Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > peano2re | GIF version |
Description: A theorem for reals analogous the second Peano postulate peano2 4579. (Contributed by NM, 5-Jul-2005.) |
Ref | Expression |
---|---|
peano2re | ⊢ (𝐴 ∈ ℝ → (𝐴 + 1) ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1re 7919 | . 2 ⊢ 1 ∈ ℝ | |
2 | readdcl 7900 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 1 ∈ ℝ) → (𝐴 + 1) ∈ ℝ) | |
3 | 1, 2 | mpan2 423 | 1 ⊢ (𝐴 ∈ ℝ → (𝐴 + 1) ∈ ℝ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2141 (class class class)co 5853 ℝcr 7773 1c1 7775 + caddc 7777 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 107 ax-1re 7868 ax-addrcl 7871 |
This theorem is referenced by: lep1 8761 letrp1 8764 p1le 8765 ledivp1 8819 nnssre 8882 nn1suc 8897 nnge1 8901 div4p1lem1div2 9131 zltp1le 9266 suprzclex 9310 zeo 9317 peano2uz2 9319 uzind 9323 btwnapz 9342 numltc 9368 ge0p1rp 9642 fznatpl1 10032 ubmelm1fzo 10182 qbtwnxr 10214 flhalf 10258 fldiv4p1lem1div2 10261 seq3split 10435 seq3f1olemqsumk 10455 bernneq3 10598 facwordi 10674 faclbnd 10675 expcnvap0 11465 cvgratnnlemfm 11492 cvgratnnlemrate 11493 cvgratz 11495 mertenslemi1 11498 fprodntrivap 11547 divalglemnqt 11879 infssuzex 11904 nonsq 12161 eulerthlema 12184 pcfac 12302 1arith 12319 ennnfonelemkh 12367 tgioo 13340 suplociccreex 13396 reeff1olem 13486 lgsvalmod 13714 |
Copyright terms: Public domain | W3C validator |