝑁 + 𝑗)C𝑗) ↔ (((𝑁 + 1) + (𝑘 + 1))C(𝑘 + 1)) = Σ𝑗 ∈ (0...(𝑘 + 1))((𝑁 + 𝑗)C𝑗))) |
15 | 14 | imbi2d 229 |
. . 3
⊢ (𝑚 = (𝑘 + 1) → ((𝑁 ∈ ℕ0 → (((𝑁 + 1) + 𝑚)C𝑚) = Σ𝑗 ∈ (0...𝑚)((𝑁 + 𝑗)C𝑗)) ↔ (𝑁 ∈ ℕ0 → (((𝑁 + 1) + (𝑘 + 1))C(𝑘 + 1)) = Σ𝑗 ∈ (0...(𝑘 + 1))((𝑁 + 𝑗)C𝑗)))) |
16 | | bcxmaslem1 11429 |
. . . . 5
⊢ (𝑚 = 𝑀 → (((𝑁 + 1) + 𝑚)C𝑚) = (((𝑁 + 1) + 𝑀)C𝑀)) |
17 | | oveq2 5850 |
. . . . . 6
⊢ (𝑚 = 𝑀 → (0...𝑚) = (0...𝑀)) |
18 | 17 | sumeq1d 11307 |
. . . . 5
⊢ (𝑚 = 𝑀 → Σ𝑗 ∈ (0...𝑚)((𝑁 + 𝑗)C𝑗) = Σ𝑗 ∈ (0...𝑀)((𝑁 + 𝑗)C𝑗)) |
19 | 16, 18 | eqeq12d 2180 |
. . . 4
⊢ (𝑚 = 𝑀 → ((((𝑁 + 1) + 𝑚)C𝑚) = Σ𝑗 ∈ (0...𝑚)((𝑁 + 𝑗)C𝑗) ↔ (((𝑁 + 1) + 𝑀)C𝑀) = Σ𝑗 ∈ (0...𝑀)((𝑁 + 𝑗)C𝑗))) |
20 | 19 | imbi2d 229 |
. . 3
⊢ (𝑚 = 𝑀 → ((𝑁 ∈ ℕ0 → (((𝑁 + 1) + 𝑚)C𝑚) = Σ𝑗 ∈ (0...𝑚)((𝑁 + 𝑗)C𝑗)) ↔ (𝑁 ∈ ℕ0 → (((𝑁 + 1) + 𝑀)C𝑀) = Σ𝑗 ∈ (0...𝑀)((𝑁 + 𝑗)C𝑗)))) |
21 | | 0nn0 9129 |
. . . . 5
⊢ 0 ∈
ℕ0 |
22 | | nn0addcl 9149 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ0
∧ 0 ∈ ℕ0) → (𝑁 + 0) ∈
ℕ0) |
23 | | bcn0 10668 |
. . . . . 6
⊢ ((𝑁 + 0) ∈ ℕ0
→ ((𝑁 + 0)C0) =
1) |
24 | 22, 23 | syl 14 |
. . . . 5
⊢ ((𝑁 ∈ ℕ0
∧ 0 ∈ ℕ0) → ((𝑁 + 0)C0) = 1) |
25 | 21, 24 | mpan2 422 |
. . . 4
⊢ (𝑁 ∈ ℕ0
→ ((𝑁 + 0)C0) =
1) |
26 | | 0z 9202 |
. . . . 5
⊢ 0 ∈
ℤ |
27 | | 1nn0 9130 |
. . . . . . 7
⊢ 1 ∈
ℕ0 |
28 | 25, 27 | eqeltrdi 2257 |
. . . . . 6
⊢ (𝑁 ∈ ℕ0
→ ((𝑁 + 0)C0) ∈
ℕ0) |
29 | 28 | nn0cnd 9169 |
. . . . 5
⊢ (𝑁 ∈ ℕ0
→ ((𝑁 + 0)C0) ∈
ℂ) |
30 | | bcxmaslem1 11429 |
. . . . . 6
⊢ (𝑗 = 0 → ((𝑁 + 𝑗)C𝑗) = ((𝑁 + 0)C0)) |
31 | 30 | fsum1 11353 |
. . . . 5
⊢ ((0
∈ ℤ ∧ ((𝑁 +
0)C0) ∈ ℂ) → Σ𝑗 ∈ (0...0)((𝑁 + 𝑗)C𝑗) = ((𝑁 + 0)C0)) |
32 | 26, 29, 31 | sylancr 411 |
. . . 4
⊢ (𝑁 ∈ ℕ0
→ Σ𝑗 ∈
(0...0)((𝑁 + 𝑗)C𝑗) = ((𝑁 + 0)C0)) |
33 | | peano2nn0 9154 |
. . . . . 6
⊢ (𝑁 ∈ ℕ0
→ (𝑁 + 1) ∈
ℕ0) |
34 | | nn0addcl 9149 |
. . . . . 6
