ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  peano2cn Unicode version

Theorem peano2cn 7993
Description: A theorem for complex numbers analogous the second Peano postulate peano2 4552. (Contributed by NM, 17-Aug-2005.)
Assertion
Ref Expression
peano2cn  |-  ( A  e.  CC  ->  ( A  +  1 )  e.  CC )

Proof of Theorem peano2cn
StepHypRef Expression
1 ax-1cn 7808 . 2  |-  1  e.  CC
2 addcl 7840 . 2  |-  ( ( A  e.  CC  /\  1  e.  CC )  ->  ( A  +  1 )  e.  CC )
31, 2mpan2 422 1  |-  ( A  e.  CC  ->  ( A  +  1 )  e.  CC )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2128  (class class class)co 5818   CCcc 7713   1c1 7716    + caddc 7718
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia3 107  ax-1cn 7808  ax-addcl 7811
This theorem is referenced by:  xp1d2m1eqxm1d2  9068  nneo  9250  zeo  9252  zeo2  9253  zesq  10518  facndiv  10595  faclbnd  10597  faclbnd6  10600  bcxmas  11368  trireciplem  11379  odd2np1  11745  abssinper  13127
  Copyright terms: Public domain W3C validator