| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > peano2re | GIF version | ||
| Description: A theorem for reals analogous the second Peano postulate peano2 4642. (Contributed by NM, 5-Jul-2005.) |
| Ref | Expression |
|---|---|
| peano2re | ⊢ (𝐴 ∈ ℝ → (𝐴 + 1) ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1re 8070 | . 2 ⊢ 1 ∈ ℝ | |
| 2 | readdcl 8050 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 1 ∈ ℝ) → (𝐴 + 1) ∈ ℝ) | |
| 3 | 1, 2 | mpan2 425 | 1 ⊢ (𝐴 ∈ ℝ → (𝐴 + 1) ∈ ℝ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2175 (class class class)co 5943 ℝcr 7923 1c1 7925 + caddc 7927 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 ax-1re 8018 ax-addrcl 8021 |
| This theorem is referenced by: lep1 8917 letrp1 8920 p1le 8921 ledivp1 8975 nnssre 9039 nn1suc 9054 nnge1 9058 div4p1lem1div2 9290 zltp1le 9426 suprzclex 9470 zeo 9477 peano2uz2 9479 uzind 9483 btwnapz 9502 numltc 9528 ge0p1rp 9806 fznatpl1 10197 ubmelm1fzo 10353 infssuzex 10374 qbtwnxr 10398 flhalf 10443 fldiv4p1lem1div2 10446 seq3split 10631 seq3f1olemqsumk 10655 seqf1oglem1 10662 seqf1oglem2 10663 bernneq3 10805 facwordi 10883 faclbnd 10884 expcnvap0 11784 cvgratnnlemfm 11811 cvgratnnlemrate 11812 cvgratz 11814 mertenslemi1 11817 fprodntrivap 11866 divalglemnqt 12202 nonsq 12500 eulerthlema 12523 pcfac 12644 1arith 12661 ennnfonelemkh 12754 tgioo 14997 suplociccreex 15067 hoverb 15091 reeff1olem 15214 lgsvalmod 15467 gausslemma2dlem3 15511 lgsquadlem2 15526 |
| Copyright terms: Public domain | W3C validator |