⊢ (((𝑁 + 1) ∈ ℕ0
∧ 0 ∈ ℕ0) → ((𝑁 + 1) + 0) ∈
ℕ0) |
35 | 33, 21, 34 | sylancl 410 |
. . . . 5
⊢ (𝑁 ∈ ℕ0
→ ((𝑁 + 1) + 0) ∈
ℕ0) |
36 | | bcn0 10668 |
. . . . 5
⊢ (((𝑁 + 1) + 0) ∈
ℕ0 → (((𝑁 + 1) + 0)C0) = 1) |
37 | 35, 36 | syl 14 |
. . . 4
⊢ (𝑁 ∈ ℕ0
→ (((𝑁 + 1) + 0)C0) =
1) |
38 | 25, 32, 37 | 3eqtr4rd 2209 |
. . 3
⊢ (𝑁 ∈ ℕ0
→ (((𝑁 + 1) + 0)C0) =
Σ𝑗 ∈
(0...0)((𝑁 + 𝑗)C𝑗)) |
39 | | simpr 109 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ0
∧ 𝑘 ∈
ℕ0) → 𝑘 ∈ ℕ0) |
40 | | elnn0uz 9503 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ ℕ0
↔ 𝑘 ∈
(ℤ≥‘0)) |
41 | 39, 40 | sylib 121 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ0
∧ 𝑘 ∈
ℕ0) → 𝑘 ∈
(ℤ≥‘0)) |
42 | | simpl 108 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ ℕ0
∧ 𝑘 ∈
ℕ0) → 𝑁 ∈
ℕ0) |
43 | | elfznn0 10049 |
. . . . . . . . . . . . 13
⊢ (𝑗 ∈ (0...(𝑘 + 1)) → 𝑗 ∈ ℕ0) |
44 | | nn0addcl 9149 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ ℕ0
∧ 𝑗 ∈
ℕ0) → (𝑁 + 𝑗) ∈
ℕ0) |
45 | 42, 43, 44 | syl2an 287 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ ℕ0
∧ 𝑘 ∈
ℕ0) ∧ 𝑗 ∈ (0...(𝑘 + 1))) → (𝑁 + 𝑗) ∈
ℕ0) |
46 | | elfzelz 9960 |
. . . . . . . . . . . . 13
⊢ (𝑗 ∈ (0...(𝑘 + 1)) → 𝑗 ∈ ℤ) |
47 | 46 | adantl 275 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ ℕ0
∧ 𝑘 ∈
ℕ0) ∧ 𝑗 ∈ (0...(𝑘 + 1))) → 𝑗 ∈ ℤ) |
48 | | bccl 10680 |
. . . . . . . . . . . 12
⊢ (((𝑁 + 𝑗) ∈ ℕ0 ∧ 𝑗 ∈ ℤ) → ((𝑁 + 𝑗)C𝑗) ∈
ℕ0) |
49 | 45, 47, 48 | syl2anc 409 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ ℕ0
∧ 𝑘 ∈
ℕ0) ∧ 𝑗 ∈ (0...(𝑘 + 1))) → ((𝑁 + 𝑗)C𝑗) ∈
ℕ0) |
50 | 49 | nn0cnd 9169 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ0
∧ 𝑘 ∈
ℕ0) ∧ 𝑗 ∈ (0...(𝑘 + 1))) → ((𝑁 + 𝑗)C𝑗) ∈ ℂ) |
51 | | bcxmaslem1 11429 |
. . . . . . . . . 10
⊢ (𝑗 = (𝑘 + 1) → ((𝑁 + 𝑗)C𝑗) = ((𝑁 + (𝑘 + 1))C(𝑘 + 1))) |
