ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  trireciplem GIF version

Theorem trireciplem 11441
Description: Lemma for trirecip 11442. Show that the sum converges. (Contributed by Scott Fenton, 22-Apr-2014.) (Revised by Mario Carneiro, 22-May-2014.)
Hypothesis
Ref Expression
trireciplem.1 𝐹 = (𝑛 ∈ ℕ ↦ (1 / (𝑛 · (𝑛 + 1))))
Assertion
Ref Expression
trireciplem seq1( + , 𝐹) ⇝ 1

Proof of Theorem trireciplem
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnuz 9501 . . . 4 ℕ = (ℤ‘1)
2 1zzd 9218 . . . 4 (⊤ → 1 ∈ ℤ)
3 1cnd 7915 . . . . . 6 (⊤ → 1 ∈ ℂ)
4 divcnv 11438 . . . . . 6 (1 ∈ ℂ → (𝑛 ∈ ℕ ↦ (1 / 𝑛)) ⇝ 0)
53, 4syl 14 . . . . 5 (⊤ → (𝑛 ∈ ℕ ↦ (1 / 𝑛)) ⇝ 0)
6 nnex 8863 . . . . . . . 8 ℕ ∈ V
76mptex 5711 . . . . . . 7 (𝑛 ∈ ℕ ↦ (1 / (𝑛 + 1))) ∈ V
87a1i 9 . . . . . 6 (⊤ → (𝑛 ∈ ℕ ↦ (1 / (𝑛 + 1))) ∈ V)
96mptex 5711 . . . . . . 7 (𝑛 ∈ ℕ ↦ (1 / 𝑛)) ∈ V
109a1i 9 . . . . . 6 (⊤ → (𝑛 ∈ ℕ ↦ (1 / 𝑛)) ∈ V)
11 peano2nn 8869 . . . . . . . . 9 (𝑘 ∈ ℕ → (𝑘 + 1) ∈ ℕ)
1211adantl 275 . . . . . . . 8 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝑘 + 1) ∈ ℕ)
1312nnrecred 8904 . . . . . . . 8 ((⊤ ∧ 𝑘 ∈ ℕ) → (1 / (𝑘 + 1)) ∈ ℝ)
14 oveq2 5850 . . . . . . . . 9 (𝑛 = (𝑘 + 1) → (1 / 𝑛) = (1 / (𝑘 + 1)))
15 eqid 2165 . . . . . . . . 9 (𝑛 ∈ ℕ ↦ (1 / 𝑛)) = (𝑛 ∈ ℕ ↦ (1 / 𝑛))
1614, 15fvmptg 5562 . . . . . . . 8 (((𝑘 + 1) ∈ ℕ ∧ (1 / (𝑘 + 1)) ∈ ℝ) → ((𝑛 ∈ ℕ ↦ (1 / 𝑛))‘(𝑘 + 1)) = (1 / (𝑘 + 1)))
1712, 13, 16syl2anc 409 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (1 / 𝑛))‘(𝑘 + 1)) = (1 / (𝑘 + 1)))
18 simpr 109 . . . . . . . 8 ((⊤ ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
19 oveq1 5849 . . . . . . . . . 10 (𝑛 = 𝑘 → (𝑛 + 1) = (𝑘 + 1))
2019oveq2d 5858 . . . . . . . . 9 (𝑛 = 𝑘 → (1 / (𝑛 + 1)) = (1 / (𝑘 + 1)))
21 eqid 2165 . . . . . . . . 9 (𝑛 ∈ ℕ ↦ (1 / (𝑛 + 1))) = (𝑛 ∈ ℕ ↦ (1 / (𝑛 + 1)))
2220, 21fvmptg 5562 . . . . . . . 8 ((𝑘 ∈ ℕ ∧ (1 / (𝑘 + 1)) ∈ ℝ) → ((𝑛 ∈ ℕ ↦ (1 / (𝑛 + 1)))‘𝑘) = (1 / (𝑘 + 1)))
2318, 13, 22syl2anc 409 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (1 / (𝑛 + 1)))‘𝑘) = (1 / (𝑘 + 1)))
2417, 23eqtr4d 2201 . . . . . 6 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (1 / 𝑛))‘(𝑘 + 1)) = ((𝑛 ∈ ℕ ↦ (1 / (𝑛 + 1)))‘𝑘))
251, 2, 2, 8, 10, 24climshft2 11247 . . . . 5 (⊤ → ((𝑛 ∈ ℕ ↦ (1 / (𝑛 + 1))) ⇝ 0 ↔ (𝑛 ∈ ℕ ↦ (1 / 𝑛)) ⇝ 0))
265, 25mpbird 166 . . . 4 (⊤ → (𝑛 ∈ ℕ ↦ (1 / (𝑛 + 1))) ⇝ 0)
27 seqex 10382 . . . . 5 seq1( + , 𝐹) ∈ V
2827a1i 9 . . . 4 (⊤ → seq1( + , 𝐹) ∈ V)
2913recnd 7927 . . . . 5 ((⊤ ∧ 𝑘 ∈ ℕ) → (1 / (𝑘 + 1)) ∈ ℂ)
3023, 29eqeltrd 2243 . . . 4 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (1 / (𝑛 + 1)))‘𝑘) ∈ ℂ)
3123oveq2d 5858 . . . . 5 ((⊤ ∧ 𝑘 ∈ ℕ) → (1 − ((𝑛 ∈ ℕ ↦ (1 / (𝑛 + 1)))‘𝑘)) = (1 − (1 / (𝑘 + 1))))
32 elfznn 9989 . . . . . . . . . . . 12 (𝑗 ∈ (1...𝑘) → 𝑗 ∈ ℕ)
