ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  faclbnd6 GIF version

Theorem faclbnd6 10148
Description: Geometric lower bound for the factorial function, where N is usually held constant. (Contributed by Paul Chapman, 28-Dec-2007.)
Assertion
Ref Expression
faclbnd6 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → ((!‘𝑁) · ((𝑁 + 1)↑𝑀)) ≤ (!‘(𝑁 + 𝑀)))

Proof of Theorem faclbnd6
Dummy variables 𝑚 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5660 . . . . . 6 (𝑚 = 0 → ((𝑁 + 1)↑𝑚) = ((𝑁 + 1)↑0))
21oveq2d 5668 . . . . 5 (𝑚 = 0 → ((!‘𝑁) · ((𝑁 + 1)↑𝑚)) = ((!‘𝑁) · ((𝑁 + 1)↑0)))
3 oveq2 5660 . . . . . 6 (𝑚 = 0 → (𝑁 + 𝑚) = (𝑁 + 0))
43fveq2d 5309 . . . . 5 (𝑚 = 0 → (!‘(𝑁 + 𝑚)) = (!‘(𝑁 + 0)))
52, 4breq12d 3858 . . . 4 (𝑚 = 0 → (((!‘𝑁) · ((𝑁 + 1)↑𝑚)) ≤ (!‘(𝑁 + 𝑚)) ↔ ((!‘𝑁) · ((𝑁 + 1)↑0)) ≤ (!‘(𝑁 + 0))))
65imbi2d 228 . . 3 (𝑚 = 0 → ((𝑁 ∈ ℕ0 → ((!‘𝑁) · ((𝑁 + 1)↑𝑚)) ≤ (!‘(𝑁 + 𝑚))) ↔ (𝑁 ∈ ℕ0 → ((!‘𝑁) · ((𝑁 + 1)↑0)) ≤ (!‘(𝑁 + 0)))))
7 oveq2 5660 . . . . . 6 (𝑚 = 𝑘 → ((𝑁 + 1)↑𝑚) = ((𝑁 + 1)↑𝑘))
87oveq2d 5668 . . . . 5 (𝑚 = 𝑘 → ((!‘𝑁) · ((𝑁 + 1)↑𝑚)) = ((!‘𝑁) · ((𝑁 + 1)↑𝑘)))
9 oveq2 5660 . . . . . 6 (𝑚 = 𝑘 → (𝑁 + 𝑚) = (𝑁 + 𝑘))
109fveq2d 5309 . . . . 5 (𝑚 = 𝑘 → (!‘(𝑁 + 𝑚)) = (!‘(𝑁 + 𝑘)))
118, 10breq12d 3858 . . . 4 (𝑚 = 𝑘 → (((!‘𝑁) · ((𝑁 + 1)↑𝑚)) ≤ (!‘(𝑁 + 𝑚)) ↔ ((!‘𝑁) · ((𝑁 + 1)↑𝑘)) ≤ (!‘(𝑁 + 𝑘))))
1211imbi2d 228 . . 3 (𝑚 = 𝑘 → ((𝑁 ∈ ℕ0 → ((!‘𝑁) · ((𝑁 + 1)↑𝑚)) ≤ (!‘(𝑁 + 𝑚))) ↔ (𝑁 ∈ ℕ0 → ((!‘𝑁) · ((𝑁 + 1)↑𝑘)) ≤ (!‘(𝑁 + 𝑘)))))
13 oveq2 5660 . . . . . 6 (𝑚 = (𝑘 + 1) → ((𝑁 + 1)↑𝑚) = ((𝑁 + 1)↑(𝑘 + 1)))
1413oveq2d 5668 . . . . 5 (𝑚 = (𝑘 + 1) → ((!‘𝑁) · ((𝑁 + 1)↑𝑚)) = ((!‘𝑁) · ((𝑁 + 1)↑(𝑘 + 1))))
15 oveq2 5660 . . . . . 6 (𝑚 = (𝑘 + 1) → (𝑁 + 𝑚) = (𝑁 + (𝑘 + 1)))
1615fveq2d 5309 . . . . 5 (𝑚 = (𝑘 + 1) → (!‘(𝑁 + 𝑚)) = (!‘(𝑁 + (𝑘 + 1))))
1714, 16breq12d 3858 . . . 4 (𝑚 = (𝑘 + 1) → (((!‘𝑁) · ((𝑁 + 1)↑𝑚)) ≤ (!‘(𝑁 + 𝑚)) ↔ ((!‘𝑁) · ((𝑁 + 1)↑(𝑘 + 1))) ≤ (!‘(𝑁 + (𝑘 + 1)))))
1817imbi2d 228 . . 3 (𝑚 = (𝑘 + 1) → ((𝑁 ∈ ℕ0 → ((!‘𝑁) · ((𝑁 + 1)↑𝑚)) ≤ (!‘(𝑁 + 𝑚))) ↔ (𝑁 ∈ ℕ0 → ((!‘𝑁) · ((𝑁 + 1)↑(𝑘 + 1))) ≤ (!‘(𝑁 + (𝑘 + 1))))))
19 oveq2 5660 . . . . . 6 (𝑚 = 𝑀 → ((𝑁 + 1)↑𝑚) = ((𝑁 + 1)↑𝑀))
2019oveq2d 5668 . . . . 5 (𝑚 = 𝑀 → ((!‘𝑁) · ((𝑁 + 1)↑𝑚)) = ((!‘𝑁) · ((𝑁 + 1)↑𝑀)))
21 oveq2 5660 . . . . . 6 (𝑚 = 𝑀 → (𝑁 + 𝑚) = (𝑁 + 𝑀))
2221fveq2d 5309 . . . . 5 (𝑚 = 𝑀 → (!‘(𝑁 + 𝑚)) = (!‘(𝑁 + 𝑀)))
2320, 22breq12d 3858 . . . 4 (𝑚 = 𝑀 → (((!‘𝑁) · ((𝑁 + 1)↑𝑚)) ≤ (!‘(𝑁 + 𝑚)) ↔ ((!‘𝑁) · ((𝑁 + 1)↑𝑀)) ≤ (!‘(𝑁 + 𝑀))))
