ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  abssinper GIF version

Theorem abssinper 13934
Description: The absolute value of sine has period π. (Contributed by NM, 17-Aug-2008.)
Assertion
Ref Expression
abssinper ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (abs‘(sin‘(𝐴 + (𝐾 · π)))) = (abs‘(sin‘𝐴)))

Proof of Theorem abssinper
StepHypRef Expression
1 zcn 9247 . . . . . . . . . 10 (𝐾 ∈ ℤ → 𝐾 ∈ ℂ)
2 halfcl 9134 . . . . . . . . . . . 12 (𝐾 ∈ ℂ → (𝐾 / 2) ∈ ℂ)
3 2cn 8979 . . . . . . . . . . . . 13 2 ∈ ℂ
4 picn 13875 . . . . . . . . . . . . 13 π ∈ ℂ
5 mulass 7933 . . . . . . . . . . . . 13 (((𝐾 / 2) ∈ ℂ ∧ 2 ∈ ℂ ∧ π ∈ ℂ) → (((𝐾 / 2) · 2) · π) = ((𝐾 / 2) · (2 · π)))
63, 4, 5mp3an23 1329 . . . . . . . . . . . 12 ((𝐾 / 2) ∈ ℂ → (((𝐾 / 2) · 2) · π) = ((𝐾 / 2) · (2 · π)))
72, 6syl 14 . . . . . . . . . . 11 (𝐾 ∈ ℂ → (((𝐾 / 2) · 2) · π) = ((𝐾 / 2) · (2 · π)))
8 2ap0 9001 . . . . . . . . . . . . 13 2 # 0
9 divcanap1 8627 . . . . . . . . . . . . 13 ((𝐾 ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 # 0) → ((𝐾 / 2) · 2) = 𝐾)
103, 8, 9mp3an23 1329 . . . . . . . . . . . 12 (𝐾 ∈ ℂ → ((𝐾 / 2) · 2) = 𝐾)
1110oveq1d 5884 . . . . . . . . . . 11 (𝐾 ∈ ℂ → (((𝐾 / 2) · 2) · π) = (𝐾 · π))
127, 11eqtr3d 2212 . . . . . . . . . 10 (𝐾 ∈ ℂ → ((𝐾 / 2) · (2 · π)) = (𝐾 · π))
131, 12syl 14 . . . . . . . . 9 (𝐾 ∈ ℤ → ((𝐾 / 2) · (2 · π)) = (𝐾 · π))
1413adantl 277 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → ((𝐾 / 2) · (2 · π)) = (𝐾 · π))
1514oveq2d 5885 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (𝐴 + ((𝐾 / 2) · (2 · π))) = (𝐴 + (𝐾 · π)))
1615fveq2d 5515 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (sin‘(𝐴 + ((𝐾 / 2) · (2 · π)))) = (sin‘(𝐴 + (𝐾 · π))))
1716eqcomd 2183 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (sin‘(𝐴 + (𝐾 · π))) = (sin‘(𝐴 + ((𝐾 / 2) · (2 · π)))))
1817adantr 276 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) ∧ (𝐾 / 2) ∈ ℤ) → (sin‘(𝐴 + (𝐾 · π))) = (sin‘(𝐴 + ((𝐾 / 2) · (2 · π)))))
19 sinper 13897 . . . . 5 ((𝐴 ∈ ℂ ∧ (𝐾 / 2) ∈ ℤ) → (sin‘(𝐴 + ((𝐾 / 2) · (2 · π)))) = (sin‘𝐴))
2019adantlr 477 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) ∧ (𝐾 / 2) ∈ ℤ) → (sin‘(𝐴 + ((𝐾 / 2) · (2 · π)))) = (sin‘𝐴))
2118, 20eqtrd 2210 . . 3 (((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) ∧ (𝐾 / 2) ∈ ℤ) → (sin‘(𝐴 + (𝐾 · π))) = (sin‘𝐴))
2221fveq2d 5515 . 2 (((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) ∧ (𝐾 / 2) ∈ ℤ) → (abs‘(sin‘(𝐴 + (𝐾 · π)))) = (abs‘(sin‘𝐴)))
23 peano2cn 8082 . . . . . . . . . . . 12 (𝐾 ∈ ℂ → (𝐾 + 1) ∈ ℂ)
24 halfcl 9134 . . . . . . . . . . . 12 ((𝐾 + 1) ∈ ℂ → ((𝐾 + 1) / 2) ∈ ℂ)
