![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > peano2re | GIF version |
Description: A theorem for reals analogous the second Peano postulate peano2 4628. (Contributed by NM, 5-Jul-2005.) |
Ref | Expression |
---|---|
peano2re | ⊢ (𝐴 ∈ ℝ → (𝐴 + 1) ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1re 8020 | . 2 ⊢ 1 ∈ ℝ | |
2 | readdcl 8000 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 1 ∈ ℝ) → (𝐴 + 1) ∈ ℝ) | |
3 | 1, 2 | mpan2 425 | 1 ⊢ (𝐴 ∈ ℝ → (𝐴 + 1) ∈ ℝ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2164 (class class class)co 5919 ℝcr 7873 1c1 7875 + caddc 7877 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 ax-1re 7968 ax-addrcl 7971 |
This theorem is referenced by: lep1 8866 letrp1 8869 p1le 8870 ledivp1 8924 nnssre 8988 nn1suc 9003 nnge1 9007 div4p1lem1div2 9239 zltp1le 9374 suprzclex 9418 zeo 9425 peano2uz2 9427 uzind 9431 btwnapz 9450 numltc 9476 ge0p1rp 9754 fznatpl1 10145 ubmelm1fzo 10296 qbtwnxr 10329 flhalf 10374 fldiv4p1lem1div2 10377 seq3split 10562 seq3f1olemqsumk 10586 seqf1oglem1 10593 seqf1oglem2 10594 bernneq3 10736 facwordi 10814 faclbnd 10815 expcnvap0 11648 cvgratnnlemfm 11675 cvgratnnlemrate 11676 cvgratz 11678 mertenslemi1 11681 fprodntrivap 11730 divalglemnqt 12064 infssuzex 12089 nonsq 12348 eulerthlema 12371 pcfac 12491 1arith 12508 ennnfonelemkh 12572 tgioo 14733 suplociccreex 14803 hoverb 14827 reeff1olem 14947 lgsvalmod 15176 gausslemma2dlem3 15220 lgsquadlem2 15235 |
Copyright terms: Public domain | W3C validator |