2423imbi2d 228 . . 3 (𝑚 = 𝑀 → ((𝑁 ∈ ℕ0 → ((!‘𝑁) · ((𝑁 + 1)↑𝑚)) ≤ (!‘(𝑁 + 𝑚))) ↔ (𝑁 ∈ ℕ0 → ((!‘𝑁) · ((𝑁 + 1)↑𝑀)) ≤ (!‘(𝑁 + 𝑀)))))
25 faccl 10139 . . . . . 6 (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℕ)
2625nnred 8433 . . . . 5 (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℝ)
2726leidd 7990 . . . 4 (𝑁 ∈ ℕ0 → (!‘𝑁) ≤ (!‘𝑁))
28 nn0cn 8681 . . . . . . . 8 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
29 peano2cn 7615 . . . . . . . 8 (𝑁 ∈ ℂ → (𝑁 + 1) ∈ ℂ)
3028, 29syl 14 . . . . . . 7 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℂ)
3130exp0d 10076 . . . . . 6 (𝑁 ∈ ℕ0 → ((𝑁 + 1)↑0) = 1)
3231oveq2d 5668 . . . . 5 (𝑁 ∈ ℕ0 → ((!‘𝑁) · ((𝑁 + 1)↑0)) = ((!‘𝑁) · 1))
3325nncnd 8434 . . . . . 6 (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℂ)
3433mulid1d 7503 . . . . 5 (𝑁 ∈ ℕ0 → ((!‘𝑁) · 1) = (!‘𝑁))
3532, 34eqtrd 2120 . . . 4 (𝑁 ∈ ℕ0 → ((!‘𝑁) · ((𝑁 + 1)↑0)) = (!‘𝑁))
3628addid1d 7629 . . . . 5 (𝑁 ∈ ℕ0 → (𝑁 + 0) = 𝑁)
3736fveq2d 5309 . . . 4 (𝑁 ∈ ℕ0 → (!‘(𝑁 + 0)) = (!‘𝑁))
3827, 35, 373brtr4d 3875 . . 3 (𝑁 ∈ ℕ0 → ((!‘𝑁) · ((𝑁 + 1)↑0)) ≤ (!‘(𝑁 + 0)))
3926adantr 270 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → (!‘𝑁) ∈ ℝ)
40 peano2nn0 8711 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
4140nn0red 8725 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℝ)
42 reexpcl 9968 . . . . . . . . . . . . 13 (((𝑁 + 1) ∈ ℝ ∧ 𝑘 ∈ ℕ0) → ((𝑁 + 1)↑𝑘) ∈ ℝ)
4341, 42sylan 277 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → ((𝑁 + 1)↑𝑘) ∈ ℝ)
4439, 43remulcld 7516 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → ((!‘𝑁) · ((𝑁 + 1)↑𝑘)) ∈ ℝ)
45 nnnn0 8678 . . . . . . . . . . . . . . 15 ((!‘𝑁) ∈ ℕ → (!‘𝑁) ∈ ℕ0)
4645nn0ge0d 8727 . . . . . . . . . . . . . 14 ((!‘𝑁) ∈ ℕ → 0 ≤ (!‘𝑁))
4725, 46syl 14 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ0 → 0 ≤ (!‘𝑁))
4847adantr 270 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → 0 ≤ (!‘𝑁))
4941adantr 270 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → (𝑁 + 1) ∈ ℝ)
50 simpr 108 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
5140nn0ge0d 8727 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ0 → 0 ≤ (𝑁 + 1))
5251adantr 270 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → 0 ≤ (𝑁 + 1))
5349, 50, 52expge0d 10100 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → 0 ≤ ((𝑁 + 1)↑𝑘))
5439, 43, 48, 53mulge0d 8096 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → 0 ≤ ((!‘𝑁) · ((𝑁 + 1)↑𝑘)))
