| Step | Hyp | Ref
 | Expression | 
| 1 |   | nnuz 9637 | 
. . . 4
⊢ ℕ =
(ℤ≥‘1) | 
| 2 |   | 1zzd 9353 | 
. . . 4
⊢ (⊤
→ 1 ∈ ℤ) | 
| 3 |   | 1cnd 8042 | 
. . . . . 6
⊢ (⊤
→ 1 ∈ ℂ) | 
| 4 |   | divcnv 11662 | 
. . . . . 6
⊢ (1 ∈
ℂ → (𝑛 ∈
ℕ ↦ (1 / 𝑛))
⇝ 0) | 
| 5 | 3, 4 | syl 14 | 
. . . . 5
⊢ (⊤
→ (𝑛 ∈ ℕ
↦ (1 / 𝑛)) ⇝
0) | 
| 6 |   | nnex 8996 | 
. . . . . . . 8
⊢ ℕ
∈ V | 
| 7 | 6 | mptex 5788 | 
. . . . . . 7
⊢ (𝑛 ∈ ℕ ↦ (1 /
(𝑛 + 1))) ∈
V | 
| 8 | 7 | a1i 9 | 
. . . . . 6
⊢ (⊤
→ (𝑛 ∈ ℕ
↦ (1 / (𝑛 + 1)))
∈ V) | 
| 9 | 6 | mptex 5788 | 
. . . . . . 7
⊢ (𝑛 ∈ ℕ ↦ (1 /
𝑛)) ∈
V | 
| 10 | 9 | a1i 9 | 
. . . . . 6
⊢ (⊤
→ (𝑛 ∈ ℕ
↦ (1 / 𝑛)) ∈
V) | 
| 11 |   | peano2nn 9002 | 
. . . . . . . . 9
⊢ (𝑘 ∈ ℕ → (𝑘 + 1) ∈
ℕ) | 
| 12 | 11 | adantl 277 | 
. . . . . . . 8
⊢
((⊤ ∧ 𝑘
∈ ℕ) → (𝑘 +
1) ∈ ℕ) | 
| 13 | 12 | nnrecred 9037 | 
. . . . . . . 8
⊢
((⊤ ∧ 𝑘
∈ ℕ) → (1 / (𝑘 + 1)) ∈ ℝ) | 
| 14 |   | oveq2 5930 | 
. . . . . . . . 9
⊢ (𝑛 = (𝑘 + 1) → (1 / 𝑛) = (1 / (𝑘 + 1))) | 
| 15 |   | eqid 2196 | 
. . . . . . . . 9
⊢ (𝑛 ∈ ℕ ↦ (1 /
𝑛)) = (𝑛 ∈ ℕ ↦ (1 / 𝑛)) | 
| 16 | 14, 15 | fvmptg 5637 | 
. . . . . . . 8
⊢ (((𝑘 + 1) ∈ ℕ ∧ (1 /
(𝑘 + 1)) ∈ ℝ)
→ ((𝑛 ∈ ℕ
↦ (1 / 𝑛))‘(𝑘 + 1)) = (1 / (𝑘 + 1))) | 
| 17 | 12, 13, 16 | syl2anc 411 | 
. . . . . . 7
⊢
((⊤ ∧ 𝑘
∈ ℕ) → ((𝑛
∈ ℕ ↦ (1 / 𝑛))‘(𝑘 + 1)) = (1 / (𝑘 + 1))) | 
| 18 |   | simpr 110 | 
. . . . . . . 8
⊢
((⊤ ∧ 𝑘
∈ ℕ) → 𝑘
∈ ℕ) | 
| 19 |   | oveq1 5929 | 
. . . . . . . . . 10
⊢ (𝑛 = 𝑘 → (𝑛 + 1) = (𝑘 + 1)) | 
| 20 | 19 | oveq2d 5938 | 
. . . . . . . . 9
⊢ (𝑛 = 𝑘 → (1 / (𝑛 + 1)) = (1 / (𝑘 + 1))) | 
| 21 |   | eqid 2196 | 
. . . . . . . . 9
⊢ (𝑛 ∈ ℕ ↦ (1 /