3332adantl 275 . . . . . . . . . . 11 (((⊤ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (1...𝑘)) → 𝑗 ∈ ℕ)
3433nncnd 8871 . . . . . . . . . 10 (((⊤ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (1...𝑘)) → 𝑗 ∈ ℂ)
35 peano2cn 8033 . . . . . . . . . 10 (𝑗 ∈ ℂ → (𝑗 + 1) ∈ ℂ)
3634, 35syl 14 . . . . . . . . 9 (((⊤ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (1...𝑘)) → (𝑗 + 1) ∈ ℂ)
37 peano2nn 8869 . . . . . . . . . . . 12 (𝑗 ∈ ℕ → (𝑗 + 1) ∈ ℕ)
3833, 37syl 14 . . . . . . . . . . 11 (((⊤ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (1...𝑘)) → (𝑗 + 1) ∈ ℕ)
3933, 38nnmulcld 8906 . . . . . . . . . 10 (((⊤ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (1...𝑘)) → (𝑗 · (𝑗 + 1)) ∈ ℕ)
4039nncnd 8871 . . . . . . . . 9 (((⊤ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (1...𝑘)) → (𝑗 · (𝑗 + 1)) ∈ ℂ)
4139nnap0d 8903 . . . . . . . . 9 (((⊤ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (1...𝑘)) → (𝑗 · (𝑗 + 1)) # 0)
4236, 34, 40, 41divsubdirapd 8726 . . . . . . . 8 (((⊤ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (1...𝑘)) → (((𝑗 + 1) − 𝑗) / (𝑗 · (𝑗 + 1))) = (((𝑗 + 1) / (𝑗 · (𝑗 + 1))) − (𝑗 / (𝑗 · (𝑗 + 1)))))
43 ax-1cn 7846 . . . . . . . . . 10 1 ∈ ℂ
44 pncan2 8105 . . . . . . . . . 10 ((𝑗 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑗 + 1) − 𝑗) = 1)
4534, 43, 44sylancl 410 . . . . . . . . 9 (((⊤ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (1...𝑘)) → ((𝑗 + 1) − 𝑗) = 1)
4645oveq1d 5857 . . . . . . . 8 (((⊤ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (1...𝑘)) → (((𝑗 + 1) − 𝑗) / (𝑗 · (𝑗 + 1))) = (1 / (𝑗 · (𝑗 + 1))))
4736mulid1d 7916 . . . . . . . . . . 11 (((⊤ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (1...𝑘)) → ((𝑗 + 1) · 1) = (𝑗 + 1))
4836, 34mulcomd 7920 . . . . . . . . . . 11 (((⊤ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (1...𝑘)) → ((𝑗 + 1) · 𝑗) = (𝑗 · (𝑗 + 1)))
4947, 48oveq12d 5860 . . . . . . . . . 10 (((⊤ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (1...𝑘)) → (((𝑗 + 1) · 1) / ((𝑗 + 1) · 𝑗)) = ((𝑗 + 1) / (𝑗 · (𝑗 + 1))))
50 1cnd 7915 . . . . . . . . . . 11 (((⊤ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (1...𝑘)) → 1 ∈ ℂ)
5133nnap0d 8903 . . . . . . . . . . 11 (((⊤ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (1...𝑘)) → 𝑗 # 0)
5238nnap0d 8903 . . . . . . . . . . 11 (((⊤ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (1...𝑘)) → (𝑗 + 1) # 0)
5350, 34, 36, 51, 52divcanap5d 8713 . . . . . . . . . 10 (((⊤ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (1...𝑘)) → (((𝑗 + 1) · 1) / ((𝑗 + 1) · 𝑗)) = (1 / 𝑗))
5449, 53eqtr3d 2200 . . . . . . . . 9 (((⊤ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (1...𝑘)) → ((𝑗 + 1) / (𝑗 · (𝑗 + 1))) = (1 / 𝑗))
5534mulid1d 7916 . . . . . . . . . . 11 (((⊤ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (1...𝑘)) → (𝑗 · 1) = 𝑗)
