| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > peano2re | GIF version | ||
| Description: A theorem for reals analogous the second Peano postulate peano2 4686. (Contributed by NM, 5-Jul-2005.) |
| Ref | Expression |
|---|---|
| peano2re | ⊢ (𝐴 ∈ ℝ → (𝐴 + 1) ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1re 8141 | . 2 ⊢ 1 ∈ ℝ | |
| 2 | readdcl 8121 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 1 ∈ ℝ) → (𝐴 + 1) ∈ ℝ) | |
| 3 | 1, 2 | mpan2 425 | 1 ⊢ (𝐴 ∈ ℝ → (𝐴 + 1) ∈ ℝ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2200 (class class class)co 6000 ℝcr 7994 1c1 7996 + caddc 7998 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 ax-1re 8089 ax-addrcl 8092 |
| This theorem is referenced by: lep1 8988 letrp1 8991 p1le 8992 ledivp1 9046 nnssre 9110 nn1suc 9125 nnge1 9129 div4p1lem1div2 9361 zltp1le 9497 suprzclex 9541 zeo 9548 peano2uz2 9550 uzind 9554 btwnapz 9573 numltc 9599 ge0p1rp 9877 fznatpl1 10268 ubmelm1fzo 10427 infssuzex 10448 qbtwnxr 10472 flhalf 10517 fldiv4p1lem1div2 10520 seq3split 10705 seq3f1olemqsumk 10729 seqf1oglem1 10736 seqf1oglem2 10737 bernneq3 10879 facwordi 10957 faclbnd 10958 expcnvap0 12008 cvgratnnlemfm 12035 cvgratnnlemrate 12036 cvgratz 12038 mertenslemi1 12041 fprodntrivap 12090 divalglemnqt 12426 nonsq 12724 eulerthlema 12747 pcfac 12868 1arith 12885 ennnfonelemkh 12978 tgioo 15222 suplociccreex 15292 hoverb 15316 reeff1olem 15439 lgsvalmod 15692 gausslemma2dlem3 15736 lgsquadlem2 15751 |
| Copyright terms: Public domain | W3C validator |