![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > peano2cn | Unicode version |
Description: A theorem for complex numbers analogous the second Peano postulate peano2 4596. (Contributed by NM, 17-Aug-2005.) |
Ref | Expression |
---|---|
peano2cn |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1cn 7906 |
. 2
![]() ![]() ![]() ![]() | |
2 | addcl 7938 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | mpan2 425 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 ax-1cn 7906 ax-addcl 7909 |
This theorem is referenced by: xp1d2m1eqxm1d2 9173 nneo 9358 zeo 9360 zeo2 9361 zesq 10641 facndiv 10721 faclbnd 10723 faclbnd6 10726 bcxmas 11499 trireciplem 11510 odd2np1 11880 abssinper 14306 lgseisenlem1 14489 |
Copyright terms: Public domain | W3C validator |