ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  abssinper GIF version

Theorem abssinper 14981
Description: The absolute value of sine has period π. (Contributed by NM, 17-Aug-2008.)
Assertion
Ref Expression
abssinper ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (abs‘(sin‘(𝐴 + (𝐾 · π)))) = (abs‘(sin‘𝐴)))

Proof of Theorem abssinper
StepHypRef Expression
1 zcn 9322 . . . . . . . . . 10 (𝐾 ∈ ℤ → 𝐾 ∈ ℂ)
2 halfcl 9208 . . . . . . . . . . . 12 (𝐾 ∈ ℂ → (𝐾 / 2) ∈ ℂ)
3 2cn 9053 . . . . . . . . . . . . 13 2 ∈ ℂ
4 picn 14922 . . . . . . . . . . . . 13 π ∈ ℂ
5 mulass 8003 . . . . . . . . . . . . 13 (((𝐾 / 2) ∈ ℂ ∧ 2 ∈ ℂ ∧ π ∈ ℂ) → (((𝐾 / 2) · 2) · π) = ((𝐾 / 2) · (2 · π)))
63, 4, 5mp3an23 1340 . . . . . . . . . . . 12 ((𝐾 / 2) ∈ ℂ → (((𝐾 / 2) · 2) · π) = ((𝐾 / 2) · (2 · π)))
72, 6syl 14 . . . . . . . . . . 11 (𝐾 ∈ ℂ → (((𝐾 / 2) · 2) · π) = ((𝐾 / 2) · (2 · π)))
8 2ap0 9075 . . . . . . . . . . . . 13 2 # 0
9 divcanap1 8700 . . . . . . . . . . . . 13 ((𝐾 ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 # 0) → ((𝐾 / 2) · 2) = 𝐾)
103, 8, 9mp3an23 1340 . . . . . . . . . . . 12 (𝐾 ∈ ℂ → ((𝐾 / 2) · 2) = 𝐾)
1110oveq1d 5933 . . . . . . . . . . 11 (𝐾 ∈ ℂ → (((𝐾 / 2) · 2) · π) = (𝐾 · π))
127, 11eqtr3d 2228 . . . . . . . . . 10 (𝐾 ∈ ℂ → ((𝐾 / 2) · (2 · π)) = (𝐾 · π))
131, 12syl 14 . . . . . . . . 9 (𝐾 ∈ ℤ → ((𝐾 / 2) · (2 · π)) = (𝐾 · π))
1413adantl 277 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → ((𝐾 / 2) · (2 · π)) = (𝐾 · π))
1514oveq2d 5934 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (𝐴 + ((𝐾 / 2) · (2 · π))) = (𝐴 + (𝐾 · π)))
1615fveq2d 5558 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (sin‘(𝐴 + ((𝐾 / 2) · (2 · π)))) = (sin‘(𝐴 + (𝐾 · π))))
1716eqcomd 2199 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (sin‘(𝐴 + (𝐾 · π))) = (sin‘(𝐴 + ((𝐾 / 2) · (2 · π)))))
1817adantr 276 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) ∧ (𝐾 / 2) ∈ ℤ) → (sin‘(𝐴 + (𝐾 · π))) = (sin‘(𝐴 + ((𝐾 / 2) · (2 · π)))))
19 sinper 14944 . . . . 5 ((𝐴 ∈ ℂ ∧ (𝐾 / 2) ∈ ℤ) → (sin‘(𝐴 + ((𝐾 / 2) · (2 · π)))) = (sin‘𝐴))
2019adantlr 477 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) ∧ (𝐾 / 2) ∈ ℤ) → (sin‘(𝐴 + ((𝐾 / 2) · (2 · π)))) = (sin‘𝐴))
2118, 20eqtrd 2226 . . 3 (((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) ∧ (𝐾 / 2) ∈ ℤ) → (sin‘(𝐴 + (𝐾 · π))) = (sin‘𝐴))
2221fveq2d 5558 . 2 (((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) ∧ (𝐾 / 2) ∈ ℤ) → (abs‘(sin‘(𝐴 + (𝐾 · π)))) = (abs‘(sin‘𝐴)))
