ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  trireciplem GIF version

Theorem trireciplem 10890
Description: Lemma for trirecip 10891. Show that the sum converges. (Contributed by Scott Fenton, 22-Apr-2014.) (Revised by Mario Carneiro, 22-May-2014.)
Hypothesis
Ref Expression
trireciplem.1 𝐹 = (𝑛 ∈ ℕ ↦ (1 / (𝑛 · (𝑛 + 1))))
Assertion
Ref Expression
trireciplem seq1( + , 𝐹) ⇝ 1

Proof of Theorem trireciplem
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnuz 9052 . . . 4 ℕ = (ℤ‘1)
2 1zzd 8775 . . . 4 (⊤ → 1 ∈ ℤ)
3 1cnd 7502 . . . . . 6 (⊤ → 1 ∈ ℂ)
4 divcnv 10887 . . . . . 6 (1 ∈ ℂ → (𝑛 ∈ ℕ ↦ (1 / 𝑛)) ⇝ 0)
53, 4syl 14 . . . . 5 (⊤ → (𝑛 ∈ ℕ ↦ (1 / 𝑛)) ⇝ 0)
6 nnex 8426 . . . . . . . 8 ℕ ∈ V
76mptex 5523 . . . . . . 7 (𝑛 ∈ ℕ ↦ (1 / (𝑛 + 1))) ∈ V
87a1i 9 . . . . . 6 (⊤ → (𝑛 ∈ ℕ ↦ (1 / (𝑛 + 1))) ∈ V)
96mptex 5523 . . . . . . 7 (𝑛 ∈ ℕ ↦ (1 / 𝑛)) ∈ V
109a1i 9 . . . . . 6 (⊤ → (𝑛 ∈ ℕ ↦ (1 / 𝑛)) ∈ V)
11 peano2nn 8432 . . . . . . . . 9 (𝑘 ∈ ℕ → (𝑘 + 1) ∈ ℕ)
1211adantl 271 . . . . . . . 8 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝑘 + 1) ∈ ℕ)
1312nnrecred 8467 . . . . . . . 8 ((⊤ ∧ 𝑘 ∈ ℕ) → (1 / (𝑘 + 1)) ∈ ℝ)
14 oveq2 5660 . . . . . . . . 9 (𝑛 = (𝑘 + 1) → (1 / 𝑛) = (1 / (𝑘 + 1)))
15 eqid 2088 . . . . . . . . 9 (𝑛 ∈ ℕ ↦ (1 / 𝑛)) = (𝑛 ∈ ℕ ↦ (1 / 𝑛))
1614, 15fvmptg 5380 . . . . . . . 8 (((𝑘 + 1) ∈ ℕ ∧ (1 / (𝑘 + 1)) ∈ ℝ) → ((𝑛 ∈ ℕ ↦ (1 / 𝑛))‘(𝑘 + 1)) = (1 / (𝑘 + 1)))
1712, 13, 16syl2anc 403 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (1 / 𝑛))‘(𝑘 + 1)) = (1 / (𝑘 + 1)))
18 simpr 108 . . . . . . . 8 ((⊤ ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
19 oveq1 5659 . . . . . . . . . 10 (𝑛 = 𝑘 → (𝑛 + 1) = (𝑘 + 1))
2019oveq2d 5668 . . . . . . . . 9 (𝑛 = 𝑘 → (1 / (𝑛 + 1)) = (1 / (𝑘 + 1)))
21 eqid 2088 . . . . . . . . 9 (𝑛 ∈ ℕ ↦ (1 / (𝑛 + 1))) = (𝑛 ∈ ℕ ↦ (1 / (𝑛 + 1)))
2220, 21fvmptg 5380 . . . . . . . 8 ((𝑘 ∈ ℕ ∧ (1 / (𝑘 + 1)) ∈ ℝ) → ((𝑛 ∈ ℕ ↦ (1 / (𝑛 + 1)))‘𝑘) = (1 / (𝑘 + 1)))
2318, 13, 22syl2anc 403 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (1 / (𝑛 + 1)))‘𝑘) = (1 / (𝑘 + 1)))
2417, 23eqtr4d 2123 . . . . . 6 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (1 / 𝑛))‘(𝑘 + 1)) = ((𝑛 ∈ ℕ ↦ (1 / (𝑛 + 1)))‘𝑘))
251, 2, 2, 8, 10, 24climshft2 10691 . . . . 5 (⊤ → ((𝑛 ∈ ℕ ↦ (1 / (𝑛 + 1))) ⇝ 0 ↔ (𝑛 ∈ ℕ ↦ (1 / 𝑛)) ⇝ 0))
265, 25mpbird 165 . . . 4 (⊤ → (𝑛 ∈ ℕ ↦ (1 / (𝑛 + 1))) ⇝ 0)
27 seqex 9853 . . . . 5 seq1( + , 𝐹) ∈ V
2827a1i 9 . . . 4 (⊤ → seq1( + , 𝐹) ∈ V)
2913recnd 7514 . . . . 5 ((⊤ ∧ 𝑘 ∈ ℕ) → (1 / (𝑘 + 1)) ∈ ℂ)
