Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  faclbnd GIF version

Theorem faclbnd 10494
 Description: A lower bound for the factorial function. (Contributed by NM, 17-Dec-2005.)
Assertion
Ref Expression
faclbnd ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀↑(𝑁 + 1)) ≤ ((𝑀𝑀) · (!‘𝑁)))

Proof of Theorem faclbnd
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elnn0 8986 . 2 (𝑀 ∈ ℕ0 ↔ (𝑀 ∈ ℕ ∨ 𝑀 = 0))
2 oveq1 5781 . . . . . . . 8 (𝑗 = 0 → (𝑗 + 1) = (0 + 1))
32oveq2d 5790 . . . . . . 7 (𝑗 = 0 → (𝑀↑(𝑗 + 1)) = (𝑀↑(0 + 1)))
4 fveq2 5421 . . . . . . . 8 (𝑗 = 0 → (!‘𝑗) = (!‘0))
54oveq2d 5790 . . . . . . 7 (𝑗 = 0 → ((𝑀𝑀) · (!‘𝑗)) = ((𝑀𝑀) · (!‘0)))
63, 5breq12d 3942 . . . . . 6 (𝑗 = 0 → ((𝑀↑(𝑗 + 1)) ≤ ((𝑀𝑀) · (!‘𝑗)) ↔ (𝑀↑(0 + 1)) ≤ ((𝑀𝑀) · (!‘0))))
76imbi2d 229 . . . . 5 (𝑗 = 0 → ((𝑀 ∈ ℕ → (𝑀↑(𝑗 + 1)) ≤ ((𝑀𝑀) · (!‘𝑗))) ↔ (𝑀 ∈ ℕ → (𝑀↑(0 + 1)) ≤ ((𝑀𝑀) · (!‘0)))))
8 oveq1 5781 . . . . . . . 8 (𝑗 = 𝑘 → (𝑗 + 1) = (𝑘 + 1))
98oveq2d 5790 . . . . . . 7 (𝑗 = 𝑘 → (𝑀↑(𝑗 + 1)) = (𝑀↑(𝑘 + 1)))
10 fveq2 5421 . . . . . . . 8 (𝑗 = 𝑘 → (!‘𝑗) = (!‘𝑘))
1110oveq2d 5790 . . . . . . 7 (𝑗 = 𝑘 → ((𝑀𝑀) · (!‘𝑗)) = ((𝑀𝑀) · (!‘𝑘)))
129, 11breq12d 3942 . . . . . 6 (𝑗 = 𝑘 → ((𝑀↑(𝑗 + 1)) ≤ ((𝑀𝑀) · (!‘𝑗)) ↔ (𝑀↑(𝑘 + 1)) ≤ ((𝑀𝑀) · (!‘𝑘))))
1312imbi2d 229 . . . . 5 (𝑗 = 𝑘 → ((𝑀 ∈ ℕ → (𝑀↑(𝑗 + 1)) ≤ ((𝑀𝑀) · (!‘𝑗))) ↔ (𝑀 ∈ ℕ → (𝑀↑(𝑘 + 1)) ≤ ((𝑀𝑀) · (!‘𝑘)))))
14 oveq1 5781 . . . . . . . 8 (𝑗 = (𝑘 + 1) → (𝑗 + 1) = ((𝑘 + 1) + 1))
1514oveq2d 5790 . . . . . . 7 (𝑗 = (𝑘 + 1) → (𝑀↑(𝑗 + 1)) = (𝑀↑((𝑘 + 1) + 1)))
16 fveq2 5421 . . . . . . . 8 (𝑗 = (𝑘 + 1) → (!‘𝑗) = (!‘(𝑘 + 1)))
1716oveq2d 5790 . . . . . . 7 (𝑗 = (𝑘 + 1) → ((𝑀𝑀) · (!‘𝑗)) = ((𝑀𝑀) · (!‘(𝑘 + 1))))
1815, 17breq12d 3942 . . . . . 6 (𝑗 = (𝑘 + 1) → ((𝑀↑(𝑗 + 1)) ≤ ((𝑀𝑀) · (!‘𝑗)) ↔ (𝑀↑((𝑘 + 1) + 1)) ≤ ((𝑀𝑀) · (!‘(𝑘 + 1)))))
1918imbi2d 229 . . . . 5 (𝑗 = (𝑘 + 1) → ((𝑀 ∈ ℕ → (𝑀↑(𝑗 + 1)) ≤ ((𝑀𝑀) · (!‘𝑗))) ↔ (𝑀 ∈ ℕ → (𝑀↑((𝑘 + 1) + 1)) ≤ ((𝑀𝑀) · (!‘(𝑘 + 1))))))
20 oveq1 5781 . . . . . . . 8 (𝑗 = 𝑁 → (𝑗 + 1) = (𝑁 + 1))
2120oveq2d 5790 . . . . . . 7 (𝑗 = 𝑁 → (𝑀↑(𝑗 + 1)) = (𝑀↑(𝑁 + 1)))
22 fveq2 5421 . . . . . . . 8 (𝑗 = 𝑁 → (!‘𝑗) = (!‘𝑁))
2322oveq2d 5790 . . . . . . 7 (𝑗 = 𝑁 → ((𝑀𝑀) · (!‘𝑗)) = ((𝑀𝑀) · (!‘𝑁)))
2421, 23breq12d 3942 . . . . . 6 (𝑗 = 𝑁 → ((𝑀↑(𝑗 + 1)) ≤ ((𝑀𝑀) · (!‘𝑗)) ↔ (𝑀↑(𝑁 + 1)) ≤ ((𝑀𝑀) · (!‘𝑁))))
2524imbi2d 229 . . . . 5 (𝑗 = 𝑁 → ((𝑀 ∈ ℕ → (𝑀↑(𝑗 + 1)) ≤ ((𝑀𝑀) · (!‘𝑗))) ↔ (𝑀 ∈ ℕ → (𝑀↑(𝑁 + 1)) ≤ ((𝑀𝑀) · (!‘𝑁)))))
