ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zesq GIF version

Theorem zesq 10378
Description: An integer is even iff its square is even. (Contributed by Mario Carneiro, 12-Sep-2015.)
Assertion
Ref Expression
zesq (𝑁 ∈ ℤ → ((𝑁 / 2) ∈ ℤ ↔ ((𝑁↑2) / 2) ∈ ℤ))

Proof of Theorem zesq
StepHypRef Expression
1 zcn 9027 . . . . . . 7 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
2 sqval 10319 . . . . . . 7 (𝑁 ∈ ℂ → (𝑁↑2) = (𝑁 · 𝑁))
31, 2syl 14 . . . . . 6 (𝑁 ∈ ℤ → (𝑁↑2) = (𝑁 · 𝑁))
43oveq1d 5757 . . . . 5 (𝑁 ∈ ℤ → ((𝑁↑2) / 2) = ((𝑁 · 𝑁) / 2))
5 2cnd 8761 . . . . . 6 (𝑁 ∈ ℤ → 2 ∈ ℂ)
6 2ap0 8781 . . . . . . 7 2 # 0
76a1i 9 . . . . . 6 (𝑁 ∈ ℤ → 2 # 0)
81, 1, 5, 7divassapd 8554 . . . . 5 (𝑁 ∈ ℤ → ((𝑁 · 𝑁) / 2) = (𝑁 · (𝑁 / 2)))
94, 8eqtrd 2150 . . . 4 (𝑁 ∈ ℤ → ((𝑁↑2) / 2) = (𝑁 · (𝑁 / 2)))
109adantr 274 . . 3 ((𝑁 ∈ ℤ ∧ (𝑁 / 2) ∈ ℤ) → ((𝑁↑2) / 2) = (𝑁 · (𝑁 / 2)))
11 zmulcl 9075 . . 3 ((𝑁 ∈ ℤ ∧ (𝑁 / 2) ∈ ℤ) → (𝑁 · (𝑁 / 2)) ∈ ℤ)
1210, 11eqeltrd 2194 . 2 ((𝑁 ∈ ℤ ∧ (𝑁 / 2) ∈ ℤ) → ((𝑁↑2) / 2) ∈ ℤ)
131adantr 274 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → 𝑁 ∈ ℂ)
14 sqcl 10322 . . . . . . . . . . 11 (𝑁 ∈ ℂ → (𝑁↑2) ∈ ℂ)
1513, 14syl 14 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → (𝑁↑2) ∈ ℂ)
16 peano2cn 7865 . . . . . . . . . 10 ((𝑁↑2) ∈ ℂ → ((𝑁↑2) + 1) ∈ ℂ)
1715, 16syl 14 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → ((𝑁↑2) + 1) ∈ ℂ)
1817halfcld 8932 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → (((𝑁↑2) + 1) / 2) ∈ ℂ)
1918, 13pncand 8042 . . . . . . 7 ((𝑁 ∈ ℤ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → (((((𝑁↑2) + 1) / 2) + 𝑁) − 𝑁) = (((𝑁↑2) + 1) / 2))
20 binom21 10372 . . . . . . . . . . . . 13 (𝑁 ∈ ℂ → ((𝑁 + 1)↑2) = (((𝑁↑2) + (2 · 𝑁)) + 1))
2113, 20syl 14 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → ((𝑁 + 1)↑2) = (((𝑁↑2) + (2 · 𝑁)) + 1))
22 peano2cn 7865 . . . . . . . . . . . . . 14 (𝑁 ∈ ℂ → (𝑁 + 1) ∈ ℂ)
2313, 22syl 14 . . . . . . . . . . . . 13 ((𝑁 ∈ ℤ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → (𝑁 + 1) ∈ ℂ)
24 sqval 10319 . . . . . . . . . . . . 13 ((𝑁 + 1) ∈ ℂ → ((𝑁 + 1)↑2) = ((𝑁 + 1) · (𝑁 + 1)))
2523, 24syl 14 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → ((𝑁 + 1)↑2) = ((𝑁 + 1) · (𝑁 + 1)))
26 2cn 8759 . . . . . . . . . . . . . 14 2 ∈ ℂ
27 mulcl 7715 . . . . . . . . . . . . . 14 ((2 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (2 · 𝑁) ∈ ℂ)
2826, 13, 27sylancr 410 . . . . . . . . . . . . 13 ((𝑁 ∈ ℤ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → (2 · 𝑁) ∈ ℂ)
29 1cnd 7750 . . . . . . . . . . . . 13 ((𝑁 ∈ ℤ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → 1 ∈ ℂ)
