ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  peano2cn Unicode version

Theorem peano2cn 8242
Description: A theorem for complex numbers analogous the second Peano postulate peano2 4661. (Contributed by NM, 17-Aug-2005.)
Assertion
Ref Expression
peano2cn  |-  ( A  e.  CC  ->  ( A  +  1 )  e.  CC )

Proof of Theorem peano2cn
StepHypRef Expression
1 ax-1cn 8053 . 2  |-  1  e.  CC
2 addcl 8085 . 2  |-  ( ( A  e.  CC  /\  1  e.  CC )  ->  ( A  +  1 )  e.  CC )
31, 2mpan2 425 1  |-  ( A  e.  CC  ->  ( A  +  1 )  e.  CC )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2178  (class class class)co 5967   CCcc 7958   1c1 7961    + caddc 7963
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia3 108  ax-1cn 8053  ax-addcl 8056
This theorem is referenced by:  xp1d2m1eqxm1d2  9325  nneo  9511  zeo  9513  zeo2  9514  zesq  10840  facndiv  10921  faclbnd  10923  faclbnd6  10926  bcxmas  11915  trireciplem  11926  odd2np1  12299  abssinper  15433  lgseisenlem1  15662  lgsquadlem1  15669
  Copyright terms: Public domain W3C validator