23 peano2cn 8154 . . . . . . . . . . . 12 (𝐾 ∈ ℂ → (𝐾 + 1) ∈ ℂ)
24 halfcl 9208 . . . . . . . . . . . 12 ((𝐾 + 1) ∈ ℂ → ((𝐾 + 1) / 2) ∈ ℂ)
2523, 24syl 14 . . . . . . . . . . 11 (𝐾 ∈ ℂ → ((𝐾 + 1) / 2) ∈ ℂ)
263, 4mulcli 8024 . . . . . . . . . . 11 (2 · π) ∈ ℂ
27 mulcl 7999 . . . . . . . . . . 11 ((((𝐾 + 1) / 2) ∈ ℂ ∧ (2 · π) ∈ ℂ) → (((𝐾 + 1) / 2) · (2 · π)) ∈ ℂ)
2825, 26, 27sylancl 413 . . . . . . . . . 10 (𝐾 ∈ ℂ → (((𝐾 + 1) / 2) · (2 · π)) ∈ ℂ)
29 subadd23 8231 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ π ∈ ℂ ∧ (((𝐾 + 1) / 2) · (2 · π)) ∈ ℂ) → ((𝐴 − π) + (((𝐾 + 1) / 2) · (2 · π))) = (𝐴 + ((((𝐾 + 1) / 2) · (2 · π)) − π)))
304, 29mp3an2 1336 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (((𝐾 + 1) / 2) · (2 · π)) ∈ ℂ) → ((𝐴 − π) + (((𝐾 + 1) / 2) · (2 · π))) = (𝐴 + ((((𝐾 + 1) / 2) · (2 · π)) − π)))
3128, 30sylan2 286 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℂ) → ((𝐴 − π) + (((𝐾 + 1) / 2) · (2 · π))) = (𝐴 + ((((𝐾 + 1) / 2) · (2 · π)) − π)))
32 divcanap1 8700 . . . . . . . . . . . . . . . . . . 19 (((𝐾 + 1) ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 # 0) → (((𝐾 + 1) / 2) · 2) = (𝐾 + 1))
333, 8, 32mp3an23 1340 . . . . . . . . . . . . . . . . . 18 ((𝐾 + 1) ∈ ℂ → (((𝐾 + 1) / 2) · 2) = (𝐾 + 1))
3423, 33syl 14 . . . . . . . . . . . . . . . . 17 (𝐾 ∈ ℂ → (((𝐾 + 1) / 2) · 2) = (𝐾 + 1))
3534oveq1d 5933 . . . . . . . . . . . . . . . 16 (𝐾 ∈ ℂ → ((((𝐾 + 1) / 2) · 2) · π) = ((𝐾 + 1) · π))
36 ax-1cn 7965 . . . . . . . . . . . . . . . . 17 1 ∈ ℂ
37 adddir 8010 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ ℂ ∧ 1 ∈ ℂ ∧ π ∈ ℂ) → ((𝐾 + 1) · π) = ((𝐾 · π) + (1 · π)))
3836, 4, 37mp3an23 1340 . . . . . . . . . . . . . . . 16 (𝐾 ∈ ℂ → ((𝐾 + 1) · π) = ((𝐾 · π) + (1 · π)))
3935, 38eqtrd 2226 . . . . . . . . . . . . . . 15 (𝐾 ∈ ℂ → ((((𝐾 + 1) / 2) · 2) · π) = ((𝐾 · π) + (1 · π)))
404mullidi 8022 . . . . . . . . . . . . . . . 16 (1 · π) = π
4140oveq2i 5929 . . . . . . . . . . . . . . 15 ((𝐾 · π) + (1 · π)) = ((𝐾 · π) + π)
4239, 41eqtr2di 2243 . . . . . . . . . . . . . 14 (𝐾 ∈ ℂ → ((𝐾 · π) + π) = ((((𝐾 + 1) / 2) · 2) · π))
43 mulass 8003 . . . . . . . . . . . . . . . 16 ((((𝐾 + 1) / 2) ∈ ℂ ∧ 2 ∈ ℂ ∧ π ∈ ℂ) → ((((𝐾 + 1) / 2) · 2) · π) = (((𝐾 + 1) / 2) · (2 · π)))
443, 4, 43mp3an23 1340 . . . . . . . . . . . . . . 15 (((𝐾 + 1) / 2) ∈ ℂ → ((((𝐾 + 1) / 2) · 2) · π) = (((𝐾 + 1) / 2) · (2 · π)))
4525, 44syl 14 . . . . . . . . . . . . . 14 (𝐾 ∈ ℂ → ((((𝐾 + 1) / 2) · 2) · π) = (((𝐾 + 1) / 2) · (2 · π)))