(𝑛 + 1))) = (𝑛 ∈ ℕ ↦ (1 /
(𝑛 + 1))) | 
| 22 | 20, 21 | fvmptg 5637 | 
. . . . . . . 8
⊢ ((𝑘 ∈ ℕ ∧ (1 /
(𝑘 + 1)) ∈ ℝ)
→ ((𝑛 ∈ ℕ
↦ (1 / (𝑛 +
1)))‘𝑘) = (1 / (𝑘 + 1))) | 
| 23 | 18, 13, 22 | syl2anc 411 | 
. . . . . . 7
⊢
((⊤ ∧ 𝑘
∈ ℕ) → ((𝑛
∈ ℕ ↦ (1 / (𝑛 + 1)))‘𝑘) = (1 / (𝑘 + 1))) | 
| 24 | 17, 23 | eqtr4d 2232 | 
. . . . . 6
⊢
((⊤ ∧ 𝑘
∈ ℕ) → ((𝑛
∈ ℕ ↦ (1 / 𝑛))‘(𝑘 + 1)) = ((𝑛 ∈ ℕ ↦ (1 / (𝑛 + 1)))‘𝑘)) | 
| 25 | 1, 2, 2, 8, 10, 24 | climshft2 11471 | 
. . . . 5
⊢ (⊤
→ ((𝑛 ∈ ℕ
↦ (1 / (𝑛 + 1)))
⇝ 0 ↔ (𝑛 ∈
ℕ ↦ (1 / 𝑛))
⇝ 0)) | 
| 26 | 5, 25 | mpbird 167 | 
. . . 4
⊢ (⊤
→ (𝑛 ∈ ℕ
↦ (1 / (𝑛 + 1)))
⇝ 0) | 
| 27 |   | seqex 10541 | 
. . . . 5
⊢ seq1( + ,
𝐹) ∈
V | 
| 28 | 27 | a1i 9 | 
. . . 4
⊢ (⊤
→ seq1( + , 𝐹) ∈
V) | 
| 29 | 13 | recnd 8055 | 
. . . . 5
⊢
((⊤ ∧ 𝑘
∈ ℕ) → (1 / (𝑘 + 1)) ∈ ℂ) | 
| 30 | 23, 29 | eqeltrd 2273 | 
. . . 4
⊢
((⊤ ∧ 𝑘
∈ ℕ) → ((𝑛
∈ ℕ ↦ (1 / (𝑛 + 1)))‘𝑘) ∈ ℂ) | 
| 31 | 23 | oveq2d 5938 | 
. . . . 5
⊢
((⊤ ∧ 𝑘
∈ ℕ) → (1 − ((𝑛 ∈ ℕ ↦ (1 / (𝑛 + 1)))‘𝑘)) = (1 − (1 / (𝑘 + 1)))) | 
| 32 |   | elfznn 10129 | 
. . . . . . . . . . . 12
⊢ (𝑗 ∈ (1...𝑘) → 𝑗 ∈ ℕ) | 
| 33 | 32 | adantl 277 | 
. . . . . . . . . . 11
⊢
(((⊤ ∧ 𝑘
∈ ℕ) ∧ 𝑗
∈ (1...𝑘)) →
𝑗 ∈
ℕ) | 
| 34 | 33 | nncnd 9004 | 
. . . . . . . . . 10
⊢
(((⊤ ∧ 𝑘
∈ ℕ) ∧ 𝑗
∈ (1...𝑘)) →
𝑗 ∈
ℂ) | 
| 35 |   | peano2cn 8161 | 
. . . . . . . . . 10
⊢ (𝑗 ∈ ℂ → (𝑗 + 1) ∈
ℂ) | 
| 36 | 34, 35 | syl 14 | 
. . . . . . . . 9
⊢
(((⊤ ∧ 𝑘
∈ ℕ) ∧ 𝑗
∈ (1...𝑘)) →
(𝑗 + 1) ∈
ℂ) | 
| 37 |   | peano2nn 9002 | 
. . . . . . . . . . . 12
⊢ (𝑗 ∈ ℕ → (𝑗 + 1) ∈
ℕ) | 
| 38 | 33, 37 | syl 14 | 
. . . . . . . . . . 11
⊢
(((⊤ ∧ 𝑘
∈ ℕ) ∧ 𝑗
