Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > peano2re | GIF version |
Description: A theorem for reals analogous the second Peano postulate peano2 4572. (Contributed by NM, 5-Jul-2005.) |
Ref | Expression |
---|---|
peano2re | ⊢ (𝐴 ∈ ℝ → (𝐴 + 1) ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1re 7898 | . 2 ⊢ 1 ∈ ℝ | |
2 | readdcl 7879 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 1 ∈ ℝ) → (𝐴 + 1) ∈ ℝ) | |
3 | 1, 2 | mpan2 422 | 1 ⊢ (𝐴 ∈ ℝ → (𝐴 + 1) ∈ ℝ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2136 (class class class)co 5842 ℝcr 7752 1c1 7754 + caddc 7756 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 107 ax-1re 7847 ax-addrcl 7850 |
This theorem is referenced by: lep1 8740 letrp1 8743 p1le 8744 ledivp1 8798 nnssre 8861 nn1suc 8876 nnge1 8880 div4p1lem1div2 9110 zltp1le 9245 suprzclex 9289 zeo 9296 peano2uz2 9298 uzind 9302 btwnapz 9321 numltc 9347 ge0p1rp 9621 fznatpl1 10011 ubmelm1fzo 10161 qbtwnxr 10193 flhalf 10237 fldiv4p1lem1div2 10240 seq3split 10414 seq3f1olemqsumk 10434 bernneq3 10577 facwordi 10653 faclbnd 10654 expcnvap0 11443 cvgratnnlemfm 11470 cvgratnnlemrate 11471 cvgratz 11473 mertenslemi1 11476 fprodntrivap 11525 divalglemnqt 11857 infssuzex 11882 nonsq 12139 eulerthlema 12162 pcfac 12280 1arith 12297 ennnfonelemkh 12345 tgioo 13186 suplociccreex 13242 reeff1olem 13332 lgsvalmod 13560 |
Copyright terms: Public domain | W3C validator |