52 | 41, 50, 51 | fsump1 11361 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ0
∧ 𝑘 ∈
ℕ0) → Σ𝑗 ∈ (0...(𝑘 + 1))((𝑁 + 𝑗)C𝑗) = (Σ𝑗 ∈ (0...𝑘)((𝑁 + 𝑗)C𝑗) + ((𝑁 + (𝑘 + 1))C(𝑘 + 1)))) |
53 | | nn0cn 9124 |
. . . . . . . . . . . . 13
⊢ (𝑁 ∈ ℕ0
→ 𝑁 ∈
ℂ) |
54 | 53 | adantr 274 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℕ0
∧ 𝑘 ∈
ℕ0) → 𝑁 ∈ ℂ) |
55 | | nn0cn 9124 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ ℕ0
→ 𝑘 ∈
ℂ) |
56 | 55 | adantl 275 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℕ0
∧ 𝑘 ∈
ℕ0) → 𝑘 ∈ ℂ) |
57 | | 1cnd 7915 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℕ0
∧ 𝑘 ∈
ℕ0) → 1 ∈ ℂ) |
58 | | add32r 8058 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℂ ∧ 𝑘 ∈ ℂ ∧ 1 ∈
ℂ) → (𝑁 + (𝑘 + 1)) = ((𝑁 + 1) + 𝑘)) |
59 | 54, 56, 57, 58 | syl3anc 1228 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ0
∧ 𝑘 ∈
ℕ0) → (𝑁 + (𝑘 + 1)) = ((𝑁 + 1) + 𝑘)) |
60 | 59 | oveq1d 5857 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ0
∧ 𝑘 ∈
ℕ0) → ((𝑁 + (𝑘 + 1))C(𝑘 + 1)) = (((𝑁 + 1) + 𝑘)C(𝑘 + 1))) |
61 | 60 | oveq2d 5858 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ0
∧ 𝑘 ∈
ℕ0) → (Σ𝑗 ∈ (0...𝑘)((𝑁 + 𝑗)C𝑗) + ((𝑁 + (𝑘 + 1))C(𝑘 + 1))) = (Σ𝑗 ∈ (0...𝑘)((𝑁 + 𝑗)C𝑗) + (((𝑁 + 1) + 𝑘)C(𝑘 + 1)))) |
62 | 52, 61 | eqtrd 2198 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ0
∧ 𝑘 ∈
ℕ0) → Σ𝑗 ∈ (0...(𝑘 + 1))((𝑁 + 𝑗)C𝑗) = (Σ𝑗 ∈ (0...𝑘)((𝑁 + 𝑗)C𝑗) + (((𝑁 + 1) + 𝑘)C(𝑘 + 1)))) |
63 | 62 | adantr 274 |
. . . . . . 7
⊢ (((𝑁 ∈ ℕ0
∧ 𝑘 ∈
ℕ0) ∧ (((𝑁 + 1) + 𝑘)C𝑘) = Σ𝑗 ∈ (0...𝑘)((𝑁 + 𝑗)C𝑗)) → Σ𝑗 ∈ (0...(𝑘 + 1))((𝑁 + 𝑗)C𝑗) = (Σ𝑗 ∈ (0...𝑘)((𝑁 + 𝑗)C𝑗) + (((𝑁 + 1) + 𝑘)C(𝑘 + 1)))) |
64 | | oveq1 5849 |
. . . . . . . 8
⊢ ((((𝑁 + 1) + 𝑘)C𝑘) = Σ𝑗 ∈ (0...𝑘)((𝑁 + 𝑗)C𝑗) → ((((𝑁 + 1) + 𝑘)C𝑘) + (((𝑁 + 1) + 𝑘)C(𝑘 + 1))) = (Σ𝑗 ∈ (0...𝑘)((𝑁 + 𝑗)C𝑗) + (((𝑁 + 1) + 𝑘)C(𝑘 + 1)))) |
