ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  trireciplem GIF version

Theorem trireciplem 11682
Description: Lemma for trirecip 11683. Show that the sum converges. (Contributed by Scott Fenton, 22-Apr-2014.) (Revised by Mario Carneiro, 22-May-2014.)
Hypothesis
Ref Expression
trireciplem.1 𝐹 = (𝑛 ∈ ℕ ↦ (1 / (𝑛 · (𝑛 + 1))))
Assertion
Ref Expression
trireciplem seq1( + , 𝐹) ⇝ 1

Proof of Theorem trireciplem
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnuz 9654 . . . 4 ℕ = (ℤ‘1)
2 1zzd 9370 . . . 4 (⊤ → 1 ∈ ℤ)
3 1cnd 8059 . . . . . 6 (⊤ → 1 ∈ ℂ)
4 divcnv 11679 . . . . . 6 (1 ∈ ℂ → (𝑛 ∈ ℕ ↦ (1 / 𝑛)) ⇝ 0)
53, 4syl 14 . . . . 5 (⊤ → (𝑛 ∈ ℕ ↦ (1 / 𝑛)) ⇝ 0)
6 nnex 9013 . . . . . . . 8 ℕ ∈ V
76mptex 5791 . . . . . . 7 (𝑛 ∈ ℕ ↦ (1 / (𝑛 + 1))) ∈ V
87a1i 9 . . . . . 6 (⊤ → (𝑛 ∈ ℕ ↦ (1 / (𝑛 + 1))) ∈ V)
96mptex 5791 . . . . . . 7 (𝑛 ∈ ℕ ↦ (1 / 𝑛)) ∈ V
109a1i 9 . . . . . 6 (⊤ → (𝑛 ∈ ℕ ↦ (1 / 𝑛)) ∈ V)
11 peano2nn 9019 . . . . . . . . 9 (𝑘 ∈ ℕ → (𝑘 + 1) ∈ ℕ)
1211adantl 277 . . . . . . . 8 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝑘 + 1) ∈ ℕ)
1312nnrecred 9054 . . . . . . . 8 ((⊤ ∧ 𝑘 ∈ ℕ) → (1 / (𝑘 + 1)) ∈ ℝ)
14 oveq2 5933 . . . . . . . . 9 (𝑛 = (𝑘 + 1) → (1 / 𝑛) = (1 / (𝑘 + 1)))
15 eqid 2196 . . . . . . . . 9 (𝑛 ∈ ℕ ↦ (1 / 𝑛)) = (𝑛 ∈ ℕ ↦ (1 / 𝑛))
1614, 15fvmptg 5640 . . . . . . . 8 (((𝑘 + 1) ∈ ℕ ∧ (1 / (𝑘 + 1)) ∈ ℝ) → ((𝑛 ∈ ℕ ↦ (1 / 𝑛))‘(𝑘 + 1)) = (1 / (𝑘 + 1)))
1712, 13, 16syl2anc 411 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (1 / 𝑛))‘(𝑘 + 1)) = (1 / (𝑘 + 1)))
18 simpr 110 . . . . . . . 8 ((⊤ ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
19 oveq1 5932 . . . . . . . . . 10 (𝑛 = 𝑘 → (𝑛 + 1) = (𝑘 + 1))
2019oveq2d 5941 . . . . . . . . 9 (𝑛 = 𝑘 → (1 / (𝑛 + 1)) = (1 / (𝑘 + 1)))
21 eqid 2196 . . . . . . . . 9 (𝑛 ∈ ℕ ↦ (1 / (𝑛 + 1))) = (𝑛 ∈ ℕ ↦ (1 / (𝑛 + 1)))
2220, 21fvmptg 5640 . . . . . . . 8 ((𝑘 ∈ ℕ ∧ (1 / (𝑘 + 1)) ∈ ℝ) → ((𝑛 ∈ ℕ ↦ (1 / (𝑛 + 1)))‘𝑘) = (1 / (𝑘 + 1)))
2318, 13, 22syl2anc 411 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (1 / (𝑛 + 1)))‘𝑘) = (1 / (𝑘 + 1)))
2417, 23eqtr4d 2232 . . . . . 6 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (1 / 𝑛))‘(𝑘 + 1)) = ((𝑛 ∈ ℕ ↦ (1 / (𝑛 + 1)))‘𝑘))
251, 2, 2, 8, 10, 24climshft2 11488 . . . . 5 (⊤ → ((𝑛 ∈ ℕ ↦ (1 / (𝑛 + 1))) ⇝ 0 ↔ (𝑛 ∈ ℕ ↦ (1 / 𝑛)) ⇝ 0))
265, 25mpbird 167 . . . 4 (⊤ → (𝑛 ∈ ℕ ↦ (1 / (𝑛 + 1))) ⇝ 0)
27 seqex 10558 . . . . 5 seq1( + , 𝐹) ∈ V
2827a1i 9 . . . 4 (⊤ → seq1( + , 𝐹) ∈ V)
2913recnd 8072 . . . . 5 ((⊤ ∧ 𝑘 ∈ ℕ) → (1 / (𝑘 + 1)) ∈ ℂ)
3023, 29eqeltrd 2273 . . . 4 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (1 / (𝑛 + 1)))‘𝑘) ∈ ℂ)
3123oveq2d 5941 . . . . 5 ((⊤ ∧ 𝑘 ∈ ℕ) → (1 − ((𝑛 ∈ ℕ ↦ (1 / (𝑛 + 1)))‘𝑘)) = (1 − (1 / (𝑘 + 1))))
32 elfznn 10146 . . . . . . . . . . . 12 (𝑗 ∈ (1...𝑘) → 𝑗 ∈ ℕ)