∈ (1...𝑘)) →
(𝑗 + 1) ∈
ℕ) | 
| 39 | 33, 38 | nnmulcld 9039 | 
. . . . . . . . . 10
⊢
(((⊤ ∧ 𝑘
∈ ℕ) ∧ 𝑗
∈ (1...𝑘)) →
(𝑗 · (𝑗 + 1)) ∈
ℕ) | 
| 40 | 39 | nncnd 9004 | 
. . . . . . . . 9
⊢
(((⊤ ∧ 𝑘
∈ ℕ) ∧ 𝑗
∈ (1...𝑘)) →
(𝑗 · (𝑗 + 1)) ∈
ℂ) | 
| 41 | 39 | nnap0d 9036 | 
. . . . . . . . 9
⊢
(((⊤ ∧ 𝑘
∈ ℕ) ∧ 𝑗
∈ (1...𝑘)) →
(𝑗 · (𝑗 + 1)) # 0) | 
| 42 | 36, 34, 40, 41 | divsubdirapd 8857 | 
. . . . . . . 8
⊢
(((⊤ ∧ 𝑘
∈ ℕ) ∧ 𝑗
∈ (1...𝑘)) →
(((𝑗 + 1) − 𝑗) / (𝑗 · (𝑗 + 1))) = (((𝑗 + 1) / (𝑗 · (𝑗 + 1))) − (𝑗 / (𝑗 · (𝑗 + 1))))) | 
| 43 |   | ax-1cn 7972 | 
. . . . . . . . . 10
⊢ 1 ∈
ℂ | 
| 44 |   | pncan2 8233 | 
. . . . . . . . . 10
⊢ ((𝑗 ∈ ℂ ∧ 1 ∈
ℂ) → ((𝑗 + 1)
− 𝑗) =
1) | 
| 45 | 34, 43, 44 | sylancl 413 | 
. . . . . . . . 9
⊢
(((⊤ ∧ 𝑘
∈ ℕ) ∧ 𝑗
∈ (1...𝑘)) →
((𝑗 + 1) − 𝑗) = 1) | 
| 46 | 45 | oveq1d 5937 | 
. . . . . . . 8
⊢
(((⊤ ∧ 𝑘
∈ ℕ) ∧ 𝑗
∈ (1...𝑘)) →
(((𝑗 + 1) − 𝑗) / (𝑗 · (𝑗 + 1))) = (1 / (𝑗 · (𝑗 + 1)))) | 
| 47 | 36 | mulridd 8043 | 
. . . . . . . . . . 11
⊢
(((⊤ ∧ 𝑘
∈ ℕ) ∧ 𝑗
∈ (1...𝑘)) →
((𝑗 + 1) · 1) =
(𝑗 + 1)) | 
| 48 | 36, 34 | mulcomd 8048 | 
. . . . . . . . . . 11
⊢
(((⊤ ∧ 𝑘
∈ ℕ) ∧ 𝑗
∈ (1...𝑘)) →
((𝑗 + 1) · 𝑗) = (𝑗 · (𝑗 + 1))) | 
| 49 | 47, 48 | oveq12d 5940 | 
. . . . . . . . . 10
⊢
(((⊤ ∧ 𝑘
∈ ℕ) ∧ 𝑗
∈ (1...𝑘)) →
(((𝑗 + 1) · 1) /
((𝑗 + 1) · 𝑗)) = ((𝑗 + 1) / (𝑗 · (𝑗 + 1)))) | 
| 50 |   | 1cnd 8042 | 
. . . . . . . . . . 11
⊢
(((⊤ ∧ 𝑘
∈ ℕ) ∧ 𝑗
∈ (1...𝑘)) → 1
∈ ℂ) | 
| 51 | 33 | nnap0d 9036 | 
. . . . . . . . . . 11
⊢
(((⊤ ∧ 𝑘
∈ ℕ) ∧ 𝑗
∈ (1...𝑘)) →
𝑗 # 0) | 
| 52 | 38 | nnap0d 9036 | 
. . . . . . . . . . 11
⊢
(((⊤ ∧ 𝑘
∈ ℕ) ∧ 𝑗
∈ (1...𝑘)) →
(𝑗 + 1) #
0) | 
