![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > peano2re | GIF version |
Description: A theorem for reals analogous the second Peano postulate peano2 4438. (Contributed by NM, 5-Jul-2005.) |
Ref | Expression |
---|---|
peano2re | ⊢ (𝐴 ∈ ℝ → (𝐴 + 1) ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1re 7584 | . 2 ⊢ 1 ∈ ℝ | |
2 | readdcl 7565 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 1 ∈ ℝ) → (𝐴 + 1) ∈ ℝ) | |
3 | 1, 2 | mpan2 417 | 1 ⊢ (𝐴 ∈ ℝ → (𝐴 + 1) ∈ ℝ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 1445 (class class class)co 5690 ℝcr 7446 1c1 7448 + caddc 7450 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia3 107 ax-1re 7536 ax-addrcl 7539 |
This theorem is referenced by: lep1 8403 letrp1 8406 p1le 8407 ledivp1 8461 nnssre 8524 nn1suc 8539 nnge1 8543 div4p1lem1div2 8767 zltp1le 8902 suprzclex 8943 zeo 8950 peano2uz2 8952 uzind 8956 btwnapz 8975 numltc 9001 ge0p1rp 9264 fznatpl1 9639 ubmelm1fzo 9786 qbtwnxr 9818 flhalf 9858 fldiv4p1lem1div2 9861 seq3split 10045 seq3f1olemqsumk 10065 bernneq3 10207 facwordi 10279 faclbnd 10280 expcnvap0 11061 cvgratnnlemfm 11088 cvgratnnlemrate 11089 cvgratz 11091 mertenslemi1 11094 divalglemnqt 11363 infssuzex 11388 nonsq 11628 tgioo 12336 |
Copyright terms: Public domain | W3C validator |