| Step | Hyp | Ref
| Expression |
| 1 | | nnuz 9637 |
. . . 4
⊢ ℕ =
(ℤ≥‘1) |
| 2 | | 1zzd 9353 |
. . . 4
⊢ (⊤
→ 1 ∈ ℤ) |
| 3 | | 1cnd 8042 |
. . . . . 6
⊢ (⊤
→ 1 ∈ ℂ) |
| 4 | | divcnv 11662 |
. . . . . 6
⊢ (1 ∈
ℂ → (𝑛 ∈
ℕ ↦ (1 / 𝑛))
⇝ 0) |
| 5 | 3, 4 | syl 14 |
. . . . 5
⊢ (⊤
→ (𝑛 ∈ ℕ
↦ (1 / 𝑛)) ⇝
0) |
| 6 | | nnex 8996 |
. . . . . . . 8
⊢ ℕ
∈ V |
| 7 | 6 | mptex 5788 |
. . . . . . 7
⊢ (𝑛 ∈ ℕ ↦ (1 /
(𝑛 + 1))) ∈
V |
| 8 | 7 | a1i 9 |
. . . . . 6
⊢ (⊤
→ (𝑛 ∈ ℕ
↦ (1 / (𝑛 + 1)))
∈ V) |
| 9 | 6 | mptex 5788 |
. . . . . . 7
⊢ (𝑛 ∈ ℕ ↦ (1 /
𝑛)) ∈
V |
| 10 | 9 | a1i 9 |
. . . . . 6
⊢ (⊤
→ (𝑛 ∈ ℕ
↦ (1 / 𝑛)) ∈
V) |
| 11 | | peano2nn 9002 |
. . . . . . . . 9
⊢ (𝑘 ∈ ℕ → (𝑘 + 1) ∈
ℕ) |
| 12 | 11 | adantl 277 |
. . . . . . . 8
⊢
((⊤ ∧ 𝑘
∈ ℕ) → (𝑘 +
1) ∈ ℕ) |
| 13 | 12 | nnrecred 9037 |
. . . . . . . 8
⊢
((⊤ ∧ 𝑘
∈ ℕ) → (1 / (𝑘 + 1)) ∈ ℝ) |
| 14 | | oveq2 5930 |
. . . . . . . . 9
⊢ (𝑛 = (𝑘 + 1) → (1 / 𝑛) = (1 / (𝑘 + 1))) |
| 15 | | eqid 2196 |
. . . . . . . . 9
⊢ (𝑛 ∈ ℕ ↦ (1 /
𝑛)) = (𝑛 ∈ ℕ ↦ (1 / 𝑛)) |
| 16 | 14, 15 | fvmptg 5637 |
. . . . . . . 8
⊢ (((𝑘 + 1) ∈ ℕ ∧ (1 /
(𝑘 + 1)) ∈ ℝ)
→ ((𝑛 ∈ ℕ
↦ (1 / 𝑛))‘(𝑘 + 1)) = (1 / (𝑘 + 1))) |
| 17 | 12, 13, 16 | syl2anc 411 |
. . . . . . 7
⊢
((⊤ ∧ 𝑘
∈ ℕ) → ((𝑛
∈ ℕ ↦ (1 / 𝑛))‘(𝑘 + 1)) = (1 / (𝑘 + 1))) |
| 18 | | simpr 110 |
. . . . . . . 8
⊢
((⊤ ∧ 𝑘
∈ ℕ) → 𝑘
∈ ℕ) |
| 19 | | oveq1 5929 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑘 → (𝑛 + 1) = (𝑘 + 1)) |
| 20 | 19 | oveq2d 5938 |
. . . . . . . . 9
⊢ (𝑛 = 𝑘 → (1 / (𝑛 + 1)) = (1 / (𝑘 + 1))) |
| 21 | | eqid 2196 |
. . . . . . . . 9
⊢ (𝑛 ∈ ℕ ↦ (1 /