2523, 24syl 14 . . . . . . . . . . 11 (𝐾 ∈ ℂ → ((𝐾 + 1) / 2) ∈ ℂ)
263, 4mulcli 7953 . . . . . . . . . . 11 (2 · π) ∈ ℂ
27 mulcl 7929 . . . . . . . . . . 11 ((((𝐾 + 1) / 2) ∈ ℂ ∧ (2 · π) ∈ ℂ) → (((𝐾 + 1) / 2) · (2 · π)) ∈ ℂ)
2825, 26, 27sylancl 413 . . . . . . . . . 10 (𝐾 ∈ ℂ → (((𝐾 + 1) / 2) · (2 · π)) ∈ ℂ)
29 subadd23 8159 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ π ∈ ℂ ∧ (((𝐾 + 1) / 2) · (2 · π)) ∈ ℂ) → ((𝐴 − π) + (((𝐾 + 1) / 2) · (2 · π))) = (𝐴 + ((((𝐾 + 1) / 2) · (2 · π)) − π)))
304, 29mp3an2 1325 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (((𝐾 + 1) / 2) · (2 · π)) ∈ ℂ) → ((𝐴 − π) + (((𝐾 + 1) / 2) · (2 · π))) = (𝐴 + ((((𝐾 + 1) / 2) · (2 · π)) − π)))
3128, 30sylan2 286 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℂ) → ((𝐴 − π) + (((𝐾 + 1) / 2) · (2 · π))) = (𝐴 + ((((𝐾 + 1) / 2) · (2 · π)) − π)))
32 divcanap1 8627 . . . . . . . . . . . . . . . . . . 19 (((𝐾 + 1) ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 # 0) → (((𝐾 + 1) / 2) · 2) = (𝐾 + 1))
333, 8, 32mp3an23 1329 . . . . . . . . . . . . . . . . . 18 ((𝐾 + 1) ∈ ℂ → (((𝐾 + 1) / 2) · 2) = (𝐾 + 1))
3423, 33syl 14 . . . . . . . . . . . . . . . . 17 (𝐾 ∈ ℂ → (((𝐾 + 1) / 2) · 2) = (𝐾 + 1))
3534oveq1d 5884 . . . . . . . . . . . . . . . 16 (𝐾 ∈ ℂ → ((((𝐾 + 1) / 2) · 2) · π) = ((𝐾 + 1) · π))
36 ax-1cn 7895 . . . . . . . . . . . . . . . . 17 1 ∈ ℂ
37 adddir 7939 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ ℂ ∧ 1 ∈ ℂ ∧ π ∈ ℂ) → ((𝐾 + 1) · π) = ((𝐾 · π) + (1 · π)))
3836, 4, 37mp3an23 1329 . . . . . . . . . . . . . . . 16 (𝐾 ∈ ℂ → ((𝐾 + 1) · π) = ((𝐾 · π) + (1 · π)))
3935, 38eqtrd 2210 . . . . . . . . . . . . . . 15 (𝐾 ∈ ℂ → ((((𝐾 + 1) / 2) · 2) · π) = ((𝐾 · π) + (1 · π)))
404mulid2i 7951 . . . . . . . . . . . . . . . 16 (1 · π) = π
4140oveq2i 5880 . . . . . . . . . . . . . . 15 ((𝐾 · π) + (1 · π)) = ((𝐾 · π) + π)
4239, 41eqtr2di 2227 . . . . . . . . . . . . . 14 (𝐾 ∈ ℂ → ((𝐾 · π) + π) = ((((𝐾 + 1) / 2) · 2) · π))
43 mulass 7933 . . . . . . . . . . . . . . . 16 ((((𝐾 + 1) / 2) ∈ ℂ ∧ 2 ∈ ℂ ∧ π ∈ ℂ) → ((((𝐾 + 1) / 2) · 2) · π) = (((𝐾 + 1) / 2) · (2 · π)))
443, 4, 43mp3an23 1329 . . . . . . . . . . . . . . 15 (((𝐾 + 1) / 2) ∈ ℂ → ((((𝐾 + 1) / 2) · 2) · π) = (((𝐾 + 1) / 2) · (2 · π)))
4525, 44syl 14 . . . . . . . . . . . . . 14 (𝐾 ∈ ℂ → ((((𝐾 + 1) / 2) · 2) · π) = (((𝐾 + 1) / 2) · (2 · π)))
4642, 45eqtr2d 2211 . . . . . . . . . . . . 13 (𝐾 ∈ ℂ → (((𝐾 + 1) / 2) · (2 · π)) = ((𝐾 · π) + π))
4746oveq1d 5884 . . . . . . . . . . . 12 (𝐾 ∈ ℂ → ((((𝐾 + 1) / 2) · (2 · π)) − π) = (((𝐾 · π) + π) − π))