| 53 | 50, 34, 36, 51, 52 | divcanap5d 8844 | 
. . . . . . . . . 10
⊢
(((⊤ ∧ 𝑘
∈ ℕ) ∧ 𝑗
∈ (1...𝑘)) →
(((𝑗 + 1) · 1) /
((𝑗 + 1) · 𝑗)) = (1 / 𝑗)) | 
| 54 | 49, 53 | eqtr3d 2231 | 
. . . . . . . . 9
⊢
(((⊤ ∧ 𝑘
∈ ℕ) ∧ 𝑗
∈ (1...𝑘)) →
((𝑗 + 1) / (𝑗 · (𝑗 + 1))) = (1 / 𝑗)) | 
| 55 | 34 | mulridd 8043 | 
. . . . . . . . . . 11
⊢
(((⊤ ∧ 𝑘
∈ ℕ) ∧ 𝑗
∈ (1...𝑘)) →
(𝑗 · 1) = 𝑗) | 
| 56 | 55 | oveq1d 5937 | 
. . . . . . . . . 10
⊢
(((⊤ ∧ 𝑘
∈ ℕ) ∧ 𝑗
∈ (1...𝑘)) →
((𝑗 · 1) / (𝑗 · (𝑗 + 1))) = (𝑗 / (𝑗 · (𝑗 + 1)))) | 
| 57 | 50, 36, 34, 52, 51 | divcanap5d 8844 | 
. . . . . . . . . 10
⊢
(((⊤ ∧ 𝑘
∈ ℕ) ∧ 𝑗
∈ (1...𝑘)) →
((𝑗 · 1) / (𝑗 · (𝑗 + 1))) = (1 / (𝑗 + 1))) | 
| 58 | 56, 57 | eqtr3d 2231 | 
. . . . . . . . 9
⊢
(((⊤ ∧ 𝑘
∈ ℕ) ∧ 𝑗
∈ (1...𝑘)) →
(𝑗 / (𝑗 · (𝑗 + 1))) = (1 / (𝑗 + 1))) | 
| 59 | 54, 58 | oveq12d 5940 | 
. . . . . . . 8
⊢
(((⊤ ∧ 𝑘
∈ ℕ) ∧ 𝑗
∈ (1...𝑘)) →
(((𝑗 + 1) / (𝑗 · (𝑗 + 1))) − (𝑗 / (𝑗 · (𝑗 + 1)))) = ((1 / 𝑗) − (1 / (𝑗 + 1)))) | 
| 60 | 42, 46, 59 | 3eqtr3d 2237 | 
. . . . . . 7
⊢
(((⊤ ∧ 𝑘
∈ ℕ) ∧ 𝑗
∈ (1...𝑘)) → (1 /
(𝑗 · (𝑗 + 1))) = ((1 / 𝑗) − (1 / (𝑗 + 1)))) | 
| 61 | 60 | sumeq2dv 11533 | 
. . . . . 6
⊢
((⊤ ∧ 𝑘
∈ ℕ) → Σ𝑗 ∈ (1...𝑘)(1 / (𝑗 · (𝑗 + 1))) = Σ𝑗 ∈ (1...𝑘)((1 / 𝑗) − (1 / (𝑗 + 1)))) | 
| 62 |   | oveq2 5930 | 
. . . . . . 7
⊢ (𝑛 = 𝑗 → (1 / 𝑛) = (1 / 𝑗)) | 
| 63 |   | oveq2 5930 | 
. . . . . . 7
⊢ (𝑛 = (𝑗 + 1) → (1 / 𝑛) = (1 / (𝑗 + 1))) | 
| 64 |   | oveq2 5930 | 
. . . . . . . 8
⊢ (𝑛 = 1 → (1 / 𝑛) = (1 / 1)) | 
| 65 |   | 1div1e1 8731 | 
. . . . . . . 8
⊢ (1 / 1) =
1 | 
| 66 | 64, 65 | eqtrdi 2245 | 
. . . . . . 7
⊢ (𝑛 = 1 → (1 / 𝑛) = 1) | 
| 67 |   | nnz 9345 | 
. . . . . . . 8