3015, 28, 29add32d 7898 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → (((𝑁↑2) + (2 · 𝑁)) + 1) = (((𝑁↑2) + 1) + (2 · 𝑁)))
3121, 25, 303eqtr3d 2158 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → ((𝑁 + 1) · (𝑁 + 1)) = (((𝑁↑2) + 1) + (2 · 𝑁)))
3231oveq1d 5757 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → (((𝑁 + 1) · (𝑁 + 1)) / 2) = ((((𝑁↑2) + 1) + (2 · 𝑁)) / 2))
33 2cnd 8761 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → 2 ∈ ℂ)
346a1i 9 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → 2 # 0)
3523, 23, 33, 34divassapd 8554 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → (((𝑁 + 1) · (𝑁 + 1)) / 2) = ((𝑁 + 1) · ((𝑁 + 1) / 2)))
3617, 28, 33, 34divdirapd 8557 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → ((((𝑁↑2) + 1) + (2 · 𝑁)) / 2) = ((((𝑁↑2) + 1) / 2) + ((2 · 𝑁) / 2)))
3713, 33, 34divcanap3d 8523 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → ((2 · 𝑁) / 2) = 𝑁)
3837oveq2d 5758 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → ((((𝑁↑2) + 1) / 2) + ((2 · 𝑁) / 2)) = ((((𝑁↑2) + 1) / 2) + 𝑁))
3936, 38eqtrd 2150 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → ((((𝑁↑2) + 1) + (2 · 𝑁)) / 2) = ((((𝑁↑2) + 1) / 2) + 𝑁))
4032, 35, 393eqtr3d 2158 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → ((𝑁 + 1) · ((𝑁 + 1) / 2)) = ((((𝑁↑2) + 1) / 2) + 𝑁))
41 peano2z 9058 . . . . . . . . . 10 (𝑁 ∈ ℤ → (𝑁 + 1) ∈ ℤ)
42 zmulcl 9075 . . . . . . . . . 10 (((𝑁 + 1) ∈ ℤ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → ((𝑁 + 1) · ((𝑁 + 1) / 2)) ∈ ℤ)
4341, 42sylan 281 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → ((𝑁 + 1) · ((𝑁 + 1) / 2)) ∈ ℤ)
4440, 43eqeltrrd 2195 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → ((((𝑁↑2) + 1) / 2) + 𝑁) ∈ ℤ)
45 simpl 108 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → 𝑁 ∈ ℤ)
4644, 45zsubcld 9146 . . . . . . 7 ((𝑁 ∈ ℤ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → (((((𝑁↑2) + 1) / 2) + 𝑁) − 𝑁) ∈ ℤ)
4719, 46eqeltrrd 2195 . . . . . 6 ((𝑁 ∈ ℤ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → (((𝑁↑2) + 1) / 2) ∈ ℤ)
4847ex 114 . . . . 5 (𝑁 ∈ ℤ → (((𝑁 + 1) / 2) ∈ ℤ → (((𝑁↑2) + 1) / 2) ∈ ℤ))
4948con3d 605 . . . 4 (𝑁 ∈ ℤ → (¬ (((𝑁↑2) + 1) / 2) ∈ ℤ → ¬ ((𝑁 + 1) / 2) ∈ ℤ))
50 zsqcl 10331 . . . . 5 (𝑁 ∈ ℤ → (𝑁↑2) ∈ ℤ)
51 zeo2 9125 . . . . 5 ((𝑁↑2) ∈ ℤ → (((𝑁↑2) / 2) ∈ ℤ ↔ ¬ (((𝑁↑2) + 1) / 2) ∈ ℤ))
5250, 51syl 14 . . . 4 (𝑁 ∈ ℤ → (((𝑁↑2) / 2) ∈ ℤ ↔ ¬ (((𝑁↑2) + 1) / 2) ∈ ℤ))
53 zeo2 9125 . . . 4 (𝑁 ∈ ℤ → ((𝑁 / 2) ∈ ℤ ↔ ¬ ((𝑁 + 1) / 2) ∈ ℤ))
