| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > peano2re | GIF version | ||
| Description: A theorem for reals analogous the second Peano postulate peano2 4632. (Contributed by NM, 5-Jul-2005.) |
| Ref | Expression |
|---|---|
| peano2re | ⊢ (𝐴 ∈ ℝ → (𝐴 + 1) ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1re 8044 | . 2 ⊢ 1 ∈ ℝ | |
| 2 | readdcl 8024 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 1 ∈ ℝ) → (𝐴 + 1) ∈ ℝ) | |
| 3 | 1, 2 | mpan2 425 | 1 ⊢ (𝐴 ∈ ℝ → (𝐴 + 1) ∈ ℝ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2167 (class class class)co 5925 ℝcr 7897 1c1 7899 + caddc 7901 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 ax-1re 7992 ax-addrcl 7995 |
| This theorem is referenced by: lep1 8891 letrp1 8894 p1le 8895 ledivp1 8949 nnssre 9013 nn1suc 9028 nnge1 9032 div4p1lem1div2 9264 zltp1le 9399 suprzclex 9443 zeo 9450 peano2uz2 9452 uzind 9456 btwnapz 9475 numltc 9501 ge0p1rp 9779 fznatpl1 10170 ubmelm1fzo 10321 infssuzex 10342 qbtwnxr 10366 flhalf 10411 fldiv4p1lem1div2 10414 seq3split 10599 seq3f1olemqsumk 10623 seqf1oglem1 10630 seqf1oglem2 10631 bernneq3 10773 facwordi 10851 faclbnd 10852 expcnvap0 11686 cvgratnnlemfm 11713 cvgratnnlemrate 11714 cvgratz 11716 mertenslemi1 11719 fprodntrivap 11768 divalglemnqt 12104 nonsq 12402 eulerthlema 12425 pcfac 12546 1arith 12563 ennnfonelemkh 12656 tgioo 14898 suplociccreex 14968 hoverb 14992 reeff1olem 15115 lgsvalmod 15368 gausslemma2dlem3 15412 lgsquadlem2 15427 |
| Copyright terms: Public domain | W3C validator |