5655oveq1d 5857 . . . . . . . . . 10 (((⊤ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (1...𝑘)) → ((𝑗 · 1) / (𝑗 · (𝑗 + 1))) = (𝑗 / (𝑗 · (𝑗 + 1))))
5750, 36, 34, 52, 51divcanap5d 8713 . . . . . . . . . 10 (((⊤ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (1...𝑘)) → ((𝑗 · 1) / (𝑗 · (𝑗 + 1))) = (1 / (𝑗 + 1)))
5856, 57eqtr3d 2200 . . . . . . . . 9 (((⊤ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (1...𝑘)) → (𝑗 / (𝑗 · (𝑗 + 1))) = (1 / (𝑗 + 1)))
5954, 58oveq12d 5860 . . . . . . . 8 (((⊤ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (1...𝑘)) → (((𝑗 + 1) / (𝑗 · (𝑗 + 1))) − (𝑗 / (𝑗 · (𝑗 + 1)))) = ((1 / 𝑗) − (1 / (𝑗 + 1))))
6042, 46, 593eqtr3d 2206 . . . . . . 7 (((⊤ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (1...𝑘)) → (1 / (𝑗 · (𝑗 + 1))) = ((1 / 𝑗) − (1 / (𝑗 + 1))))
6160sumeq2dv 11309 . . . . . 6 ((⊤ ∧ 𝑘 ∈ ℕ) → Σ𝑗 ∈ (1...𝑘)(1 / (𝑗 · (𝑗 + 1))) = Σ𝑗 ∈ (1...𝑘)((1 / 𝑗) − (1 / (𝑗 + 1))))
62 oveq2 5850 . . . . . . 7 (𝑛 = 𝑗 → (1 / 𝑛) = (1 / 𝑗))
63 oveq2 5850 . . . . . . 7 (𝑛 = (𝑗 + 1) → (1 / 𝑛) = (1 / (𝑗 + 1)))
64 oveq2 5850 . . . . . . . 8 (𝑛 = 1 → (1 / 𝑛) = (1 / 1))
65 1div1e1 8600 . . . . . . . 8 (1 / 1) = 1
6664, 65eqtrdi 2215 . . . . . . 7 (𝑛 = 1 → (1 / 𝑛) = 1)
67 nnz 9210 . . . . . . . 8 (𝑘 ∈ ℕ → 𝑘 ∈ ℤ)
6867adantl 275 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℤ)
6912, 1eleqtrdi 2259 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝑘 + 1) ∈ (ℤ‘1))
70 elfznn 9989 . . . . . . . . . 10 (𝑛 ∈ (1...(𝑘 + 1)) → 𝑛 ∈ ℕ)
7170adantl 275 . . . . . . . . 9 (((⊤ ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...(𝑘 + 1))) → 𝑛 ∈ ℕ)
7271nnrecred 8904 . . . . . . . 8 (((⊤ ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...(𝑘 + 1))) → (1 / 𝑛) ∈ ℝ)
7372recnd 7927 . . . . . . 7 (((⊤ ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...(𝑘 + 1))) → (1 / 𝑛) ∈ ℂ)
7462, 63, 66, 14, 68, 69, 73telfsum 11409 . . . . . 6 ((⊤ ∧ 𝑘 ∈ ℕ) → Σ𝑗 ∈ (1...𝑘)((1 / 𝑗) − (1 / (𝑗 + 1))) = (1 − (1 / (𝑘 + 1))))
7561, 74eqtrd 2198 . . . . 5 ((⊤ ∧ 𝑘 ∈ ℕ) → Σ𝑗 ∈ (1...𝑘)(1 / (𝑗 · (𝑗 + 1))) = (1 − (1 / (𝑘 + 1))))
76 elnnuz 9502 . . . . . . . . 9 (𝑗 ∈ ℕ ↔ 𝑗 ∈ (ℤ‘1))
7776biimpri 132 . . . . . . . 8 (𝑗 ∈ (ℤ‘1) → 𝑗 ∈ ℕ)
7877adantl 275 . . . . . . 7 (((⊤ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (ℤ‘1)) → 𝑗 ∈ ℕ)
79 eluzelz 9475 . . . . . . . . . . 11 (𝑗 ∈ (ℤ‘1) → 𝑗 ∈ ℤ)
8079adantl 275 . . . . . . . . . 10 (((⊤ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (ℤ‘1)) → 𝑗 ∈ ℤ)
8180zcnd 9314 . . . . . . . . 9 (((⊤ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (ℤ‘1)) → 𝑗 ∈ ℂ)
8281, 35syl 14 . . . . . . . . 9 (((⊤ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (ℤ‘1)) → (𝑗 + 1) ∈ ℂ)