5449, 52, 533imtr4d 202 . . 3 (𝑁 ∈ ℤ → (((𝑁↑2) / 2) ∈ ℤ → (𝑁 / 2) ∈ ℤ))
5554imp 123 . 2 ((𝑁 ∈ ℤ ∧ ((𝑁↑2) / 2) ∈ ℤ) → (𝑁 / 2) ∈ ℤ)
5612, 55impbida 570 1 (𝑁 ∈ ℤ → ((𝑁 / 2) ∈ ℤ ↔ ((𝑁↑2) / 2) ∈ ℤ))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104   = wceq 1316  wcel 1465   class class class wbr 3899  (class class class)co 5742  cc 7586  0cc0 7588  1c1 7589   + caddc 7591   · cmul 7593  cmin 7901   # cap 8311   / cdiv 8400  2c2 8739  cz 9022  cexp 10260
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 588  ax-in2 589  ax-io 683  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-10 1468  ax-11 1469  ax-i12 1470  ax-bndl 1471  ax-4 1472  ax-13 1476  ax-14 1477  ax-17 1491  ax-i9 1495  ax-ial 1499  ax-i5r 1500  ax-ext 2099  ax-coll 4013  ax-sep 4016  ax-nul 4024  ax-pow 4068  ax-pr 4101  ax-un 4325  ax-setind 4422  ax-iinf 4472  ax-cnex 7679  ax-resscn 7680  ax-1cn 7681  ax-1re 7682  ax-icn 7683  ax-addcl 7684  ax-addrcl 7685  ax-mulcl 7686  ax-mulrcl 7687  ax-addcom 7688  ax-mulcom 7689  ax-addass 7690  ax-mulass 7691  ax-distr 7692  ax-i2m1 7693  ax-0lt1 7694  ax-1rid 7695  ax-0id 7696  ax-rnegex 7697  ax-precex 7698  ax-cnre 7699  ax-pre-ltirr 7700  ax-pre-ltwlin 7701  ax-pre-lttrn 7702  ax-pre-apti 7703  ax-pre-ltadd 7704  ax-pre-mulgt0 7705  ax-pre-mulext 7706
This theorem depends on definitions:  df-bi 116  df-dc 805  df-3or 948  df-3an 949  df-tru 1319  df-fal 1322  df-nf 1422  df-sb 1721  df-eu 1980  df-mo 1981  df-clab 2104  df-cleq 2110  df-clel 2113  df-nfc 2247  df-ne 2286  df-nel 2381  df-ral 2398  df-rex 2399  df-reu 2400  df-rmo 2401  df-rab 2402  df-v 2662  df-sbc 2883  df-csb 2976  df-dif 3043  df-un 3045  df-in 3047  df-ss 3054  df-nul 3334  df-if 3445  df-pw 3482  df-sn 3503  df-pr 3504  df-op 3506  df-uni 3707  df-int 3742  df-iun 3785  df-br 3900  df-opab 3960  df-mpt 3961  df-tr 3997  df-id 4185  df-po 4188  df-iso 4189  df-iord 4258  df-on 4260  df-ilim 4261  df-suc 4263  df-iom 4475  df-xp 4515  df-rel 4516  df-cnv 4517  df-co 4518  df-dm 4519  df-rn 4520  df-res 4521  df-ima 4522  df-iota 5058  df-fun 5095  df-fn 5096  df-f 5097  df-f1 5098  df-fo 5099  df-f1o 5100  df-fv 5101  df-riota 5698  df-ov 5745  df-oprab 5746  df-mpo 5747  df-1st 6006  df-2nd 6007  df-recs 6170  df-frec 6256  df-pnf 7770  df-mnf 7771  df-xr 7772  df-ltxr 7773  df-le 7774  df-sub 7903  df-neg 7904  df-reap 8305  df-ap 8312  df-div 8401  df-inn 8689  df-2 8747  df-n0 8946  df-z 9023  df-uz 9295  df-seqfrec 10187  df-exp 10261
This theorem is referenced by:  nnesq  10379  sqrt2irrlem  11766
  Copyright terms: Public domain W3C validator