(𝑛 + 1))) = (𝑛 ∈ ℕ ↦ (1 /
(𝑛 + 1))) |
| 22 | 20, 21 | fvmptg 5637 |
. . . . . . . 8
⊢ ((𝑘 ∈ ℕ ∧ (1 /
(𝑘 + 1)) ∈ ℝ)
→ ((𝑛 ∈ ℕ
↦ (1 / (𝑛 +
1)))‘𝑘) = (1 / (𝑘 + 1))) |
| 23 | 18, 13, 22 | syl2anc 411 |
. . . . . . 7
⊢
((⊤ ∧ 𝑘
∈ ℕ) → ((𝑛
∈ ℕ ↦ (1 / (𝑛 + 1)))‘𝑘) = (1 / (𝑘 + 1))) |
| 24 | 17, 23 | eqtr4d 2232 |
. . . . . 6
⊢
((⊤ ∧ 𝑘
∈ ℕ) → ((𝑛
∈ ℕ ↦ (1 / 𝑛))‘(𝑘 + 1)) = ((𝑛 ∈ ℕ ↦ (1 / (𝑛 + 1)))‘𝑘)) |
| 25 | 1, 2, 2, 8, 10, 24 | climshft2 11471 |
. . . . 5
⊢ (⊤
→ ((𝑛 ∈ ℕ
↦ (1 / (𝑛 + 1)))
⇝ 0 ↔ (𝑛 ∈
ℕ ↦ (1 / 𝑛))
⇝ 0)) |
| 26 | 5, 25 | mpbird 167 |
. . . 4
⊢ (⊤
→ (𝑛 ∈ ℕ
↦ (1 / (𝑛 + 1)))
⇝ 0) |
| 27 | | seqex 10541 |
. . . . 5
⊢ seq1( + ,
𝐹) ∈
V |
| 28 | 27 | a1i 9 |
. . . 4
⊢ (⊤
→ seq1( + , 𝐹) ∈
V) |
| 29 | 13 | recnd 8055 |
. . . . 5
⊢
((⊤ ∧ 𝑘
∈ ℕ) → (1 / (𝑘 + 1)) ∈ ℂ) |
| 30 | 23, 29 | eqeltrd 2273 |
. . . 4
⊢
((⊤ ∧ 𝑘
∈ ℕ) → ((𝑛
∈ ℕ ↦ (1 / (𝑛 + 1)))‘𝑘) ∈ ℂ) |
| 31 | 23 | oveq2d 5938 |
. . . . 5
⊢
((⊤ ∧ 𝑘
∈ ℕ) → (1 − ((𝑛 ∈ ℕ ↦ (1 / (𝑛 + 1)))‘𝑘)) = (1 − (1 / (𝑘 + 1)))) |
| 32 | | elfznn 10129 |
. . . . . . . . . . . 12
⊢ (𝑗 ∈ (1...𝑘) → 𝑗 ∈ ℕ) |
| 33 | 32 | adantl 277 |
. . . . . . . . . . 11
⊢
(((⊤ ∧ 𝑘
∈ ℕ) ∧ 𝑗
∈ (1...𝑘)) →
𝑗 ∈
ℕ) |
| 34 | 33 | nncnd 9004 |
. . . . . . . . . 10
⊢
(((⊤ ∧ 𝑘
∈ ℕ) ∧ 𝑗
∈ (1...𝑘)) →
𝑗 ∈
ℂ) |
| 35 | | peano2cn 8161 |
. . . . . . . . . 10
⊢ (𝑗 ∈ ℂ → (𝑗 + 1) ∈
ℂ) |
| 36 | 34, 35 | syl 14 |
. . . . . . . . 9
⊢
(((⊤ ∧ 𝑘
∈ ℕ) ∧ 𝑗
∈ (1...𝑘)) →
(𝑗 + 1) ∈
ℂ) |
| 37 | | peano2nn 9002 |
. . . . . . . . . . . 12
⊢ (𝑗 ∈ ℕ → (𝑗 + 1) ∈
ℕ) |
| 38 | 33, 37 | syl 14 |
. . . . . . . . . . 11
⊢
(((⊤ ∧ 𝑘
∈ ℕ) ∧ 𝑗
∈ (1...𝑘)) →
(𝑗 + 1) ∈