5544, 54jca 300 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → (((!‘𝑁) · ((𝑁 + 1)↑𝑘)) ∈ ℝ ∧ 0 ≤ ((!‘𝑁) · ((𝑁 + 1)↑𝑘))))
56 nn0addcl 8706 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → (𝑁 + 𝑘) ∈ ℕ0)
57 faccl 10139 . . . . . . . . . . . 12 ((𝑁 + 𝑘) ∈ ℕ0 → (!‘(𝑁 + 𝑘)) ∈ ℕ)
5856, 57syl 14 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → (!‘(𝑁 + 𝑘)) ∈ ℕ)
5958nnred 8433 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → (!‘(𝑁 + 𝑘)) ∈ ℝ)
60 nn0re 8680 . . . . . . . . . . . 12 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
61 peano2nn0 8711 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℕ0)
6261nn0red 8725 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℝ)
63 readdcl 7466 . . . . . . . . . . . 12 ((𝑁 ∈ ℝ ∧ (𝑘 + 1) ∈ ℝ) → (𝑁 + (𝑘 + 1)) ∈ ℝ)
6460, 62, 63syl2an 283 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → (𝑁 + (𝑘 + 1)) ∈ ℝ)
6549, 52, 64jca31 302 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → (((𝑁 + 1) ∈ ℝ ∧ 0 ≤ (𝑁 + 1)) ∧ (𝑁 + (𝑘 + 1)) ∈ ℝ))
6655, 59, 65jca31 302 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → (((((!‘𝑁) · ((𝑁 + 1)↑𝑘)) ∈ ℝ ∧ 0 ≤ ((!‘𝑁) · ((𝑁 + 1)↑𝑘))) ∧ (!‘(𝑁 + 𝑘)) ∈ ℝ) ∧ (((𝑁 + 1) ∈ ℝ ∧ 0 ≤ (𝑁 + 1)) ∧ (𝑁 + (𝑘 + 1)) ∈ ℝ)))
6766adantr 270 . . . . . . . 8 (((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) ∧ ((!‘𝑁) · ((𝑁 + 1)↑𝑘)) ≤ (!‘(𝑁 + 𝑘))) → (((((!‘𝑁) · ((𝑁 + 1)↑𝑘)) ∈ ℝ ∧ 0 ≤ ((!‘𝑁) · ((𝑁 + 1)↑𝑘))) ∧ (!‘(𝑁 + 𝑘)) ∈ ℝ) ∧ (((𝑁 + 1) ∈ ℝ ∧ 0 ≤ (𝑁 + 1)) ∧ (𝑁 + (𝑘 + 1)) ∈ ℝ)))
68 simpr 108 . . . . . . . . 9 (((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) ∧ ((!‘𝑁) · ((𝑁 + 1)↑𝑘)) ≤ (!‘(𝑁 + 𝑘))) → ((!‘𝑁) · ((𝑁 + 1)↑𝑘)) ≤ (!‘(𝑁 + 𝑘)))
6936adantr 270 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → (𝑁 + 0) = 𝑁)
70 nn0ge0 8696 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ0 → 0 ≤ 𝑘)
7170adantl 271 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → 0 ≤ 𝑘)
72 nn0re 8680 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ0𝑘 ∈ ℝ)
7372adantl 271 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → 𝑘 ∈ ℝ)
7460adantr 270 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → 𝑁 ∈ ℝ)
75 0re 7486 . . . . . . . . . . . . . . . 16 0 ∈ ℝ
76 leadd2 7907 . . . . . . . . . . . . . . . 16 ((0 ∈ ℝ ∧ 𝑘 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (0 ≤ 𝑘 ↔ (𝑁 + 0) ≤ (𝑁 + 𝑘)))
7775, 76mp3an1 1260 . . . . . . . . . . . . . . 15 ((𝑘 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (0 ≤ 𝑘 ↔ (𝑁 + 0) ≤ (𝑁 + 𝑘)))