8381, 82mulcld 7919 . . . . . . . 8 (((⊤ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (ℤ‘1)) → (𝑗 · (𝑗 + 1)) ∈ ℂ)
8478nnap0d 8903 . . . . . . . . 9 (((⊤ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (ℤ‘1)) → 𝑗 # 0)
8578, 37syl 14 . . . . . . . . . 10 (((⊤ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (ℤ‘1)) → (𝑗 + 1) ∈ ℕ)
8685nnap0d 8903 . . . . . . . . 9 (((⊤ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (ℤ‘1)) → (𝑗 + 1) # 0)
8781, 82, 84, 86mulap0d 8555 . . . . . . . 8 (((⊤ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (ℤ‘1)) → (𝑗 · (𝑗 + 1)) # 0)
8883, 87recclapd 8677 . . . . . . 7 (((⊤ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (ℤ‘1)) → (1 / (𝑗 · (𝑗 + 1))) ∈ ℂ)
89 id 19 . . . . . . . . . 10 (𝑛 = 𝑗𝑛 = 𝑗)
90 oveq1 5849 . . . . . . . . . 10 (𝑛 = 𝑗 → (𝑛 + 1) = (𝑗 + 1))
9189, 90oveq12d 5860 . . . . . . . . 9 (𝑛 = 𝑗 → (𝑛 · (𝑛 + 1)) = (𝑗 · (𝑗 + 1)))
9291oveq2d 5858 . . . . . . . 8 (𝑛 = 𝑗 → (1 / (𝑛 · (𝑛 + 1))) = (1 / (𝑗 · (𝑗 + 1))))
93 trireciplem.1 . . . . . . . 8 𝐹 = (𝑛 ∈ ℕ ↦ (1 / (𝑛 · (𝑛 + 1))))
9492, 93fvmptg 5562 . . . . . . 7 ((𝑗 ∈ ℕ ∧ (1 / (𝑗 · (𝑗 + 1))) ∈ ℂ) → (𝐹𝑗) = (1 / (𝑗 · (𝑗 + 1))))
9578, 88, 94syl2anc 409 . . . . . 6 (((⊤ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (ℤ‘1)) → (𝐹𝑗) = (1 / (𝑗 · (𝑗 + 1))))
9618, 1eleqtrdi 2259 . . . . . 6 ((⊤ ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ (ℤ‘1))
9795, 96, 88fsum3ser 11338 . . . . 5 ((⊤ ∧ 𝑘 ∈ ℕ) → Σ𝑗 ∈ (1...𝑘)(1 / (𝑗 · (𝑗 + 1))) = (seq1( + , 𝐹)‘𝑘))
9831, 75, 973eqtr2rd 2205 . . . 4 ((⊤ ∧ 𝑘 ∈ ℕ) → (seq1( + , 𝐹)‘𝑘) = (1 − ((𝑛 ∈ ℕ ↦ (1 / (𝑛 + 1)))‘𝑘)))
991, 2, 26, 3, 28, 30, 98climsubc2 11274 . . 3 (⊤ → seq1( + , 𝐹) ⇝ (1 − 0))
10099mptru 1352 . 2 seq1( + , 𝐹) ⇝ (1 − 0)
101 1m0e1 8970 . 2 (1 − 0) = 1
102100, 101breqtri 4007 1 seq1( + , 𝐹) ⇝ 1
Colors of variables: wff set class
Syntax hints:  wa 103   = wceq 1343  wtru 1344  wcel 2136  Vcvv 2726   class class class wbr 3982  cmpt 4043  cfv 5188  (class class class)co 5842  cc 7751  cr 7752  0cc0 7753  1c1 7754   + caddc 7756   · cmul 7758  cmin 8069   / cdiv 8568  cn 8857  cz 9191  cuz 9466  ...cfz 9944  seqcseq 10380  cli 11219  Σcsu 11294
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872  ax-caucvg 7873
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-isom 5197  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-frec 6359  df-1o 6384  df-oadd 6388  df-er 6501  df-en 6707  df-dom 6708  df-fin 6709  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-n0 9115  df-z 9192  df-uz 9467  df-q 9558  df-rp 9590  df-fz 9945  df-fzo 10078  df-seqfrec 10381  df-exp 10455  df-ihash 10689  df-shft 10757  df-cj 10784  df-re 10785  df-im 10786  df-rsqrt 10940  df-abs 10941  df-clim 11220  df-sumdc 11295
This theorem is referenced by:  trirecip  11442
  Copyright terms: Public domain W3C validator