![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > peano2re | GIF version |
Description: A theorem for reals analogous the second Peano postulate peano2 4627. (Contributed by NM, 5-Jul-2005.) |
Ref | Expression |
---|---|
peano2re | ⊢ (𝐴 ∈ ℝ → (𝐴 + 1) ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1re 8018 | . 2 ⊢ 1 ∈ ℝ | |
2 | readdcl 7998 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 1 ∈ ℝ) → (𝐴 + 1) ∈ ℝ) | |
3 | 1, 2 | mpan2 425 | 1 ⊢ (𝐴 ∈ ℝ → (𝐴 + 1) ∈ ℝ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2164 (class class class)co 5918 ℝcr 7871 1c1 7873 + caddc 7875 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 ax-1re 7966 ax-addrcl 7969 |
This theorem is referenced by: lep1 8864 letrp1 8867 p1le 8868 ledivp1 8922 nnssre 8986 nn1suc 9001 nnge1 9005 div4p1lem1div2 9236 zltp1le 9371 suprzclex 9415 zeo 9422 peano2uz2 9424 uzind 9428 btwnapz 9447 numltc 9473 ge0p1rp 9751 fznatpl1 10142 ubmelm1fzo 10293 qbtwnxr 10326 flhalf 10371 fldiv4p1lem1div2 10374 seq3split 10559 seq3f1olemqsumk 10583 seqf1oglem1 10590 seqf1oglem2 10591 bernneq3 10733 facwordi 10811 faclbnd 10812 expcnvap0 11645 cvgratnnlemfm 11672 cvgratnnlemrate 11673 cvgratz 11675 mertenslemi1 11678 fprodntrivap 11727 divalglemnqt 12061 infssuzex 12086 nonsq 12345 eulerthlema 12368 pcfac 12488 1arith 12505 ennnfonelemkh 12569 tgioo 14714 suplociccreex 14778 hoverb 14802 reeff1olem 14906 lgsvalmod 15135 gausslemma2dlem3 15179 |
Copyright terms: Public domain | W3C validator |