3332adantl 277 . . . . . . . . . . 11 (((⊤ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (1...𝑘)) → 𝑗 ∈ ℕ)
3433nncnd 9021 . . . . . . . . . 10 (((⊤ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (1...𝑘)) → 𝑗 ∈ ℂ)
35 peano2cn 8178 . . . . . . . . . 10 (𝑗 ∈ ℂ → (𝑗 + 1) ∈ ℂ)
3634, 35syl 14 . . . . . . . . 9 (((⊤ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (1...𝑘)) → (𝑗 + 1) ∈ ℂ)
37 peano2nn 9019 . . . . . . . . . . . 12 (𝑗 ∈ ℕ → (𝑗 + 1) ∈ ℕ)
3833, 37syl 14 . . . . . . . . . . 11 (((⊤ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (1...𝑘)) → (𝑗 + 1) ∈ ℕ)
3933, 38nnmulcld 9056 . . . . . . . . . 10 (((⊤ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (1...𝑘)) → (𝑗 · (𝑗 + 1)) ∈ ℕ)
4039nncnd 9021 . . . . . . . . 9 (((⊤ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (1...𝑘)) → (𝑗 · (𝑗 + 1)) ∈ ℂ)
4139nnap0d 9053 . . . . . . . . 9 (((⊤ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (1...𝑘)) → (𝑗 · (𝑗 + 1)) # 0)
4236, 34, 40, 41divsubdirapd 8874 . . . . . . . 8 (((⊤ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (1...𝑘)) → (((𝑗 + 1) − 𝑗) / (𝑗 · (𝑗 + 1))) = (((𝑗 + 1) / (𝑗 · (𝑗 + 1))) − (𝑗 / (𝑗 · (𝑗 + 1)))))
43 ax-1cn 7989 . . . . . . . . . 10 1 ∈ ℂ
44 pncan2 8250 . . . . . . . . . 10 ((𝑗 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑗 + 1) − 𝑗) = 1)
4534, 43, 44sylancl 413 . . . . . . . . 9 (((⊤ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (1...𝑘)) → ((𝑗 + 1) − 𝑗) = 1)
4645oveq1d 5940 . . . . . . . 8 (((⊤ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (1...𝑘)) → (((𝑗 + 1) − 𝑗) / (𝑗 · (𝑗 + 1))) = (1 / (𝑗 · (𝑗 + 1))))
4736mulridd 8060 . . . . . . . . . . 11 (((⊤ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (1...𝑘)) → ((𝑗 + 1) · 1) = (𝑗 + 1))
4836, 34mulcomd 8065 . . . . . . . . . . 11 (((⊤ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (1...𝑘)) → ((𝑗 + 1) · 𝑗) = (𝑗 · (𝑗 + 1)))
4947, 48oveq12d 5943 . . . . . . . . . 10 (((⊤ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (1...𝑘)) → (((𝑗 + 1) · 1) / ((𝑗 + 1) · 𝑗)) = ((𝑗 + 1) / (𝑗 · (𝑗 + 1))))
50 1cnd 8059 . . . . . . . . . . 11 (((⊤ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (1...𝑘)) → 1 ∈ ℂ)
5133nnap0d 9053 . . . . . . . . . . 11 (((⊤ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (1...𝑘)) → 𝑗 # 0)
5238nnap0d 9053 . . . . . . . . . . 11 (((⊤ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (1...𝑘)) → (𝑗 + 1) # 0)
5350, 34, 36, 51, 52divcanap5d 8861 . . . . . . . . . 10 (((⊤ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (1...𝑘)) → (((𝑗 + 1) · 1) / ((𝑗 + 1) · 𝑗)) = (1 / 𝑗))
5449, 53eqtr3d 2231 . . . . . . . . 9 (((⊤ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (1...𝑘)) → ((𝑗 + 1) / (𝑗 · (𝑗 + 1))) = (1 / 𝑗))
5534mulridd 8060 . . . . . . . . . . 11 (((⊤ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (1...𝑘)) → (𝑗 · 1) = 𝑗)