⊢ (𝑘 ∈ ℕ → 𝑘 ∈
ℤ) | 
| 68 | 67 | adantl 277 | 
. . . . . . 7
⊢
((⊤ ∧ 𝑘
∈ ℕ) → 𝑘
∈ ℤ) | 
| 69 | 12, 1 | eleqtrdi 2289 | 
. . . . . . 7
⊢
((⊤ ∧ 𝑘
∈ ℕ) → (𝑘 +
1) ∈ (ℤ≥‘1)) | 
| 70 |   | elfznn 10129 | 
. . . . . . . . . 10
⊢ (𝑛 ∈ (1...(𝑘 + 1)) → 𝑛 ∈ ℕ) | 
| 71 | 70 | adantl 277 | 
. . . . . . . . 9
⊢
(((⊤ ∧ 𝑘
∈ ℕ) ∧ 𝑛
∈ (1...(𝑘 + 1)))
→ 𝑛 ∈
ℕ) | 
| 72 | 71 | nnrecred 9037 | 
. . . . . . . 8
⊢
(((⊤ ∧ 𝑘
∈ ℕ) ∧ 𝑛
∈ (1...(𝑘 + 1)))
→ (1 / 𝑛) ∈
ℝ) | 
| 73 | 72 | recnd 8055 | 
. . . . . . 7
⊢
(((⊤ ∧ 𝑘
∈ ℕ) ∧ 𝑛
∈ (1...(𝑘 + 1)))
→ (1 / 𝑛) ∈
ℂ) | 
| 74 | 62, 63, 66, 14, 68, 69, 73 | telfsum 11633 | 
. . . . . 6
⊢
((⊤ ∧ 𝑘
∈ ℕ) → Σ𝑗 ∈ (1...𝑘)((1 / 𝑗) − (1 / (𝑗 + 1))) = (1 − (1 / (𝑘 + 1)))) | 
| 75 | 61, 74 | eqtrd 2229 | 
. . . . 5
⊢
((⊤ ∧ 𝑘
∈ ℕ) → Σ𝑗 ∈ (1...𝑘)(1 / (𝑗 · (𝑗 + 1))) = (1 − (1 / (𝑘 + 1)))) | 
| 76 |   | elnnuz 9638 | 
. . . . . . . . 9
⊢ (𝑗 ∈ ℕ ↔ 𝑗 ∈
(ℤ≥‘1)) | 
| 77 | 76 | biimpri 133 | 
. . . . . . . 8
⊢ (𝑗 ∈
(ℤ≥‘1) → 𝑗 ∈ ℕ) | 
| 78 | 77 | adantl 277 | 
. . . . . . 7
⊢
(((⊤ ∧ 𝑘
∈ ℕ) ∧ 𝑗
∈ (ℤ≥‘1)) → 𝑗 ∈ ℕ) | 
| 79 |   | eluzelz 9610 | 
. . . . . . . . . . 11
⊢ (𝑗 ∈
(ℤ≥‘1) → 𝑗 ∈ ℤ) | 
| 80 | 79 | adantl 277 | 
. . . . . . . . . 10
⊢
(((⊤ ∧ 𝑘
∈ ℕ) ∧ 𝑗
∈ (ℤ≥‘1)) → 𝑗 ∈ ℤ) | 
| 81 | 80 | zcnd 9449 | 
. . . . . . . . 9
⊢
(((⊤ ∧ 𝑘
∈ ℕ) ∧ 𝑗
∈ (ℤ≥‘1)) → 𝑗 ∈ ℂ) | 
| 82 | 81, 35 | syl 14 | 
. . . . . . . . 9
⊢
(((⊤ ∧ 𝑘
∈ ℕ) ∧ 𝑗
∈ (ℤ≥‘1)) → (𝑗 + 1) ∈ ℂ) | 
| 83 | 81, 82 | mulcld 8047 | 
. . . . . . . 8
⊢
(((⊤ ∧ 𝑘
∈ ℕ) ∧ 𝑗
∈ (ℤ≥‘1)) → (𝑗 · (𝑗 + 1)) ∈ ℂ) | 
| 84 | 78 | nnap0d 9036 | 
. . . . . . . . 9
⊢
(((⊤ ∧ 𝑘
∈ ℕ) ∧ 𝑗
∈ (ℤ≥‘1)) → 𝑗 # 0) | 
| 85 | 78, 37 | syl 14 | 