ℕ) |
| 39 | 33, 38 | nnmulcld 9039 |
. . . . . . . . . 10
⊢
(((⊤ ∧ 𝑘
∈ ℕ) ∧ 𝑗
∈ (1...𝑘)) →
(𝑗 · (𝑗 + 1)) ∈
ℕ) |
| 40 | 39 | nncnd 9004 |
. . . . . . . . 9
⊢
(((⊤ ∧ 𝑘
∈ ℕ) ∧ 𝑗
∈ (1...𝑘)) →
(𝑗 · (𝑗 + 1)) ∈
ℂ) |
| 41 | 39 | nnap0d 9036 |
. . . . . . . . 9
⊢
(((⊤ ∧ 𝑘
∈ ℕ) ∧ 𝑗
∈ (1...𝑘)) →
(𝑗 · (𝑗 + 1)) # 0) |
| 42 | 36, 34, 40, 41 | divsubdirapd 8857 |
. . . . . . . 8
⊢
(((⊤ ∧ 𝑘
∈ ℕ) ∧ 𝑗
∈ (1...𝑘)) →
(((𝑗 + 1) − 𝑗) / (𝑗 · (𝑗 + 1))) = (((𝑗 + 1) / (𝑗 · (𝑗 + 1))) − (𝑗 / (𝑗 · (𝑗 + 1))))) |
| 43 | | ax-1cn 7972 |
. . . . . . . . . 10
⊢ 1 ∈
ℂ |
| 44 | | pncan2 8233 |
. . . . . . . . . 10
⊢ ((𝑗 ∈ ℂ ∧ 1 ∈
ℂ) → ((𝑗 + 1)
− 𝑗) =
1) |
| 45 | 34, 43, 44 | sylancl 413 |
. . . . . . . . 9
⊢
(((⊤ ∧ 𝑘
∈ ℕ) ∧ 𝑗
∈ (1...𝑘)) →
((𝑗 + 1) − 𝑗) = 1) |
| 46 | 45 | oveq1d 5937 |
. . . . . . . 8
⊢
(((⊤ ∧ 𝑘
∈ ℕ) ∧ 𝑗
∈ (1...𝑘)) →
(((𝑗 + 1) − 𝑗) / (𝑗 · (𝑗 + 1))) = (1 / (𝑗 · (𝑗 + 1)))) |
| 47 | 36 | mulridd 8043 |
. . . . . . . . . . 11
⊢
(((⊤ ∧ 𝑘
∈ ℕ) ∧ 𝑗
∈ (1...𝑘)) →
((𝑗 + 1) · 1) =
(𝑗 + 1)) |
| 48 | 36, 34 | mulcomd 8048 |
. . . . . . . . . . 11
⊢
(((⊤ ∧ 𝑘
∈ ℕ) ∧ 𝑗
∈ (1...𝑘)) →
((𝑗 + 1) · 𝑗) = (𝑗 · (𝑗 + 1))) |
| 49 | 47, 48 | oveq12d 5940 |
. . . . . . . . . 10
⊢
(((⊤ ∧ 𝑘
∈ ℕ) ∧ 𝑗
∈ (1...𝑘)) →
(((𝑗 + 1) · 1) /
((𝑗 + 1) · 𝑗)) = ((𝑗 + 1) / (𝑗 · (𝑗 + 1)))) |
| 50 | | 1cnd 8042 |
. . . . . . . . . . 11
⊢
(((⊤ ∧ 𝑘
∈ ℕ) ∧ 𝑗
∈ (1...𝑘)) → 1
∈ ℂ) |
| 51 | 33 | nnap0d 9036 |
. . . . . . . . . . 11
⊢
(((⊤ ∧ 𝑘
∈ ℕ) ∧ 𝑗
∈ (1...𝑘)) →
𝑗 # 0) |
| 52 | 38 | nnap0d 9036 |
. . . . . . . . . . 11
⊢
(((⊤ ∧ 𝑘
∈ ℕ) ∧ 𝑗
∈ (1...𝑘)) →
(𝑗 + 1) #
0) |
| 53 | 50, 34, 36, 51, 52 | divcanap5d 8844 |