65 | 64 | adantl 275 |
. . . . . . 7
⊢ (((𝑁 ∈ ℕ0
∧ 𝑘 ∈
ℕ0) ∧ (((𝑁 + 1) + 𝑘)C𝑘) = Σ𝑗 ∈ (0...𝑘)((𝑁 + 𝑗)C𝑗)) → ((((𝑁 + 1) + 𝑘)C𝑘) + (((𝑁 + 1) + 𝑘)C(𝑘 + 1))) = (Σ𝑗 ∈ (0...𝑘)((𝑁 + 𝑗)C𝑗) + (((𝑁 + 1) + 𝑘)C(𝑘 + 1)))) |
66 | | ax-1cn 7846 |
. . . . . . . . . . . . 13
⊢ 1 ∈
ℂ |
67 | | pncan 8104 |
. . . . . . . . . . . . 13
⊢ ((𝑘 ∈ ℂ ∧ 1 ∈
ℂ) → ((𝑘 + 1)
− 1) = 𝑘) |
68 | 56, 66, 67 | sylancl 410 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℕ0
∧ 𝑘 ∈
ℕ0) → ((𝑘 + 1) − 1) = 𝑘) |
69 | 68 | oveq2d 5858 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ0
∧ 𝑘 ∈
ℕ0) → (((𝑁 + 1) + 𝑘)C((𝑘 + 1) − 1)) = (((𝑁 + 1) + 𝑘)C𝑘)) |
70 | 69 | oveq2d 5858 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ0
∧ 𝑘 ∈
ℕ0) → ((((𝑁 + 1) + 𝑘)C(𝑘 + 1)) + (((𝑁 + 1) + 𝑘)C((𝑘 + 1) − 1))) = ((((𝑁 + 1) + 𝑘)C(𝑘 + 1)) + (((𝑁 + 1) + 𝑘)C𝑘))) |
71 | | nn0addcl 9149 |
. . . . . . . . . . . 12
⊢ (((𝑁 + 1) ∈ ℕ0
∧ 𝑘 ∈
ℕ0) → ((𝑁 + 1) + 𝑘) ∈
ℕ0) |
72 | 33, 71 | sylan 281 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ0
∧ 𝑘 ∈
ℕ0) → ((𝑁 + 1) + 𝑘) ∈
ℕ0) |
73 | | nn0p1nn 9153 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ ℕ0
→ (𝑘 + 1) ∈
ℕ) |
74 | 73 | adantl 275 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℕ0
∧ 𝑘 ∈
ℕ0) → (𝑘 + 1) ∈ ℕ) |
75 | 74 | nnzd 9312 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ0
∧ 𝑘 ∈
ℕ0) → (𝑘 + 1) ∈ ℤ) |
76 | | bcpasc 10679 |
. . . . . . . . . . 11
⊢ ((((𝑁 + 1) + 𝑘) ∈ ℕ0 ∧ (𝑘 + 1) ∈ ℤ) →
((((𝑁 + 1) + 𝑘)C(𝑘 + 1)) + (((𝑁 + 1) + 𝑘)C((𝑘 + 1) − 1))) = ((((𝑁 + 1) + 𝑘) + 1)C(𝑘 + 1))) |
77 | 72, 75, 76 | syl2anc 409 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ0
∧ 𝑘 ∈
ℕ0) → ((((𝑁 + 1) + 𝑘)C(𝑘 + 1)) + (((𝑁 + 1) + 𝑘)C((𝑘 + 1) − 1))) = ((((𝑁 + 1) + 𝑘) + 1)C(𝑘 + 1))) |
78 | 70, 77 | eqtr3d 2200 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ0