4642, 45eqtr2d 2227 . . . . . . . . . . . . 13 (𝐾 ∈ ℂ → (((𝐾 + 1) / 2) · (2 · π)) = ((𝐾 · π) + π))
4746oveq1d 5933 . . . . . . . . . . . 12 (𝐾 ∈ ℂ → ((((𝐾 + 1) / 2) · (2 · π)) − π) = (((𝐾 · π) + π) − π))
48 mulcl 7999 . . . . . . . . . . . . . 14 ((𝐾 ∈ ℂ ∧ π ∈ ℂ) → (𝐾 · π) ∈ ℂ)
494, 48mpan2 425 . . . . . . . . . . . . 13 (𝐾 ∈ ℂ → (𝐾 · π) ∈ ℂ)
50 pncan 8225 . . . . . . . . . . . . 13 (((𝐾 · π) ∈ ℂ ∧ π ∈ ℂ) → (((𝐾 · π) + π) − π) = (𝐾 · π))
5149, 4, 50sylancl 413 . . . . . . . . . . . 12 (𝐾 ∈ ℂ → (((𝐾 · π) + π) − π) = (𝐾 · π))
5247, 51eqtrd 2226 . . . . . . . . . . 11 (𝐾 ∈ ℂ → ((((𝐾 + 1) / 2) · (2 · π)) − π) = (𝐾 · π))
5352adantl 277 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℂ) → ((((𝐾 + 1) / 2) · (2 · π)) − π) = (𝐾 · π))
5453oveq2d 5934 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℂ) → (𝐴 + ((((𝐾 + 1) / 2) · (2 · π)) − π)) = (𝐴 + (𝐾 · π)))
5531, 54eqtr2d 2227 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℂ) → (𝐴 + (𝐾 · π)) = ((𝐴 − π) + (((𝐾 + 1) / 2) · (2 · π))))
561, 55sylan2 286 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (𝐴 + (𝐾 · π)) = ((𝐴 − π) + (((𝐾 + 1) / 2) · (2 · π))))
5756fveq2d 5558 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (sin‘(𝐴 + (𝐾 · π))) = (sin‘((𝐴 − π) + (((𝐾 + 1) / 2) · (2 · π)))))
5857adantr 276 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) ∧ ((𝐾 + 1) / 2) ∈ ℤ) → (sin‘(𝐴 + (𝐾 · π))) = (sin‘((𝐴 − π) + (((𝐾 + 1) / 2) · (2 · π)))))
59 subcl 8218 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ π ∈ ℂ) → (𝐴 − π) ∈ ℂ)
604, 59mpan2 425 . . . . . . . 8 (𝐴 ∈ ℂ → (𝐴 − π) ∈ ℂ)
61 sinper 14944 . . . . . . . 8 (((𝐴 − π) ∈ ℂ ∧ ((𝐾 + 1) / 2) ∈ ℤ) → (sin‘((𝐴 − π) + (((𝐾 + 1) / 2) · (2 · π)))) = (sin‘(𝐴 − π)))
6260, 61sylan 283 . . . . . . 7 ((𝐴 ∈ ℂ ∧ ((𝐾 + 1) / 2) ∈ ℤ) → (sin‘((𝐴 − π) + (((𝐾 + 1) / 2) · (2 · π)))) = (sin‘(𝐴 − π)))
6362adantlr 477 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) ∧ ((𝐾 + 1) / 2) ∈ ℤ) → (sin‘((𝐴 − π) + (((𝐾 + 1) / 2) · (2 · π)))) = (sin‘(𝐴 − π)))
64 sinmpi 14950 . . . . . . 7 (𝐴 ∈ ℂ → (sin‘(𝐴 − π)) = -(sin‘𝐴))
6564ad2antrr 488 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) ∧ ((𝐾 + 1) / 2) ∈ ℤ) → (sin‘(𝐴 − π)) = -(sin‘𝐴))
6663, 65eqtrd 2226 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) ∧ ((𝐾 + 1) / 2) ∈ ℤ) → (sin‘((𝐴 − π) + (((𝐾 + 1) / 2) · (2 · π)))) = -(sin‘𝐴))
6758, 66eqtrd 2226 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) ∧ ((𝐾 + 1) / 2) ∈ ℤ) → (sin‘(𝐴 + (𝐾 · π))) = -(sin‘𝐴))