. . . . . . . . . 10
⊢
(((⊤ ∧ 𝑘
∈ ℕ) ∧ 𝑗
∈ (ℤ≥‘1)) → (𝑗 + 1) ∈ ℕ) | 
| 86 | 85 | nnap0d 9036 | 
. . . . . . . . 9
⊢
(((⊤ ∧ 𝑘
∈ ℕ) ∧ 𝑗
∈ (ℤ≥‘1)) → (𝑗 + 1) # 0) | 
| 87 | 81, 82, 84, 86 | mulap0d 8685 | 
. . . . . . . 8
⊢
(((⊤ ∧ 𝑘
∈ ℕ) ∧ 𝑗
∈ (ℤ≥‘1)) → (𝑗 · (𝑗 + 1)) # 0) | 
| 88 | 83, 87 | recclapd 8808 | 
. . . . . . 7
⊢
(((⊤ ∧ 𝑘
∈ ℕ) ∧ 𝑗
∈ (ℤ≥‘1)) → (1 / (𝑗 · (𝑗 + 1))) ∈ ℂ) | 
| 89 |   | id 19 | 
. . . . . . . . . 10
⊢ (𝑛 = 𝑗 → 𝑛 = 𝑗) | 
| 90 |   | oveq1 5929 | 
. . . . . . . . . 10
⊢ (𝑛 = 𝑗 → (𝑛 + 1) = (𝑗 + 1)) | 
| 91 | 89, 90 | oveq12d 5940 | 
. . . . . . . . 9
⊢ (𝑛 = 𝑗 → (𝑛 · (𝑛 + 1)) = (𝑗 · (𝑗 + 1))) | 
| 92 | 91 | oveq2d 5938 | 
. . . . . . . 8
⊢ (𝑛 = 𝑗 → (1 / (𝑛 · (𝑛 + 1))) = (1 / (𝑗 · (𝑗 + 1)))) | 
| 93 |   | trireciplem.1 | 
. . . . . . . 8
⊢ 𝐹 = (𝑛 ∈ ℕ ↦ (1 / (𝑛 · (𝑛 + 1)))) | 
| 94 | 92, 93 | fvmptg 5637 | 
. . . . . . 7
⊢ ((𝑗 ∈ ℕ ∧ (1 /
(𝑗 · (𝑗 + 1))) ∈ ℂ) →
(𝐹‘𝑗) = (1 / (𝑗 · (𝑗 + 1)))) | 
| 95 | 78, 88, 94 | syl2anc 411 | 
. . . . . 6
⊢
(((⊤ ∧ 𝑘
∈ ℕ) ∧ 𝑗
∈ (ℤ≥‘1)) → (𝐹‘𝑗) = (1 / (𝑗 · (𝑗 + 1)))) | 
| 96 | 18, 1 | eleqtrdi 2289 | 
. . . . . 6
⊢
((⊤ ∧ 𝑘
∈ ℕ) → 𝑘
∈ (ℤ≥‘1)) | 
| 97 | 95, 96, 88 | fsum3ser 11562 | 
. . . . 5
⊢
((⊤ ∧ 𝑘
∈ ℕ) → Σ𝑗 ∈ (1...𝑘)(1 / (𝑗 · (𝑗 + 1))) = (seq1( + , 𝐹)‘𝑘)) | 
| 98 | 31, 75, 97 | 3eqtr2rd 2236 | 
. . . 4
⊢
((⊤ ∧ 𝑘
∈ ℕ) → (seq1( + , 𝐹)‘𝑘) = (1 − ((𝑛 ∈ ℕ ↦ (1 / (𝑛 + 1)))‘𝑘))) | 
| 99 | 1, 2, 26, 3, 28, 30, 98 | climsubc2 11498 | 
. . 3
⊢ (⊤
→ seq1( + , 𝐹) ⇝
(1 − 0)) | 
| 100 | 99 | mptru 1373 | 
. 2
⊢ seq1( + ,
𝐹) ⇝ (1 −
0) | 
| 101 |   | 1m0e1 9103 | 
. 2
⊢ (1
− 0) = 1 | 
| 102 | 100, 101 | breqtri 4058 | 
1
⊢ seq1( + ,
𝐹) ⇝
1 |