| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > peano2re | GIF version | ||
| Description: A theorem for reals analogous the second Peano postulate peano2 4651. (Contributed by NM, 5-Jul-2005.) |
| Ref | Expression |
|---|---|
| peano2re | ⊢ (𝐴 ∈ ℝ → (𝐴 + 1) ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1re 8091 | . 2 ⊢ 1 ∈ ℝ | |
| 2 | readdcl 8071 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 1 ∈ ℝ) → (𝐴 + 1) ∈ ℝ) | |
| 3 | 1, 2 | mpan2 425 | 1 ⊢ (𝐴 ∈ ℝ → (𝐴 + 1) ∈ ℝ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2177 (class class class)co 5957 ℝcr 7944 1c1 7946 + caddc 7948 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 ax-1re 8039 ax-addrcl 8042 |
| This theorem is referenced by: lep1 8938 letrp1 8941 p1le 8942 ledivp1 8996 nnssre 9060 nn1suc 9075 nnge1 9079 div4p1lem1div2 9311 zltp1le 9447 suprzclex 9491 zeo 9498 peano2uz2 9500 uzind 9504 btwnapz 9523 numltc 9549 ge0p1rp 9827 fznatpl1 10218 ubmelm1fzo 10377 infssuzex 10398 qbtwnxr 10422 flhalf 10467 fldiv4p1lem1div2 10470 seq3split 10655 seq3f1olemqsumk 10679 seqf1oglem1 10686 seqf1oglem2 10687 bernneq3 10829 facwordi 10907 faclbnd 10908 expcnvap0 11888 cvgratnnlemfm 11915 cvgratnnlemrate 11916 cvgratz 11918 mertenslemi1 11921 fprodntrivap 11970 divalglemnqt 12306 nonsq 12604 eulerthlema 12627 pcfac 12748 1arith 12765 ennnfonelemkh 12858 tgioo 15101 suplociccreex 15171 hoverb 15195 reeff1olem 15318 lgsvalmod 15571 gausslemma2dlem3 15615 lgsquadlem2 15630 |
| Copyright terms: Public domain | W3C validator |