. . . . . . . . . 10
⊢
(((⊤ ∧ 𝑘
∈ ℕ) ∧ 𝑗
∈ (1...𝑘)) →
(((𝑗 + 1) · 1) /
((𝑗 + 1) · 𝑗)) = (1 / 𝑗)) |
| 54 | 49, 53 | eqtr3d 2231 |
. . . . . . . . 9
⊢
(((⊤ ∧ 𝑘
∈ ℕ) ∧ 𝑗
∈ (1...𝑘)) →
((𝑗 + 1) / (𝑗 · (𝑗 + 1))) = (1 / 𝑗)) |
| 55 | 34 | mulridd 8043 |
. . . . . . . . . . 11
⊢
(((⊤ ∧ 𝑘
∈ ℕ) ∧ 𝑗
∈ (1...𝑘)) →
(𝑗 · 1) = 𝑗) |
| 56 | 55 | oveq1d 5937 |
. . . . . . . . . 10
⊢
(((⊤ ∧ 𝑘
∈ ℕ) ∧ 𝑗
∈ (1...𝑘)) →
((𝑗 · 1) / (𝑗 · (𝑗 + 1))) = (𝑗 / (𝑗 · (𝑗 + 1)))) |
| 57 | 50, 36, 34, 52, 51 | divcanap5d 8844 |
. . . . . . . . . 10
⊢
(((⊤ ∧ 𝑘
∈ ℕ) ∧ 𝑗
∈ (1...𝑘)) →
((𝑗 · 1) / (𝑗 · (𝑗 + 1))) = (1 / (𝑗 + 1))) |
| 58 | 56, 57 | eqtr3d 2231 |
. . . . . . . . 9
⊢
(((⊤ ∧ 𝑘
∈ ℕ) ∧ 𝑗
∈ (1...𝑘)) →
(𝑗 / (𝑗 · (𝑗 + 1))) = (1 / (𝑗 + 1))) |
| 59 | 54, 58 | oveq12d 5940 |
. . . . . . . 8
⊢
(((⊤ ∧ 𝑘
∈ ℕ) ∧ 𝑗
∈ (1...𝑘)) →
(((𝑗 + 1) / (𝑗 · (𝑗 + 1))) − (𝑗 / (𝑗 · (𝑗 + 1)))) = ((1 / 𝑗) − (1 / (𝑗 + 1)))) |
| 60 | 42, 46, 59 | 3eqtr3d 2237 |
. . . . . . 7
⊢
(((⊤ ∧ 𝑘
∈ ℕ) ∧ 𝑗
∈ (1...𝑘)) → (1 /
(𝑗 · (𝑗 + 1))) = ((1 / 𝑗) − (1 / (𝑗 + 1)))) |
| 61 | 60 | sumeq2dv 11533 |
. . . . . 6
⊢
((⊤ ∧ 𝑘
∈ ℕ) → Σ𝑗 ∈ (1...𝑘)(1 / (𝑗 · (𝑗 + 1))) = Σ𝑗 ∈ (1...𝑘)((1 / 𝑗) − (1 / (𝑗 + 1)))) |
| 62 | | oveq2 5930 |
. . . . . . 7
⊢ (𝑛 = 𝑗 → (1 / 𝑛) = (1 / 𝑗)) |
| 63 | | oveq2 5930 |
. . . . . . 7
⊢ (𝑛 = (𝑗 + 1) → (1 / 𝑛) = (1 / (𝑗 + 1))) |
| 64 | | oveq2 5930 |
. . . . . . . 8
⊢ (𝑛 = 1 → (1 / 𝑛) = (1 / 1)) |
| 65 | | 1div1e1 8731 |
. . . . . . . 8
⊢ (1 / 1) =
1 |
| 66 | 64, 65 | eqtrdi 2245 |
. . . . . . 7
⊢ (𝑛 = 1 → (1 / 𝑛) = 1) |
| 67 | | nnz 9345 |
. . . . . . . 8
⊢ (𝑘 ∈ ℕ → 𝑘 ∈
ℤ) |