5655oveq1d 5940 . . . . . . . . . 10 (((⊤ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (1...𝑘)) → ((𝑗 · 1) / (𝑗 · (𝑗 + 1))) = (𝑗 / (𝑗 · (𝑗 + 1))))
5750, 36, 34, 52, 51divcanap5d 8861 . . . . . . . . . 10 (((⊤ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (1...𝑘)) → ((𝑗 · 1) / (𝑗 · (𝑗 + 1))) = (1 / (𝑗 + 1)))
5856, 57eqtr3d 2231 . . . . . . . . 9 (((⊤ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (1...𝑘)) → (𝑗 / (𝑗 · (𝑗 + 1))) = (1 / (𝑗 + 1)))
5954, 58oveq12d 5943 . . . . . . . 8 (((⊤ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (1...𝑘)) → (((𝑗 + 1) / (𝑗 · (𝑗 + 1))) − (𝑗 / (𝑗 · (𝑗 + 1)))) = ((1 / 𝑗) − (1 / (𝑗 + 1))))
6042, 46, 593eqtr3d 2237 . . . . . . 7 (((⊤ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (1...𝑘)) → (1 / (𝑗 · (𝑗 + 1))) = ((1 / 𝑗) − (1 / (𝑗 + 1))))
6160sumeq2dv 11550 . . . . . 6 ((⊤ ∧ 𝑘 ∈ ℕ) → Σ𝑗 ∈ (1...𝑘)(1 / (𝑗 · (𝑗 + 1))) = Σ𝑗 ∈ (1...𝑘)((1 / 𝑗) − (1 / (𝑗 + 1))))
62 oveq2 5933 . . . . . . 7 (𝑛 = 𝑗 → (1 / 𝑛) = (1 / 𝑗))
63 oveq2 5933 . . . . . . 7 (𝑛 = (𝑗 + 1) → (1 / 𝑛) = (1 / (𝑗 + 1)))
64 oveq2 5933 . . . . . . . 8 (𝑛 = 1 → (1 / 𝑛) = (1 / 1))
65 1div1e1 8748 . . . . . . . 8 (1 / 1) = 1
6664, 65eqtrdi 2245 . . . . . . 7 (𝑛 = 1 → (1 / 𝑛) = 1)
67 nnz 9362 . . . . . . . 8 (𝑘 ∈ ℕ → 𝑘 ∈ ℤ)
6867adantl 277 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℤ)
6912, 1eleqtrdi 2289 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝑘 + 1) ∈ (ℤ‘1))
70 elfznn 10146 . . . . . . . . . 10 (𝑛 ∈ (1...(𝑘 + 1)) → 𝑛 ∈ ℕ)
7170adantl 277 . . . . . . . . 9 (((⊤ ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...(𝑘 + 1))) → 𝑛 ∈ ℕ)
7271nnrecred 9054 . . . . . . . 8 (((⊤ ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...(𝑘 + 1))) → (1 / 𝑛) ∈ ℝ)
7372recnd 8072 . . . . . . 7 (((⊤ ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ (1...(𝑘 + 1))) → (1 / 𝑛) ∈ ℂ)
7462, 63, 66, 14, 68, 69, 73telfsum 11650 . . . . . 6 ((⊤ ∧ 𝑘 ∈ ℕ) → Σ𝑗 ∈ (1...𝑘)((1 / 𝑗) − (1 / (𝑗 + 1))) = (1 − (1 / (𝑘 + 1))))
7561, 74eqtrd 2229 . . . . 5 ((⊤ ∧ 𝑘 ∈ ℕ) → Σ𝑗 ∈ (1...𝑘)(1 / (𝑗 · (𝑗 + 1))) = (1 − (1 / (𝑘 + 1))))
76 elnnuz 9655 . . . . . . . . 9 (𝑗 ∈ ℕ ↔ 𝑗 ∈ (ℤ‘1))
7776biimpri 133 . . . . . . . 8 (𝑗 ∈ (ℤ‘1) → 𝑗 ∈ ℕ)
7877adantl 277 . . . . . . 7 (((⊤ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (ℤ‘1)) → 𝑗 ∈ ℕ)
79 eluzelz 9627 . . . . . . . . . . 11 (𝑗 ∈ (ℤ‘1) → 𝑗 ∈ ℤ)
8079adantl 277 . . . . . . . . . 10 (((⊤ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (ℤ‘1)) → 𝑗 ∈ ℤ)
8180zcnd 9466 . . . . . . . . 9 (((⊤ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (ℤ‘1)) → 𝑗 ∈ ℂ)
8281, 35syl 14 . . . . . . . . 9 (((⊤ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (ℤ‘1)) → (𝑗 + 1) ∈ ℂ)
8381, 82mulcld 8064 . . . . . . . 8 (((⊤ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (ℤ‘1)) → (𝑗 · (𝑗 + 1)) ∈ ℂ)