48 mulcl 7929 . . . . . . . . . . . . . 14 ((𝐾 ∈ ℂ ∧ π ∈ ℂ) → (𝐾 · π) ∈ ℂ)
494, 48mpan2 425 . . . . . . . . . . . . 13 (𝐾 ∈ ℂ → (𝐾 · π) ∈ ℂ)
50 pncan 8153 . . . . . . . . . . . . 13 (((𝐾 · π) ∈ ℂ ∧ π ∈ ℂ) → (((𝐾 · π) + π) − π) = (𝐾 · π))
5149, 4, 50sylancl 413 . . . . . . . . . . . 12 (𝐾 ∈ ℂ → (((𝐾 · π) + π) − π) = (𝐾 · π))
5247, 51eqtrd 2210 . . . . . . . . . . 11 (𝐾 ∈ ℂ → ((((𝐾 + 1) / 2) · (2 · π)) − π) = (𝐾 · π))
5352adantl 277 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℂ) → ((((𝐾 + 1) / 2) · (2 · π)) − π) = (𝐾 · π))
5453oveq2d 5885 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℂ) → (𝐴 + ((((𝐾 + 1) / 2) · (2 · π)) − π)) = (𝐴 + (𝐾 · π)))
5531, 54eqtr2d 2211 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℂ) → (𝐴 + (𝐾 · π)) = ((𝐴 − π) + (((𝐾 + 1) / 2) · (2 · π))))
561, 55sylan2 286 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (𝐴 + (𝐾 · π)) = ((𝐴 − π) + (((𝐾 + 1) / 2) · (2 · π))))
5756fveq2d 5515 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (sin‘(𝐴 + (𝐾 · π))) = (sin‘((𝐴 − π) + (((𝐾 + 1) / 2) · (2 · π)))))
5857adantr 276 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) ∧ ((𝐾 + 1) / 2) ∈ ℤ) → (sin‘(𝐴 + (𝐾 · π))) = (sin‘((𝐴 − π) + (((𝐾 + 1) / 2) · (2 · π)))))
59 subcl 8146 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ π ∈ ℂ) → (𝐴 − π) ∈ ℂ)
604, 59mpan2 425 . . . . . . . 8 (𝐴 ∈ ℂ → (𝐴 − π) ∈ ℂ)
61 sinper 13897 . . . . . . . 8 (((𝐴 − π) ∈ ℂ ∧ ((𝐾 + 1) / 2) ∈ ℤ) → (sin‘((𝐴 − π) + (((𝐾 + 1) / 2) · (2 · π)))) = (sin‘(𝐴 − π)))
6260, 61sylan 283 . . . . . . 7 ((𝐴 ∈ ℂ ∧ ((𝐾 + 1) / 2) ∈ ℤ) → (sin‘((𝐴 − π) + (((𝐾 + 1) / 2) · (2 · π)))) = (sin‘(𝐴 − π)))
6362adantlr 477 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) ∧ ((𝐾 + 1) / 2) ∈ ℤ) → (sin‘((𝐴 − π) + (((𝐾 + 1) / 2) · (2 · π)))) = (sin‘(𝐴 − π)))
64 sinmpi 13903 . . . . . . 7 (𝐴 ∈ ℂ → (sin‘(𝐴 − π)) = -(sin‘𝐴))
6564ad2antrr 488 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) ∧ ((𝐾 + 1) / 2) ∈ ℤ) → (sin‘(𝐴 − π)) = -(sin‘𝐴))
6663, 65eqtrd 2210 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) ∧ ((𝐾 + 1) / 2) ∈ ℤ) → (sin‘((𝐴 − π) + (((𝐾 + 1) / 2) · (2 · π)))) = -(sin‘𝐴))
6758, 66eqtrd 2210 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) ∧ ((𝐾 + 1) / 2) ∈ ℤ) → (sin‘(𝐴 + (𝐾 · π))) = -(sin‘𝐴))
6867fveq2d 5515 . . 3 (((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) ∧ ((𝐾 + 1) / 2) ∈ ℤ) → (abs‘(sin‘(𝐴 + (𝐾 · π)))) = (abs‘-(sin‘𝐴)))
69 sincl 11698 . . . . 5 (𝐴 ∈ ℂ → (sin‘𝐴) ∈ ℂ)
7069absnegd 11182 . . . 4 (𝐴 ∈ ℂ → (abs‘-(sin‘𝐴)) = (abs‘(sin‘𝐴)))
7170ad2antrr 488 . . 3 (((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) ∧ ((𝐾 + 1) / 2) ∈ ℤ) → (abs‘-(sin‘𝐴)) = (abs‘(sin‘𝐴)))