3023, 29eqeltrd 2164 . . . 4 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (1 / (𝑛 + 1)))‘𝑘) ∈ ℂ)
3123oveq2d 5668 . . . . 5 ((⊤ ∧ 𝑘 ∈ ℕ) → (1 − ((𝑛 ∈ ℕ ↦ (1 / (𝑛 + 1)))‘𝑘)) = (1 − (1 / (𝑘 + 1))))
32 elfznn 9466 . . . . . . . . . . . 12 (𝑗 ∈ (1...𝑘) → 𝑗 ∈ ℕ)
3332adantl 271 . . . . . . . . . . 11 (((⊤ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (1...𝑘)) → 𝑗 ∈ ℕ)
3433nncnd 8434 . . . . . . . . . 10 (((⊤ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (1...𝑘)) → 𝑗 ∈ ℂ)
35 peano2cn 7615 . . . . . . . . . 10 (𝑗 ∈ ℂ → (𝑗 + 1) ∈ ℂ)
3634, 35syl 14 . . . . . . . . 9 (((⊤ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (1...𝑘)) → (𝑗 + 1) ∈ ℂ)
37 peano2nn 8432 . . . . . . . . . . . 12 (𝑗 ∈ ℕ → (𝑗 + 1) ∈ ℕ)
3833, 37syl 14 . . . . . . . . . . 11 (((⊤ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (1...𝑘)) → (𝑗 + 1) ∈ ℕ)
3933, 38nnmulcld 8469 . . . . . . . . . 10 (((⊤ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (1...𝑘)) → (𝑗 · (𝑗 + 1)) ∈ ℕ)
4039nncnd 8434 . . . . . . . . 9 (((⊤ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (1...𝑘)) → (𝑗 · (𝑗 + 1)) ∈ ℂ)
4139nnap0d 8466 . . . . . . . . 9 (((⊤ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (1...𝑘)) → (𝑗 · (𝑗 + 1)) # 0)
4236, 34, 40, 41divsubdirapd 8295 . . . . . . . 8 (((⊤ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (1...𝑘)) → (((𝑗 + 1) − 𝑗) / (𝑗 · (𝑗 + 1))) = (((𝑗 + 1) / (𝑗 · (𝑗 + 1))) − (𝑗 / (𝑗 · (𝑗 + 1)))))
43 ax-1cn 7436 . . . . . . . . . 10 1 ∈ ℂ
44 pncan2 7687 . . . . . . . . . 10 ((𝑗 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑗 + 1) − 𝑗) = 1)
4534, 43, 44sylancl 404 . . . . . . . . 9 (((⊤ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (1...𝑘)) → ((𝑗 + 1) − 𝑗) = 1)
4645oveq1d 5667 . . . . . . . 8 (((⊤ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (1...𝑘)) → (((𝑗 + 1) − 𝑗) / (𝑗 · (𝑗 + 1))) = (1 / (𝑗 · (𝑗 + 1))))
4736mulid1d 7503 . . . . . . . . . . 11 (((⊤ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (1...𝑘)) → ((𝑗 + 1) · 1) = (𝑗 + 1))
4836, 34mulcomd 7507 . . . . . . . . . . 11 (((⊤ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (1...𝑘)) → ((𝑗 + 1) · 𝑗) = (𝑗 · (𝑗 + 1)))
4947, 48oveq12d 5670 . . . . . . . . . 10 (((⊤ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (1...𝑘)) → (((𝑗 + 1) · 1) / ((𝑗 + 1) · 𝑗)) = ((𝑗 + 1) / (𝑗 · (𝑗 + 1))))
50 1cnd 7502 . . . . . . . . . . 11 (((⊤ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (1...𝑘)) → 1 ∈ ℂ)
5133nnap0d 8466 . . . . . . . . . . 11 (((⊤ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (1...𝑘)) → 𝑗 # 0)