| 68 | 67 | adantl 277 |
. . . . . . 7
⊢
((⊤ ∧ 𝑘
∈ ℕ) → 𝑘
∈ ℤ) |
| 69 | 12, 1 | eleqtrdi 2289 |
. . . . . . 7
⊢
((⊤ ∧ 𝑘
∈ ℕ) → (𝑘 +
1) ∈ (ℤ≥‘1)) |
| 70 | | elfznn 10129 |
. . . . . . . . . 10
⊢ (𝑛 ∈ (1...(𝑘 + 1)) → 𝑛 ∈ ℕ) |
| 71 | 70 | adantl 277 |
. . . . . . . . 9
⊢
(((⊤ ∧ 𝑘
∈ ℕ) ∧ 𝑛
∈ (1...(𝑘 + 1)))
→ 𝑛 ∈
ℕ) |
| 72 | 71 | nnrecred 9037 |
. . . . . . . 8
⊢
(((⊤ ∧ 𝑘
∈ ℕ) ∧ 𝑛
∈ (1...(𝑘 + 1)))
→ (1 / 𝑛) ∈
ℝ) |
| 73 | 72 | recnd 8055 |
. . . . . . 7
⊢
(((⊤ ∧ 𝑘
∈ ℕ) ∧ 𝑛
∈ (1...(𝑘 + 1)))
→ (1 / 𝑛) ∈
ℂ) |
| 74 | 62, 63, 66, 14, 68, 69, 73 | telfsum 11633 |
. . . . . 6
⊢
((⊤ ∧ 𝑘
∈ ℕ) → Σ𝑗 ∈ (1...𝑘)((1 / 𝑗) − (1 / (𝑗 + 1))) = (1 − (1 / (𝑘 + 1)))) |
| 75 | 61, 74 | eqtrd 2229 |
. . . . 5
⊢
((⊤ ∧ 𝑘
∈ ℕ) → Σ𝑗 ∈ (1...𝑘)(1 / (𝑗 · (𝑗 + 1))) = (1 − (1 / (𝑘 + 1)))) |
| 76 | | elnnuz 9638 |
. . . . . . . . 9
⊢ (𝑗 ∈ ℕ ↔ 𝑗 ∈
(ℤ≥‘1)) |
| 77 | 76 | biimpri 133 |
. . . . . . . 8
⊢ (𝑗 ∈
(ℤ≥‘1) → 𝑗 ∈ ℕ) |
| 78 | 77 | adantl 277 |
. . . . . . 7
⊢
(((⊤ ∧ 𝑘
∈ ℕ) ∧ 𝑗
∈ (ℤ≥‘1)) → 𝑗 ∈ ℕ) |
| 79 | | eluzelz 9610 |
. . . . . . . . . . 11
⊢ (𝑗 ∈
(ℤ≥‘1) → 𝑗 ∈ ℤ) |
| 80 | 79 | adantl 277 |
. . . . . . . . . 10
⊢
(((⊤ ∧ 𝑘
∈ ℕ) ∧ 𝑗
∈ (ℤ≥‘1)) → 𝑗 ∈ ℤ) |
| 81 | 80 | zcnd 9449 |
. . . . . . . . 9
⊢
(((⊤ ∧ 𝑘
∈ ℕ) ∧ 𝑗
∈ (ℤ≥‘1)) → 𝑗 ∈ ℂ) |
| 82 | 81, 35 | syl 14 |
. . . . . . . . 9
⊢
(((⊤ ∧ 𝑘
∈ ℕ) ∧ 𝑗
∈ (ℤ≥‘1)) → (𝑗 + 1) ∈ ℂ) |
| 83 | 81, 82 | mulcld 8047 |
. . . . . . . 8
⊢
(((⊤ ∧ 𝑘
∈ ℕ) ∧ 𝑗
∈ (ℤ≥‘1)) → (𝑗 · (𝑗 + 1)) ∈ ℂ) |
| 84 | 78 | nnap0d 9036 |
. . . . . . . . 9
⊢
(((⊤ ∧ 𝑘
∈ ℕ) ∧ 𝑗
∈ (ℤ≥‘1)) → 𝑗 # 0) |
| 85 | 78, 37 | syl 14 |
. . . . . . . . . 10
⊢
(((⊤ ∧ 𝑘
∈ ℕ) ∧ 𝑗