6867fveq2d 5558 . . 3 (((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) ∧ ((𝐾 + 1) / 2) ∈ ℤ) → (abs‘(sin‘(𝐴 + (𝐾 · π)))) = (abs‘-(sin‘𝐴)))
69 sincl 11849 . . . . 5 (𝐴 ∈ ℂ → (sin‘𝐴) ∈ ℂ)
7069absnegd 11333 . . . 4 (𝐴 ∈ ℂ → (abs‘-(sin‘𝐴)) = (abs‘(sin‘𝐴)))
7170ad2antrr 488 . . 3 (((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) ∧ ((𝐾 + 1) / 2) ∈ ℤ) → (abs‘-(sin‘𝐴)) = (abs‘(sin‘𝐴)))
7268, 71eqtrd 2226 . 2 (((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) ∧ ((𝐾 + 1) / 2) ∈ ℤ) → (abs‘(sin‘(𝐴 + (𝐾 · π)))) = (abs‘(sin‘𝐴)))
73 zeo 9422 . . 3 (𝐾 ∈ ℤ → ((𝐾 / 2) ∈ ℤ ∨ ((𝐾 + 1) / 2) ∈ ℤ))
7473adantl 277 . 2 ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → ((𝐾 / 2) ∈ ℤ ∨ ((𝐾 + 1) / 2) ∈ ℤ))
7522, 72, 74mpjaodan 799 1 ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℤ) → (abs‘(sin‘(𝐴 + (𝐾 · π)))) = (abs‘(sin‘𝐴)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wo 709   = wceq 1364  wcel 2164   class class class wbr 4029  cfv 5254  (class class class)co 5918  cc 7870  0cc0 7872  1c1 7873   + caddc 7875   · cmul 7877  cmin 8190  -cneg 8191   # cap 8600   / cdiv 8691  2c2 9033  cz 9317  abscabs 11141  sincsin 11787  πcpi 11790
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990  ax-arch 7991  ax-caucvg 7992  ax-pre-suploc 7993  ax-addf 7994  ax-mulf 7995
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-disj 4007  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-isom 5263  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-of 6130  df-1st 6193  df-2nd 6194  df-recs 6358  df-irdg 6423  df-frec 6444  df-1o 6469  df-oadd 6473  df-er 6587  df-map 6704  df-pm 6705  df-en 6795  df-dom 6796  df-fin 6797  df-sup 7043  df-inf 7044  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-5 9044  df-6 9045  df-7 9046  df-8 9047  df-9 9048  df-n0 9241  df-z 9318  df-uz 9593  df-q 9685  df-rp 9720  df-xneg 9838  df-xadd 9839  df-ioo 9958  df-ioc 9959  df-ico 9960  df-icc 9961  df-fz 10075  df-fzo 10209  df-seqfrec 10519  df-exp 10610  df-fac 10797  df-bc 10819  df-ihash 10847  df-shft 10959  df-cj 10986  df-re 10987  df-im 10988  df-rsqrt 11142  df-abs 11143  df-clim 11422  df-sumdc 11497  df-ef 11791  df-sin 11793  df-cos 11794  df-pi 11796  df-rest 12852  df-topgen 12871  df-psmet 14039  df-xmet 14040  df-met 14041  df-bl 14042  df-mopn 14043  df-top 14166  df-topon 14179  df-bases 14211  df-ntr 14264  df-cn 14356  df-cnp 14357  df-tx 14421  df-cncf 14726  df-limced 14810  df-dvap 14811
This theorem is referenced by:  sinkpi  14982
  Copyright terms: Public domain W3C validator