8478nnap0d 9053 . . . . . . . . 9 (((⊤ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (ℤ‘1)) → 𝑗 # 0)
8578, 37syl 14 . . . . . . . . . 10 (((⊤ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (ℤ‘1)) → (𝑗 + 1) ∈ ℕ)
8685nnap0d 9053 . . . . . . . . 9 (((⊤ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (ℤ‘1)) → (𝑗 + 1) # 0)
8781, 82, 84, 86mulap0d 8702 . . . . . . . 8 (((⊤ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (ℤ‘1)) → (𝑗 · (𝑗 + 1)) # 0)
8883, 87recclapd 8825 . . . . . . 7 (((⊤ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (ℤ‘1)) → (1 / (𝑗 · (𝑗 + 1))) ∈ ℂ)
89 id 19 . . . . . . . . . 10 (𝑛 = 𝑗𝑛 = 𝑗)
90 oveq1 5932 . . . . . . . . . 10 (𝑛 = 𝑗 → (𝑛 + 1) = (𝑗 + 1))
9189, 90oveq12d 5943 . . . . . . . . 9 (𝑛 = 𝑗 → (𝑛 · (𝑛 + 1)) = (𝑗 · (𝑗 + 1)))
9291oveq2d 5941 . . . . . . . 8 (𝑛 = 𝑗 → (1 / (𝑛 · (𝑛 + 1))) = (1 / (𝑗 · (𝑗 + 1))))
93 trireciplem.1 . . . . . . . 8 𝐹 = (𝑛 ∈ ℕ ↦ (1 / (𝑛 · (𝑛 + 1))))
9492, 93fvmptg 5640 . . . . . . 7 ((𝑗 ∈ ℕ ∧ (1 / (𝑗 · (𝑗 + 1))) ∈ ℂ) → (𝐹𝑗) = (1 / (𝑗 · (𝑗 + 1))))
9578, 88, 94syl2anc 411 . . . . . 6 (((⊤ ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (ℤ‘1)) → (𝐹𝑗) = (1 / (𝑗 · (𝑗 + 1))))
9618, 1eleqtrdi 2289 . . . . . 6 ((⊤ ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ (ℤ‘1))
9795, 96, 88fsum3ser 11579 . . . . 5 ((⊤ ∧ 𝑘 ∈ ℕ) → Σ𝑗 ∈ (1...𝑘)(1 / (𝑗 · (𝑗 + 1))) = (seq1( + , 𝐹)‘𝑘))
9831, 75, 973eqtr2rd 2236 . . . 4 ((⊤ ∧ 𝑘 ∈ ℕ) → (seq1( + , 𝐹)‘𝑘) = (1 − ((𝑛 ∈ ℕ ↦ (1 / (𝑛 + 1)))‘𝑘)))
991, 2, 26, 3, 28, 30, 98climsubc2 11515 . . 3 (⊤ → seq1( + , 𝐹) ⇝ (1 − 0))
10099mptru 1373 . 2 seq1( + , 𝐹) ⇝ (1 − 0)
101 1m0e1 9120 . 2 (1 − 0) = 1
102100, 101breqtri 4059 1 seq1( + , 𝐹) ⇝ 1
Colors of variables: wff set class
Syntax hints:  wa 104   = wceq 1364  wtru 1365  wcel 2167  Vcvv 2763   class class class wbr 4034  cmpt 4095  cfv 5259  (class class class)co 5925  cc 7894  cr 7895  0cc0 7896  1c1 7897   + caddc 7899   · cmul 7901  cmin 8214   / cdiv 8716  cn 9007  cz 9343  cuz 9618  ...cfz 10100  seqcseq 10556  cli 11460  Σcsu 11535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014  ax-arch 8015  ax-caucvg 8016
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-isom 5268  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-irdg 6437  df-frec 6458  df-1o 6483  df-oadd 6487  df-er 6601  df-en 6809  df-dom 6810  df-fin 6811  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-inn 9008  df-2 9066  df-3 9067  df-4 9068  df-n0 9267  df-z 9344  df-uz 9619  df-q 9711  df-rp 9746  df-fz 10101  df-fzo 10235  df-seqfrec 10557  df-exp 10648  df-ihash 10885  df-shft 10997  df-cj 11024  df-re 11025  df-im 11026  df-rsqrt 11180  df-abs 11181  df-clim 11461  df-sumdc 11536
This theorem is referenced by:  trirecip  11683
  Copyright terms: Public domain W3C validator