Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > peano2cn | Unicode version |
Description: A theorem for complex numbers analogous the second Peano postulate peano2 4552. (Contributed by NM, 17-Aug-2005.) |
Ref | Expression |
---|---|
peano2cn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1cn 7808 | . 2 | |
2 | addcl 7840 | . 2 | |
3 | 1, 2 | mpan2 422 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wcel 2128 (class class class)co 5818 cc 7713 c1 7716 caddc 7718 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 107 ax-1cn 7808 ax-addcl 7811 |
This theorem is referenced by: xp1d2m1eqxm1d2 9068 nneo 9250 zeo 9252 zeo2 9253 zesq 10518 facndiv 10595 faclbnd 10597 faclbnd6 10600 bcxmas 11368 trireciplem 11379 odd2np1 11745 abssinper 13127 |
Copyright terms: Public domain | W3C validator |