7873, 74, 77syl2anc 403 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → (0 ≤ 𝑘 ↔ (𝑁 + 0) ≤ (𝑁 + 𝑘)))
7971, 78mpbid 145 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → (𝑁 + 0) ≤ (𝑁 + 𝑘))
8069, 79eqbrtrrd 3867 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → 𝑁 ≤ (𝑁 + 𝑘))
8156nn0red 8725 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → (𝑁 + 𝑘) ∈ ℝ)
82 1re 7485 . . . . . . . . . . . . . 14 1 ∈ ℝ
83 leadd1 7906 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℝ ∧ (𝑁 + 𝑘) ∈ ℝ ∧ 1 ∈ ℝ) → (𝑁 ≤ (𝑁 + 𝑘) ↔ (𝑁 + 1) ≤ ((𝑁 + 𝑘) + 1)))
8482, 83mp3an3 1262 . . . . . . . . . . . . 13 ((𝑁 ∈ ℝ ∧ (𝑁 + 𝑘) ∈ ℝ) → (𝑁 ≤ (𝑁 + 𝑘) ↔ (𝑁 + 1) ≤ ((𝑁 + 𝑘) + 1)))
8574, 81, 84syl2anc 403 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → (𝑁 ≤ (𝑁 + 𝑘) ↔ (𝑁 + 1) ≤ ((𝑁 + 𝑘) + 1)))
8680, 85mpbid 145 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → (𝑁 + 1) ≤ ((𝑁 + 𝑘) + 1))
87 nn0cn 8681 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0𝑘 ∈ ℂ)
88 ax-1cn 7436 . . . . . . . . . . . . 13 1 ∈ ℂ
89 addass 7470 . . . . . . . . . . . . 13 ((𝑁 ∈ ℂ ∧ 𝑘 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 + 𝑘) + 1) = (𝑁 + (𝑘 + 1)))
9088, 89mp3an3 1262 . . . . . . . . . . . 12 ((𝑁 ∈ ℂ ∧ 𝑘 ∈ ℂ) → ((𝑁 + 𝑘) + 1) = (𝑁 + (𝑘 + 1)))
9128, 87, 90syl2an 283 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → ((𝑁 + 𝑘) + 1) = (𝑁 + (𝑘 + 1)))
9286, 91breqtrd 3869 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → (𝑁 + 1) ≤ (𝑁 + (𝑘 + 1)))
9392adantr 270 . . . . . . . . 9 (((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) ∧ ((!‘𝑁) · ((𝑁 + 1)↑𝑘)) ≤ (!‘(𝑁 + 𝑘))) → (𝑁 + 1) ≤ (𝑁 + (𝑘 + 1)))
9468, 93jca 300 . . . . . . . 8 (((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) ∧ ((!‘𝑁) · ((𝑁 + 1)↑𝑘)) ≤ (!‘(𝑁 + 𝑘))) → (((!‘𝑁) · ((𝑁 + 1)↑𝑘)) ≤ (!‘(𝑁 + 𝑘)) ∧ (𝑁 + 1) ≤ (𝑁 + (𝑘 + 1))))
95 lemul12a 8321 . . . . . . . 8 ((((((!‘𝑁) · ((𝑁 + 1)↑𝑘)) ∈ ℝ ∧ 0 ≤ ((!‘𝑁) · ((𝑁 + 1)↑𝑘))) ∧ (!‘(𝑁 + 𝑘)) ∈ ℝ) ∧ (((𝑁 + 1) ∈ ℝ ∧ 0 ≤ (𝑁 + 1)) ∧ (𝑁 + (𝑘 + 1)) ∈ ℝ)) → ((((!‘𝑁) · ((𝑁 + 1)↑𝑘)) ≤ (!‘(𝑁 + 𝑘)) ∧ (𝑁 + 1) ≤ (𝑁 + (𝑘 + 1))) → (((!‘𝑁) · ((𝑁 + 1)↑𝑘)) · (𝑁 + 1)) ≤ ((!‘(𝑁 + 𝑘)) · (𝑁 + (𝑘 + 1)))))
9667, 94, 95sylc 61 . . . . . . 7 (((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) ∧ ((!‘𝑁) · ((𝑁 + 1)↑𝑘)) ≤ (!‘(𝑁 + 𝑘))) → (((!‘𝑁) · ((𝑁 + 1)↑𝑘)) · (𝑁 + 1)) ≤ ((!‘(𝑁 + 𝑘)) · (𝑁 + (𝑘 + 1))))
97 expp1 9958 . . . . . . . . . . 11 (((𝑁 + 1) ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((𝑁 + 1)↑(𝑘 + 1)) = (((𝑁 + 1)↑𝑘) · (𝑁 + 1)))