5238nnap0d 8466 . . . . . . . . . . 11 (((⊤ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (1...𝑘)) → (𝑗 + 1) # 0)
5350, 34, 36, 51, 52divcanap5d 8282 . . . . . . . . . 10 (((⊤ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (1...𝑘)) → (((𝑗 + 1) · 1) / ((𝑗 + 1) · 𝑗)) = (1 / 𝑗))
5449, 53eqtr3d 2122 . . . . . . . . 9 (((⊤ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (1...𝑘)) → ((𝑗 + 1) / (𝑗 · (𝑗 + 1))) = (1 / 𝑗))
5534mulid1d 7503 . . . . . . . . . . 11 (((⊤ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (1...𝑘)) → (𝑗 · 1) = 𝑗)
5655oveq1d 5667 . . . . . . . . . 10 (((⊤ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (1...𝑘)) → ((𝑗 · 1) / (𝑗 · (𝑗 + 1))) = (𝑗 / (𝑗 · (𝑗 + 1))))
5750, 36, 34, 52, 51divcanap5d 8282 . . . . . . . . . 10 (((⊤ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (1...𝑘)) → ((𝑗 · 1) / (𝑗 · (𝑗 + 1))) = (1 / (𝑗 + 1)))
5856, 57eqtr3d 2122 . . . . . . . . 9 (((⊤ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (1...𝑘)) → (𝑗 / (𝑗 · (𝑗 + 1))) = (1 / (𝑗 + 1)))
5954, 58oveq12d 5670 . . . . . . . 8 (((⊤ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (1...𝑘)) → (((𝑗 + 1) / (𝑗 · (𝑗 + 1))) − (𝑗 / (𝑗 · (𝑗 + 1)))) = ((1 / 𝑗) − (1 / (𝑗 + 1))))
6042, 46, 593eqtr3d 2128 . . . . . . 7 (((⊤ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (1...𝑘)) → (1 / (𝑗 · (𝑗 + 1))) = ((1 / 𝑗) − (1 / (𝑗 + 1))))
6160sumeq2dv 10753 . . . . . 6 ((⊤ ∧ 𝑘 ∈ ℕ) → Σ𝑗 ∈ (1...𝑘)(1 / (𝑗 · (𝑗 + 1))) = Σ𝑗 ∈ (1...𝑘)((1 / 𝑗) − (1 / (𝑗 + 1))))
62 oveq2 5660 . . . . . . 7 (𝑛 = 𝑗 → (1 / 𝑛) = (1 / 𝑗))
63 oveq2 5660 . . . . . . 7 (𝑛 = (𝑗 + 1) → (1 / 𝑛) = (1 / (𝑗 + 1)))
64 oveq2 5660 . . . . . . . 8 (𝑛 = 1 → (1 / 𝑛) = (1 / 1))
65 1div1e1 8169 . . . . . . . 8 (1 / 1) = 1
6664, 65syl6eq 2136 . . . . . . 7 (𝑛 = 1 → (1 / 𝑛) = 1)
67 nnz 8767 . . . . . . . 8 (𝑘 ∈ ℕ → 𝑘 ∈ ℤ)
6867adantl 271 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℤ)
6912, 1syl6eleq 2180 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝑘 + 1) ∈ (ℤ‘1))
70 elfznn 9466 . . . . . . . . . 10 (𝑛 ∈ (1...(𝑘 + 1)) → 𝑛 ∈ ℕ)
7170adantl 271 . . . . . . . . 9 (((⊤ ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...(𝑘 + 1))) → 𝑛 ∈ ℕ)
7271nnrecred 8467 . . . . . . . 8 (((⊤ ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...(𝑘 + 1))) → (1 / 𝑛) ∈ ℝ)
7372recnd 7514 . . . . . . 7 (((⊤ ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...(𝑘 + 1))) → (1 / 𝑛) ∈ ℂ)
7462, 63, 66, 14, 68, 69, 73telfsum 10858 . . . . . 6 ((⊤ ∧ 𝑘 ∈ ℕ) → Σ𝑗 ∈ (1...𝑘)((1 / 𝑗) − (1 / (𝑗 + 1))) = (1 − (1 / (𝑘 + 1))))