7268, 71eqtrd 2210 . 2 (((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) ∧ ((𝐾 + 1) / 2) ∈ ℤ) → (abs‘(sin‘(𝐴 + (𝐾 · π)))) = (abs‘(sin‘𝐴)))
73 zeo 9347 . . 3 (𝐾 ∈ ℤ → ((𝐾 / 2) ∈ ℤ ∨ ((𝐾 + 1) / 2) ∈ ℤ))
7473adantl 277 . 2 ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → ((𝐾 / 2) ∈ ℤ ∨ ((𝐾 + 1) / 2) ∈ ℤ))
7522, 72, 74mpjaodan 798 1 ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (abs‘(sin‘(𝐴 + (𝐾 · π)))) = (abs‘(sin‘𝐴)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wo 708   = wceq 1353  wcel 2148   class class class wbr 4000  cfv 5212  (class class class)co 5869  cc 7800  0cc0 7802  1c1 7803   + caddc 7805   · cmul 7807  cmin 8118  -cneg 8119   # cap 8528   / cdiv 8618  2c2 8959  cz 9242  abscabs 10990  sincsin 11636  πcpi 11639
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-precex 7912  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918  ax-pre-mulgt0 7919  ax-pre-mulext 7920  ax-arch 7921  ax-caucvg 7922  ax-pre-suploc 7923  ax-addf 7924  ax-mulf 7925
This theorem depends on definitions:  df-bi 117  df-stab 831  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-disj 3978  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-po 4293  df-iso 4294  df-iord 4363  df-on 4365  df-ilim 4366  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-isom 5221  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-of 6077  df-1st 6135  df-2nd 6136  df-recs 6300  df-irdg 6365  df-frec 6386  df-1o 6411  df-oadd 6415  df-er 6529  df-map 6644  df-pm 6645  df-en 6735  df-dom 6736  df-fin 6737  df-sup 6977  df-inf 6978  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-reap 8522  df-ap 8529  df-div 8619  df-inn 8909  df-2 8967  df-3 8968  df-4 8969  df-5 8970  df-6 8971  df-7 8972  df-8 8973  df-9 8974  df-n0 9166  df-z 9243  df-uz 9518  df-q 9609  df-rp 9641  df-xneg 9759  df-xadd 9760  df-ioo 9879  df-ioc 9880  df-ico 9881  df-icc 9882  df-fz 9996  df-fzo 10129  df-seqfrec 10432  df-exp 10506  df-fac 10690  df-bc 10712  df-ihash 10740  df-shft 10808  df-cj 10835  df-re 10836  df-im 10837  df-rsqrt 10991  df-abs 10992  df-clim 11271  df-sumdc 11346  df-ef 11640  df-sin 11642  df-cos 11643  df-pi 11645  df-rest 12638  df-topgen 12657  df-psmet 13154  df-xmet 13155  df-met 13156  df-bl 13157  df-mopn 13158  df-top 13163  df-topon 13176  df-bases 13208  df-ntr 13263  df-cn 13355  df-cnp 13356  df-tx 13420  df-cncf 13725  df-limced 13792  df-dvap 13793
This theorem is referenced by:  sinkpi  13935
  Copyright terms: Public domain W3C validator