∈ (ℤ≥‘1)) → (𝑗 + 1) ∈ ℕ) |
| 86 | 85 | nnap0d 9036 |
. . . . . . . . 9
⊢
(((⊤ ∧ 𝑘
∈ ℕ) ∧ 𝑗
∈ (ℤ≥‘1)) → (𝑗 + 1) # 0) |
| 87 | 81, 82, 84, 86 | mulap0d 8685 |
. . . . . . . 8
⊢
(((⊤ ∧ 𝑘
∈ ℕ) ∧ 𝑗
∈ (ℤ≥‘1)) → (𝑗 · (𝑗 + 1)) # 0) |
| 88 | 83, 87 | recclapd 8808 |
. . . . . . 7
⊢
(((⊤ ∧ 𝑘
∈ ℕ) ∧ 𝑗
∈ (ℤ≥‘1)) → (1 / (𝑗 · (𝑗 + 1))) ∈ ℂ) |
| 89 | | id 19 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑗 → 𝑛 = 𝑗) |
| 90 | | oveq1 5929 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑗 → (𝑛 + 1) = (𝑗 + 1)) |
| 91 | 89, 90 | oveq12d 5940 |
. . . . . . . . 9
⊢ (𝑛 = 𝑗 → (𝑛 · (𝑛 + 1)) = (𝑗 · (𝑗 + 1))) |
| 92 | 91 | oveq2d 5938 |
. . . . . . . 8
⊢ (𝑛 = 𝑗 → (1 / (𝑛 · (𝑛 + 1))) = (1 / (𝑗 · (𝑗 + 1)))) |
| 93 | | trireciplem.1 |
. . . . . . . 8
⊢ 𝐹 = (𝑛 ∈ ℕ ↦ (1 / (𝑛 · (𝑛 + 1)))) |
| 94 | 92, 93 | fvmptg 5637 |
. . . . . . 7
⊢ ((𝑗 ∈ ℕ ∧ (1 /
(𝑗 · (𝑗 + 1))) ∈ ℂ) →
(𝐹‘𝑗) = (1 / (𝑗 · (𝑗 + 1)))) |
| 95 | 78, 88, 94 | syl2anc 411 |
. . . . . 6
⊢
(((⊤ ∧ 𝑘
∈ ℕ) ∧ 𝑗
∈ (ℤ≥‘1)) → (𝐹‘𝑗) = (1 / (𝑗 · (𝑗 + 1)))) |
| 96 | 18, 1 | eleqtrdi 2289 |
. . . . . 6
⊢
((⊤ ∧ 𝑘
∈ ℕ) → 𝑘
∈ (ℤ≥‘1)) |
| 97 | 95, 96, 88 | fsum3ser 11562 |
. . . . 5
⊢
((⊤ ∧ 𝑘
∈ ℕ) → Σ𝑗 ∈ (1...𝑘)(1 / (𝑗 · (𝑗 + 1))) = (seq1( + , 𝐹)‘𝑘)) |
| 98 | 31, 75, 97 | 3eqtr2rd 2236 |
. . . 4
⊢
((⊤ ∧ 𝑘
∈ ℕ) → (seq1( + , 𝐹)‘𝑘) = (1 − ((𝑛 ∈ ℕ ↦ (1 / (𝑛 + 1)))‘𝑘))) |
| 99 | 1, 2, 26, 3, 28, 30, 98 | climsubc2 11498 |
. . 3
⊢ (⊤
→ seq1( + , 𝐹) ⇝
(1 − 0)) |
| 100 | 99 | mptru 1373 |
. 2
⊢ seq1( + ,
𝐹) ⇝ (1 −
0) |
| 101 | | 1m0e1 9103 |
. 2
⊢ (1
− 0) = 1 |
| 102 | 100, 101 | breqtri 4058 |
1
⊢ seq1( + ,
𝐹) ⇝
1 |