| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > peano2cn | Unicode version | ||
| Description: A theorem for complex numbers analogous the second Peano postulate peano2 4631. (Contributed by NM, 17-Aug-2005.) | 
| Ref | Expression | 
|---|---|
| peano2cn | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ax-1cn 7972 | 
. 2
 | |
| 2 | addcl 8004 | 
. 2
 | |
| 3 | 1, 2 | mpan2 425 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 ax-1cn 7972 ax-addcl 7975 | 
| This theorem is referenced by: xp1d2m1eqxm1d2 9244 nneo 9429 zeo 9431 zeo2 9432 zesq 10750 facndiv 10831 faclbnd 10833 faclbnd6 10836 bcxmas 11654 trireciplem 11665 odd2np1 12038 abssinper 15082 lgseisenlem1 15311 lgsquadlem1 15318 | 
| Copyright terms: Public domain | W3C validator |