ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zesq GIF version

Theorem zesq 10767
Description: An integer is even iff its square is even. (Contributed by Mario Carneiro, 12-Sep-2015.)
Assertion
Ref Expression
zesq (𝑁 ∈ ℤ → ((𝑁 / 2) ∈ ℤ ↔ ((𝑁↑2) / 2) ∈ ℤ))

Proof of Theorem zesq
StepHypRef Expression
1 zcn 9348 . . . . . . 7 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
2 sqval 10706 . . . . . . 7 (𝑁 ∈ ℂ → (𝑁↑2) = (𝑁 · 𝑁))
31, 2syl 14 . . . . . 6 (𝑁 ∈ ℤ → (𝑁↑2) = (𝑁 · 𝑁))
43oveq1d 5940 . . . . 5 (𝑁 ∈ ℤ → ((𝑁↑2) / 2) = ((𝑁 · 𝑁) / 2))
5 2cnd 9080 . . . . . 6 (𝑁 ∈ ℤ → 2 ∈ ℂ)
6 2ap0 9100 . . . . . . 7 2 # 0
76a1i 9 . . . . . 6 (𝑁 ∈ ℤ → 2 # 0)
81, 1, 5, 7divassapd 8870 . . . . 5 (𝑁 ∈ ℤ → ((𝑁 · 𝑁) / 2) = (𝑁 · (𝑁 / 2)))
94, 8eqtrd 2229 . . . 4 (𝑁 ∈ ℤ → ((𝑁↑2) / 2) = (𝑁 · (𝑁 / 2)))
109adantr 276 . . 3 ((𝑁 ∈ ℤ ∧ (𝑁 / 2) ∈ ℤ) → ((𝑁↑2) / 2) = (𝑁 · (𝑁 / 2)))
11 zmulcl 9396 . . 3 ((𝑁 ∈ ℤ ∧ (𝑁 / 2) ∈ ℤ) → (𝑁 · (𝑁 / 2)) ∈ ℤ)
1210, 11eqeltrd 2273 . 2 ((𝑁 ∈ ℤ ∧ (𝑁 / 2) ∈ ℤ) → ((𝑁↑2) / 2) ∈ ℤ)
131adantr 276 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → 𝑁 ∈ ℂ)
14 sqcl 10709 . . . . . . . . . . 11 (𝑁 ∈ ℂ → (𝑁↑2) ∈ ℂ)
1513, 14syl 14 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → (𝑁↑2) ∈ ℂ)
16 peano2cn 8178 . . . . . . . . . 10 ((𝑁↑2) ∈ ℂ → ((𝑁↑2) + 1) ∈ ℂ)
1715, 16syl 14 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → ((𝑁↑2) + 1) ∈ ℂ)
1817halfcld 9253 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → (((𝑁↑2) + 1) / 2) ∈ ℂ)
1918, 13pncand 8355 . . . . . . 7 ((𝑁 ∈ ℤ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → (((((𝑁↑2) + 1) / 2) + 𝑁) − 𝑁) = (((𝑁↑2) + 1) / 2))
20 binom21 10761 . . . . . . . . . . . . 13 (𝑁 ∈ ℂ → ((𝑁 + 1)↑2) = (((𝑁↑2) + (2 · 𝑁)) + 1))
2113, 20syl 14 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → ((𝑁 + 1)↑2) = (((𝑁↑2) + (2 · 𝑁)) + 1))
22 peano2cn 8178 . . . . . . . . . . . . . 14 (𝑁 ∈ ℂ → (𝑁 + 1) ∈ ℂ)
2313, 22syl 14 . . . . . . . . . . . . 13 ((𝑁 ∈ ℤ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → (𝑁 + 1) ∈ ℂ)
24 sqval 10706 . . . . . . . . . . . . 13 ((𝑁 + 1) ∈ ℂ → ((𝑁 + 1)↑2) = ((𝑁 + 1) · (𝑁 + 1)))
2523, 24syl 14 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → ((𝑁 + 1)↑2) = ((𝑁 + 1) · (𝑁 + 1)))
26 2cn 9078 . . . . . . . . . . . . . 14 2 ∈ ℂ
27 mulcl 8023 . . . . . . . . . . . . . 14 ((2 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (2 · 𝑁) ∈ ℂ)
2826, 13, 27sylancr 414 . . . . . . . . . . . . 13 ((𝑁 ∈ ℤ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → (2 · 𝑁) ∈ ℂ)
29 1cnd 8059 . . . . . . . . . . . . 13 ((𝑁 ∈ ℤ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → 1 ∈ ℂ)
3015, 28, 29add32d 8211 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → (((𝑁↑2) + (2 · 𝑁)) + 1) = (((𝑁↑2) + 1) + (2 · 𝑁)))
3121, 25, 303eqtr3d 2237 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → ((𝑁 + 1) · (𝑁 + 1)) = (((𝑁↑2) + 1) + (2 · 𝑁)))