7561, 74eqtrd 2120 . . . . 5 ((⊤ ∧ 𝑘 ∈ ℕ) → Σ𝑗 ∈ (1...𝑘)(1 / (𝑗 · (𝑗 + 1))) = (1 − (1 / (𝑘 + 1))))
76 elnnuz 9053 . . . . . . . . 9 (𝑗 ∈ ℕ ↔ 𝑗 ∈ (ℤ‘1))
7776biimpri 131 . . . . . . . 8 (𝑗 ∈ (ℤ‘1) → 𝑗 ∈ ℕ)
7877adantl 271 . . . . . . 7 (((⊤ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (ℤ‘1)) → 𝑗 ∈ ℕ)
79 eluzelz 9026 . . . . . . . . . . 11 (𝑗 ∈ (ℤ‘1) → 𝑗 ∈ ℤ)
8079adantl 271 . . . . . . . . . 10 (((⊤ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (ℤ‘1)) → 𝑗 ∈ ℤ)
8180zcnd 8867 . . . . . . . . 9 (((⊤ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (ℤ‘1)) → 𝑗 ∈ ℂ)
8281, 35syl 14 . . . . . . . . 9 (((⊤ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (ℤ‘1)) → (𝑗 + 1) ∈ ℂ)
8381, 82mulcld 7506 . . . . . . . 8 (((⊤ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (ℤ‘1)) → (𝑗 · (𝑗 + 1)) ∈ ℂ)
8478nnap0d 8466 . . . . . . . . 9 (((⊤ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (ℤ‘1)) → 𝑗 # 0)
8578, 37syl 14 . . . . . . . . . 10 (((⊤ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (ℤ‘1)) → (𝑗 + 1) ∈ ℕ)
8685nnap0d 8466 . . . . . . . . 9 (((⊤ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (ℤ‘1)) → (𝑗 + 1) # 0)
8781, 82, 84, 86mulap0d 8125 . . . . . . . 8 (((⊤ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (ℤ‘1)) → (𝑗 · (𝑗 + 1)) # 0)
8883, 87recclapd 8246 . . . . . . 7 (((⊤ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (ℤ‘1)) → (1 / (𝑗 · (𝑗 + 1))) ∈ ℂ)
89 id 19 . . . . . . . . . 10 (𝑛 = 𝑗𝑛 = 𝑗)
90 oveq1 5659 . . . . . . . . . 10 (𝑛 = 𝑗 → (𝑛 + 1) = (𝑗 + 1))
9189, 90oveq12d 5670 . . . . . . . . 9 (𝑛 = 𝑗 → (𝑛 · (𝑛 + 1)) = (𝑗 · (𝑗 + 1)))
9291oveq2d 5668 . . . . . . . 8 (𝑛 = 𝑗 → (1 / (𝑛 · (𝑛 + 1))) = (1 / (𝑗 · (𝑗 + 1))))
93 trireciplem.1 . . . . . . . 8 𝐹 = (𝑛 ∈ ℕ ↦ (1 / (𝑛 · (𝑛 + 1))))
9492, 93fvmptg 5380 . . . . . . 7 ((𝑗 ∈ ℕ ∧ (1 / (𝑗 · (𝑗 + 1))) ∈ ℂ) → (𝐹𝑗) = (1 / (𝑗 · (𝑗 + 1))))
9578, 88, 94syl2anc 403 . . . . . 6 (((⊤ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (ℤ‘1)) → (𝐹𝑗) = (1 / (𝑗 · (𝑗 + 1))))
9618, 1syl6eleq 2180 . . . . . 6 ((⊤ ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ (ℤ‘1))
9795, 96, 88fsum3ser 10787 . . . . 5 ((⊤ ∧ 𝑘 ∈ ℕ) → Σ𝑗 ∈ (1...𝑘)(1 / (𝑗 · (𝑗 + 1))) = (seq1( + , 𝐹)‘𝑘))
9831, 75, 973eqtr2rd 2127 . . . 4 ((⊤ ∧ 𝑘 ∈ ℕ) → (seq1( + , 𝐹)‘𝑘) = (1 − ((𝑛 ∈ ℕ ↦ (1 / (𝑛 + 1)))‘𝑘)))
991, 2, 26, 3, 28, 30, 98climsubc2 10717 . . 3 (⊤ → seq1( + , 𝐹) ⇝ (1 − 0))
10099mptru 1298 . 2 seq1( + , 𝐹) ⇝ (1 − 0)
101 1m0e1 8533 . 2 (1 − 0) = 1
102100, 101breqtri 3868 1 seq1( + , 𝐹) ⇝ 1