∧ 𝑘 ∈
ℕ0) → ((((𝑁 + 1) + 𝑘)C(𝑘 + 1)) + (((𝑁 + 1) + 𝑘)C𝑘)) = ((((𝑁 + 1) + 𝑘) + 1)C(𝑘 + 1))) |
79 | | nn0p1nn 9153 |
. . . . . . . . . . . . . 14
⊢ (𝑁 ∈ ℕ0
→ (𝑁 + 1) ∈
ℕ) |
80 | | nnnn0addcl 9144 |
. . . . . . . . . . . . . 14
⊢ (((𝑁 + 1) ∈ ℕ ∧ 𝑘 ∈ ℕ0)
→ ((𝑁 + 1) + 𝑘) ∈
ℕ) |
81 | 79, 80 | sylan 281 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ ℕ0
∧ 𝑘 ∈
ℕ0) → ((𝑁 + 1) + 𝑘) ∈ ℕ) |
82 | 81 | nnnn0d 9167 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℕ0
∧ 𝑘 ∈
ℕ0) → ((𝑁 + 1) + 𝑘) ∈
ℕ0) |
83 | | bccl 10680 |
. . . . . . . . . . . 12
⊢ ((((𝑁 + 1) + 𝑘) ∈ ℕ0 ∧ (𝑘 + 1) ∈ ℤ) →
(((𝑁 + 1) + 𝑘)C(𝑘 + 1)) ∈
ℕ0) |
84 | 82, 75, 83 | syl2anc 409 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ0
∧ 𝑘 ∈
ℕ0) → (((𝑁 + 1) + 𝑘)C(𝑘 + 1)) ∈
ℕ0) |
85 | 84 | nn0cnd 9169 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ0
∧ 𝑘 ∈
ℕ0) → (((𝑁 + 1) + 𝑘)C(𝑘 + 1)) ∈ ℂ) |
86 | | nn0z 9211 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ ℕ0
→ 𝑘 ∈
ℤ) |
87 | 86 | adantl 275 |
. . . . . . . . . . . . 13
⊢ (((𝑁 + 1) ∈ ℕ0
∧ 𝑘 ∈
ℕ0) → 𝑘 ∈ ℤ) |
88 | | bccl 10680 |
. . . . . . . . . . . . 13
⊢ ((((𝑁 + 1) + 𝑘) ∈ ℕ0 ∧ 𝑘 ∈ ℤ) → (((𝑁 + 1) + 𝑘)C𝑘) ∈
ℕ0) |
89 | 71, 87, 88 | syl2anc 409 |
. . . . . . . . . . . 12
⊢ (((𝑁 + 1) ∈ ℕ0
∧ 𝑘 ∈
ℕ0) → (((𝑁 + 1) + 𝑘)C𝑘) ∈
ℕ0) |
90 | 33, 89 | sylan 281 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ0
∧ 𝑘 ∈
ℕ0) → (((𝑁 + 1) + 𝑘)C𝑘) ∈
ℕ0) |
91 | 90 | nn0cnd 9169 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ0
∧ 𝑘 ∈
ℕ0) → (((𝑁 + 1) + 𝑘)C𝑘) ∈ ℂ) |
92 | 85, 91 | addcomd 8049 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ0
∧ 𝑘 ∈
ℕ0) → ((((𝑁 + 1) + 𝑘)C(𝑘 + 1)) + (((𝑁 + 1) + 𝑘)C𝑘)) = ((((𝑁 + 1) + 𝑘)C𝑘) + (((𝑁 + 1) + 𝑘)C(𝑘 + 1)))) |
93 | | peano2cn 8033 |
. . . . . . . . . . . . 13
⊢ (𝑁 ∈ ℂ → (𝑁 + 1) ∈
ℂ) |