3231oveq1d 5940 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → (((𝑁 + 1) · (𝑁 + 1)) / 2) = ((((𝑁↑2) + 1) + (2 · 𝑁)) / 2))
33 2cnd 9080 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → 2 ∈ ℂ)
346a1i 9 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → 2 # 0)
3523, 23, 33, 34divassapd 8870 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → (((𝑁 + 1) · (𝑁 + 1)) / 2) = ((𝑁 + 1) · ((𝑁 + 1) / 2)))
3617, 28, 33, 34divdirapd 8873 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → ((((𝑁↑2) + 1) + (2 · 𝑁)) / 2) = ((((𝑁↑2) + 1) / 2) + ((2 · 𝑁) / 2)))
3713, 33, 34divcanap3d 8839 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → ((2 · 𝑁) / 2) = 𝑁)
3837oveq2d 5941 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → ((((𝑁↑2) + 1) / 2) + ((2 · 𝑁) / 2)) = ((((𝑁↑2) + 1) / 2) + 𝑁))
3936, 38eqtrd 2229 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → ((((𝑁↑2) + 1) + (2 · 𝑁)) / 2) = ((((𝑁↑2) + 1) / 2) + 𝑁))
4032, 35, 393eqtr3d 2237 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → ((𝑁 + 1) · ((𝑁 + 1) / 2)) = ((((𝑁↑2) + 1) / 2) + 𝑁))
41 peano2z 9379 . . . . . . . . . 10 (𝑁 ∈ ℤ → (𝑁 + 1) ∈ ℤ)
42 zmulcl 9396 . . . . . . . . . 10 (((𝑁 + 1) ∈ ℤ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → ((𝑁 + 1) · ((𝑁 + 1) / 2)) ∈ ℤ)
4341, 42sylan 283 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → ((𝑁 + 1) · ((𝑁 + 1) / 2)) ∈ ℤ)
4440, 43eqeltrrd 2274 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → ((((𝑁↑2) + 1) / 2) + 𝑁) ∈ ℤ)
45 simpl 109 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → 𝑁 ∈ ℤ)
4644, 45zsubcld 9470 . . . . . . 7 ((𝑁 ∈ ℤ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → (((((𝑁↑2) + 1) / 2) + 𝑁) − 𝑁) ∈ ℤ)
4719, 46eqeltrrd 2274 . . . . . 6 ((𝑁 ∈ ℤ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → (((𝑁↑2) + 1) / 2) ∈ ℤ)
4847ex 115 . . . . 5 (𝑁 ∈ ℤ → (((𝑁 + 1) / 2) ∈ ℤ → (((𝑁↑2) + 1) / 2) ∈ ℤ))
4948con3d 632 . . . 4 (𝑁 ∈ ℤ → (¬ (((𝑁↑2) + 1) / 2) ∈ ℤ → ¬ ((𝑁 + 1) / 2) ∈ ℤ))
50 zsqcl 10719 . . . . 5 (𝑁 ∈ ℤ → (𝑁↑2) ∈ ℤ)
51 zeo2 9449 . . . . 5 ((𝑁↑2) ∈ ℤ → (((𝑁↑2) / 2) ∈ ℤ ↔ ¬ (((𝑁↑2) + 1) / 2) ∈ ℤ))
5250, 51syl 14 . . . 4 (𝑁 ∈ ℤ → (((𝑁↑2) / 2) ∈ ℤ ↔ ¬ (((𝑁↑2) + 1) / 2) ∈ ℤ))
53 zeo2 9449 . . . 4 (𝑁 ∈ ℤ → ((𝑁 / 2) ∈ ℤ ↔ ¬ ((𝑁 + 1) / 2) ∈ ℤ))
5449, 52, 533imtr4d 203 . . 3 (𝑁 ∈ ℤ → (((𝑁↑2) / 2) ∈ ℤ → (𝑁 / 2) ∈ ℤ))
5554imp 124 . 2 ((𝑁 ∈ ℤ ∧ ((𝑁↑2) / 2) ∈ ℤ) → (𝑁 / 2) ∈ ℤ)
5612, 55impbida 596 1 (𝑁 ∈ ℤ → ((𝑁 / 2) ∈ ℤ ↔ ((𝑁↑2) / 2) ∈ ℤ))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105   = wceq 1364  wcel 2167   class class class wbr 4034  (class class class)co 5925  cc 7894  0cc0 7896  1c1 7897   + caddc 7899   · cmul 7901  cmin 8214   # cap 8625   / cdiv 8716  2c2 9058  cz 9343  cexp 10647
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-inn 9008  df-2 9066  df-n0 9267  df-z 9344  df-uz 9619  df-seqfrec 10557  df-exp 10648
This theorem is referenced by:  nnesq  10768  sqrt2irrlem  12354
  Copyright terms: Public domain W3C validator