Colors of variables: wff set class
Syntax hints:  wa 102   = wceq 1289  wtru 1290  wcel 1438  Vcvv 2619   class class class wbr 3845  cmpt 3899  cfv 5015  (class class class)co 5652  cc 7346  cr 7347  0cc0 7348  1c1 7349   + caddc 7351   · cmul 7353  cmin 7651   / cdiv 8137  cn 8420  cz 8748  cuz 9017  ...cfz 9422  seqcseq 9848  cli 10662  Σcsu 10738
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-coll 3954  ax-sep 3957  ax-nul 3965  ax-pow 4009  ax-pr 4036  ax-un 4260  ax-setind 4353  ax-iinf 4403  ax-cnex 7434  ax-resscn 7435  ax-1cn 7436  ax-1re 7437  ax-icn 7438  ax-addcl 7439  ax-addrcl 7440  ax-mulcl 7441  ax-mulrcl 7442  ax-addcom 7443  ax-mulcom 7444  ax-addass 7445  ax-mulass 7446  ax-distr 7447  ax-i2m1 7448  ax-0lt1 7449  ax-1rid 7450  ax-0id 7451  ax-rnegex 7452  ax-precex 7453  ax-cnre 7454  ax-pre-ltirr 7455  ax-pre-ltwlin 7456  ax-pre-lttrn 7457  ax-pre-apti 7458  ax-pre-ltadd 7459  ax-pre-mulgt0 7460  ax-pre-mulext 7461  ax-arch 7462  ax-caucvg 7463
This theorem depends on definitions:  df-bi 115  df-dc 781  df-3or 925  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-nel 2351  df-ral 2364  df-rex 2365  df-reu 2366  df-rmo 2367  df-rab 2368  df-v 2621  df-sbc 2841  df-csb 2934  df-dif 3001  df-un 3003  df-in 3005  df-ss 3012  df-nul 3287  df-if 3394  df-pw 3431  df-sn 3452  df-pr 3453  df-op 3455  df-uni 3654  df-int 3689  df-iun 3732  df-br 3846  df-opab 3900  df-mpt 3901  df-tr 3937  df-id 4120  df-po 4123  df-iso 4124  df-iord 4193  df-on 4195  df-ilim 4196  df-suc 4198  df-iom 4406  df-xp 4444  df-rel 4445  df-cnv 4446  df-co 4447  df-dm 4448  df-rn 4449  df-res 4450  df-ima 4451  df-iota 4980  df-fun 5017  df-fn 5018  df-f 5019  df-f1 5020  df-fo 5021  df-f1o 5022  df-fv 5023  df-isom 5024  df-riota 5608  df-ov 5655  df-oprab 5656  df-mpt2 5657  df-1st 5911  df-2nd 5912  df-recs 6070  df-irdg 6135  df-frec 6156  df-1o 6181  df-oadd 6185  df-er 6290  df-en 6456  df-dom 6457  df-fin 6458  df-pnf 7522  df-mnf 7523  df-xr 7524  df-ltxr 7525  df-le 7526  df-sub 7653  df-neg 7654  df-reap 8050  df-ap 8057  df-div 8138  df-inn 8421  df-2 8479  df-3 8480  df-4 8481  df-n0 8672  df-z 8749  df-uz 9018  df-q 9103  df-rp 9133  df-fz 9423  df-fzo 9550  df-iseq 9849  df-seq3 9850  df-exp 9951  df-ihash 10180  df-shft 10245  df-cj 10272  df-re 10273  df-im 10274  df-rsqrt 10427  df-abs 10428  df-clim 10663  df-isum 10739
This theorem is referenced by:  trirecip  10891
  Copyright terms: Public domain W3C validator