9830, 97sylan 277 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → ((𝑁 + 1)↑(𝑘 + 1)) = (((𝑁 + 1)↑𝑘) · (𝑁 + 1)))
9998oveq2d 5668 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → ((!‘𝑁) · ((𝑁 + 1)↑(𝑘 + 1))) = ((!‘𝑁) · (((𝑁 + 1)↑𝑘) · (𝑁 + 1))))
10033adantr 270 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → (!‘𝑁) ∈ ℂ)
101 expcl 9969 . . . . . . . . . . 11 (((𝑁 + 1) ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((𝑁 + 1)↑𝑘) ∈ ℂ)
10230, 101sylan 277 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → ((𝑁 + 1)↑𝑘) ∈ ℂ)
10330adantr 270 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → (𝑁 + 1) ∈ ℂ)
104100, 102, 103mulassd 7509 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → (((!‘𝑁) · ((𝑁 + 1)↑𝑘)) · (𝑁 + 1)) = ((!‘𝑁) · (((𝑁 + 1)↑𝑘) · (𝑁 + 1))))
10599, 104eqtr4d 2123 . . . . . . . 8 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → ((!‘𝑁) · ((𝑁 + 1)↑(𝑘 + 1))) = (((!‘𝑁) · ((𝑁 + 1)↑𝑘)) · (𝑁 + 1)))
106105adantr 270 . . . . . . 7 (((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) ∧ ((!‘𝑁) · ((𝑁 + 1)↑𝑘)) ≤ (!‘(𝑁 + 𝑘))) → ((!‘𝑁) · ((𝑁 + 1)↑(𝑘 + 1))) = (((!‘𝑁) · ((𝑁 + 1)↑𝑘)) · (𝑁 + 1)))
107 facp1 10134 . . . . . . . . . 10 ((𝑁 + 𝑘) ∈ ℕ0 → (!‘((𝑁 + 𝑘) + 1)) = ((!‘(𝑁 + 𝑘)) · ((𝑁 + 𝑘) + 1)))
10856, 107syl 14 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → (!‘((𝑁 + 𝑘) + 1)) = ((!‘(𝑁 + 𝑘)) · ((𝑁 + 𝑘) + 1)))
10991fveq2d 5309 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → (!‘((𝑁 + 𝑘) + 1)) = (!‘(𝑁 + (𝑘 + 1))))
11091oveq2d 5668 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → ((!‘(𝑁 + 𝑘)) · ((𝑁 + 𝑘) + 1)) = ((!‘(𝑁 + 𝑘)) · (𝑁 + (𝑘 + 1))))
111108, 109, 1103eqtr3d 2128 . . . . . . . 8 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → (!‘(𝑁 + (𝑘 + 1))) = ((!‘(𝑁 + 𝑘)) · (𝑁 + (𝑘 + 1))))
112111adantr 270 . . . . . . 7 (((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) ∧ ((!‘𝑁) · ((𝑁 + 1)↑𝑘)) ≤ (!‘(𝑁 + 𝑘))) → (!‘(𝑁 + (𝑘 + 1))) = ((!‘(𝑁 + 𝑘)) · (𝑁 + (𝑘 + 1))))
11396, 106, 1123brtr4d 3875 . . . . . 6 (((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) ∧ ((!‘𝑁) · ((𝑁 + 1)↑𝑘)) ≤ (!‘(𝑁 + 𝑘))) → ((!‘𝑁) · ((𝑁 + 1)↑(𝑘 + 1))) ≤ (!‘(𝑁 + (𝑘 + 1))))
114113ex 113 . . . . 5 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → (((!‘𝑁) · ((𝑁 + 1)↑𝑘)) ≤ (!‘(𝑁 + 𝑘)) → ((!‘𝑁) · ((𝑁 + 1)↑(𝑘 + 1))) ≤ (!‘(𝑁 + (𝑘 + 1)))))
115114expcom 114 . . . 4 (𝑘 ∈ ℕ0 → (𝑁 ∈ ℕ0 → (((!‘𝑁) · ((𝑁 + 1)↑𝑘)) ≤ (!‘(𝑁 + 𝑘)) → ((!‘𝑁) · ((𝑁 + 1)↑(𝑘 + 1))) ≤ (!‘(𝑁 + (𝑘 + 1))))))