94 | 53, 93 | syl 14 |
. . . . . . . . . . . 12
⊢ (𝑁 ∈ ℕ0
→ (𝑁 + 1) ∈
ℂ) |
95 | 94 | adantr 274 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ0
∧ 𝑘 ∈
ℕ0) → (𝑁 + 1) ∈ ℂ) |
96 | 95, 56, 57 | addassd 7921 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ0
∧ 𝑘 ∈
ℕ0) → (((𝑁 + 1) + 𝑘) + 1) = ((𝑁 + 1) + (𝑘 + 1))) |
97 | 96 | oveq1d 5857 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ0
∧ 𝑘 ∈
ℕ0) → ((((𝑁 + 1) + 𝑘) + 1)C(𝑘 + 1)) = (((𝑁 + 1) + (𝑘 + 1))C(𝑘 + 1))) |
98 | 78, 92, 97 | 3eqtr3d 2206 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ0
∧ 𝑘 ∈
ℕ0) → ((((𝑁 + 1) + 𝑘)C𝑘) + (((𝑁 + 1) + 𝑘)C(𝑘 + 1))) = (((𝑁 + 1) + (𝑘 + 1))C(𝑘 + 1))) |
99 | 98 | adantr 274 |
. . . . . . 7
⊢ (((𝑁 ∈ ℕ0
∧ 𝑘 ∈
ℕ0) ∧ (((𝑁 + 1) + 𝑘)C𝑘) = Σ𝑗 ∈ (0...𝑘)((𝑁 + 𝑗)C𝑗)) → ((((𝑁 + 1) + 𝑘)C𝑘) + (((𝑁 + 1) + 𝑘)C(𝑘 + 1))) = (((𝑁 + 1) + (𝑘 + 1))C(𝑘 + 1))) |
100 | 63, 65, 99 | 3eqtr2rd 2205 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ0
∧ 𝑘 ∈
ℕ0) ∧ (((𝑁 + 1) + 𝑘)C𝑘) = Σ𝑗 ∈ (0...𝑘)((𝑁 + 𝑗)C𝑗)) → (((𝑁 + 1) + (𝑘 + 1))C(𝑘 + 1)) = Σ𝑗 ∈ (0...(𝑘 + 1))((𝑁 + 𝑗)C𝑗)) |
101 | 100 | ex 114 |
. . . . 5
⊢ ((𝑁 ∈ ℕ0
∧ 𝑘 ∈
ℕ0) → ((((𝑁 + 1) + 𝑘)C𝑘) = Σ𝑗 ∈ (0...𝑘)((𝑁 + 𝑗)C𝑗) → (((𝑁 + 1) + (𝑘 + 1))C(𝑘 + 1)) = Σ𝑗 ∈ (0...(𝑘 + 1))((𝑁 + 𝑗)C𝑗))) |
102 | 101 | expcom 115 |
. . . 4
⊢ (𝑘 ∈ ℕ0
→ (𝑁 ∈
ℕ0 → ((((𝑁 + 1) + 𝑘)C𝑘) = Σ𝑗 ∈ (0...𝑘)((𝑁 + 𝑗)C𝑗) → (((𝑁 + 1) + (𝑘 + 1))C(𝑘 + 1)) = Σ𝑗 ∈ (0...(𝑘 + 1))((𝑁 + 𝑗)C𝑗)))) |
103 | 102 | a2d 26 |
. . 3
⊢ (𝑘 ∈ ℕ0
→ ((𝑁 ∈
ℕ0 → (((𝑁 + 1) + 𝑘)C𝑘) = Σ𝑗 ∈ (0...𝑘)((𝑁 + 𝑗)C𝑗)) → (𝑁 ∈ ℕ0 → (((𝑁 + 1) + (𝑘 + 1))C(𝑘 + 1)) = Σ𝑗 ∈ (0...(𝑘 + 1))((𝑁 + 𝑗)C𝑗)))) |
104 | 5, 10, 15, 20, 38, 103 | nn0ind 9305 |
. 2
⊢ (𝑀 ∈ ℕ0
→ (𝑁 ∈
ℕ0 → (((𝑁 + 1) + 𝑀)C𝑀) = Σ𝑗 ∈ (0...𝑀)((𝑁 + 𝑗)C𝑗))) |
105 | 104 | impcom 124 |
1
⊢ ((𝑁 ∈ ℕ0
∧ 𝑀 ∈
ℕ0) → (((𝑁 + 1) + 𝑀)C𝑀) = Σ𝑗 ∈ (0...𝑀)((𝑁 + 𝑗)C𝑗)) |