| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > peano2cn | Unicode version | ||
| Description: A theorem for complex numbers analogous the second Peano postulate peano2 4686. (Contributed by NM, 17-Aug-2005.) |
| Ref | Expression |
|---|---|
| peano2cn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1cn 8088 |
. 2
| |
| 2 | addcl 8120 |
. 2
| |
| 3 | 1, 2 | mpan2 425 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 ax-1cn 8088 ax-addcl 8091 |
| This theorem is referenced by: xp1d2m1eqxm1d2 9360 nneo 9546 zeo 9548 zeo2 9549 zesq 10875 facndiv 10956 faclbnd 10958 faclbnd6 10961 bcxmas 11995 trireciplem 12006 odd2np1 12379 abssinper 15514 lgseisenlem1 15743 lgsquadlem1 15750 |
| Copyright terms: Public domain | W3C validator |