116115a2d 26 . . 3 (𝑘 ∈ ℕ0 → ((𝑁 ∈ ℕ0 → ((!‘𝑁) · ((𝑁 + 1)↑𝑘)) ≤ (!‘(𝑁 + 𝑘))) → (𝑁 ∈ ℕ0 → ((!‘𝑁) · ((𝑁 + 1)↑(𝑘 + 1))) ≤ (!‘(𝑁 + (𝑘 + 1))))))
1176, 12, 18, 24, 38, 116nn0ind 8858 . 2 (𝑀 ∈ ℕ0 → (𝑁 ∈ ℕ0 → ((!‘𝑁) · ((𝑁 + 1)↑𝑀)) ≤ (!‘(𝑁 + 𝑀))))
118117impcom 123 1 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → ((!‘𝑁) · ((𝑁 + 1)↑𝑀)) ≤ (!‘(𝑁 + 𝑀)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103   = wceq 1289  wcel 1438   class class class wbr 3845  cfv 5015  (class class class)co 5652  cc 7346  cr 7347  0cc0 7348  1c1 7349   + caddc 7351   · cmul 7353  cle 7521  cn 8420  0cn0 8671  cexp 9950  !cfa 10129
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-coll 3954  ax-sep 3957  ax-nul 3965  ax-pow 4009  ax-pr 4036  ax-un 4260  ax-setind 4353  ax-iinf 4403  ax-cnex 7434  ax-resscn 7435  ax-1cn 7436  ax-1re 7437  ax-icn 7438  ax-addcl 7439  ax-addrcl 7440  ax-mulcl 7441  ax-mulrcl 7442  ax-addcom 7443  ax-mulcom 7444  ax-addass 7445  ax-mulass 7446  ax-distr 7447  ax-i2m1 7448  ax-0lt1 7449  ax-1rid 7450  ax-0id 7451  ax-rnegex 7452  ax-precex 7453  ax-cnre 7454  ax-pre-ltirr 7455  ax-pre-ltwlin 7456  ax-pre-lttrn 7457  ax-pre-apti 7458  ax-pre-ltadd 7459  ax-pre-mulgt0 7460  ax-pre-mulext 7461
This theorem depends on definitions:  df-bi 115  df-dc 781  df-3or 925  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-nel 2351  df-ral 2364  df-rex 2365  df-reu 2366  df-rmo 2367  df-rab 2368  df-v 2621  df-sbc 2841  df-csb 2934  df-dif 3001  df-un 3003  df-in 3005  df-ss 3012  df-nul 3287  df-if 3394  df-pw 3431  df-sn 3452  df-pr 3453  df-op 3455  df-uni 3654  df-int 3689  df-iun 3732  df-br 3846  df-opab 3900  df-mpt 3901  df-tr 3937  df-id 4120  df-po 4123  df-iso 4124  df-iord 4193  df-on 4195  df-ilim 4196  df-suc 4198  df-iom 4406  df-xp 4444  df-rel 4445  df-cnv 4446  df-co 4447  df-dm 4448  df-rn 4449  df-res 4450  df-ima 4451  df-iota 4980  df-fun 5017  df-fn 5018  df-f 5019  df-f1 5020  df-fo 5021  df-f1o 5022  df-fv 5023  df-riota 5608  df-ov 5655  df-oprab 5656  df-mpt2 5657  df-1st 5911  df-2nd 5912  df-recs 6070  df-frec 6156  df-pnf 7522  df-mnf 7523  df-xr 7524  df-ltxr 7525  df-le 7526  df-sub 7653  df-neg 7654  df-reap 8050  df-ap 8057  df-div 8138  df-inn 8421  df-n0 8672  df-z 8749  df-uz 9018  df-iseq 9849  df-seq3 9850  df-exp 9951  df-fac 10130
This theorem is referenced by:  eftlub  10976
  Copyright terms: Public domain W3C validator