26 nnre 8734 . . . . . . 7 (𝑀 ∈ ℕ → 𝑀 ∈ ℝ)
27 nnge1 8750 . . . . . . 7 (𝑀 ∈ ℕ → 1 ≤ 𝑀)
28 elnnuz 9369 . . . . . . . 8 (𝑀 ∈ ℕ ↔ 𝑀 ∈ (ℤ‘1))
2928biimpi 119 . . . . . . 7 (𝑀 ∈ ℕ → 𝑀 ∈ (ℤ‘1))
3026, 27, 29leexp2ad 10460 . . . . . 6 (𝑀 ∈ ℕ → (𝑀↑1) ≤ (𝑀𝑀))
31 0p1e1 8841 . . . . . . . 8 (0 + 1) = 1
3231oveq2i 5785 . . . . . . 7 (𝑀↑(0 + 1)) = (𝑀↑1)
3332a1i 9 . . . . . 6 (𝑀 ∈ ℕ → (𝑀↑(0 + 1)) = (𝑀↑1))
34 fac0 10481 . . . . . . . 8 (!‘0) = 1
3534oveq2i 5785 . . . . . . 7 ((𝑀𝑀) · (!‘0)) = ((𝑀𝑀) · 1)
36 nnnn0 8991 . . . . . . . . . 10 (𝑀 ∈ ℕ → 𝑀 ∈ ℕ0)
3726, 36reexpcld 10448 . . . . . . . . 9 (𝑀 ∈ ℕ → (𝑀𝑀) ∈ ℝ)
3837recnd 7801 . . . . . . . 8 (𝑀 ∈ ℕ → (𝑀𝑀) ∈ ℂ)
3938mulid1d 7790 . . . . . . 7 (𝑀 ∈ ℕ → ((𝑀𝑀) · 1) = (𝑀𝑀))
4035, 39syl5eq 2184 . . . . . 6 (𝑀 ∈ ℕ → ((𝑀𝑀) · (!‘0)) = (𝑀𝑀))
4130, 33, 403brtr4d 3960 . . . . 5 (𝑀 ∈ ℕ → (𝑀↑(0 + 1)) ≤ ((𝑀𝑀) · (!‘0)))
4226ad3antrrr 483 . . . . . . . . . . . . . 14 ((((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ (𝑀↑(𝑘 + 1)) ≤ ((𝑀𝑀) · (!‘𝑘))) ∧ ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ 𝑀 ≤ (𝑘 + 1))) → 𝑀 ∈ ℝ)
43 simpllr 523 . . . . . . . . . . . . . . 15 ((((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ (𝑀↑(𝑘 + 1)) ≤ ((𝑀𝑀) · (!‘𝑘))) ∧ ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ 𝑀 ≤ (𝑘 + 1))) → 𝑘 ∈ ℕ0)
44 peano2nn0 9024 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℕ0)
4543, 44syl 14 . . . . . . . . . . . . . 14 ((((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ (𝑀↑(𝑘 + 1)) ≤ ((𝑀𝑀) · (!‘𝑘))) ∧ ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ 𝑀 ≤ (𝑘 + 1))) → (𝑘 + 1) ∈ ℕ0)
4642, 45reexpcld 10448 . . . . . . . . . . . . 13 ((((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ (𝑀↑(𝑘 + 1)) ≤ ((𝑀𝑀) · (!‘𝑘))) ∧ ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ 𝑀 ≤ (𝑘 + 1))) → (𝑀↑(𝑘 + 1)) ∈ ℝ)
4736ad3antrrr 483 . . . . . . . . . . . . . . 15 ((((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ (𝑀↑(𝑘 + 1)) ≤ ((𝑀𝑀) · (!‘𝑘))) ∧ ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ 𝑀 ≤ (𝑘 + 1))) → 𝑀 ∈ ℕ0)
4842, 47reexpcld 10448 . . . . . . . . . . . . . 14 ((((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ (𝑀↑(𝑘 + 1)) ≤ ((𝑀𝑀) · (!‘𝑘))) ∧ ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ 𝑀 ≤ (𝑘 + 1))) → (𝑀𝑀) ∈ ℝ)
4943faccld 10489 . . . . . . . . . . . . . . 15 ((((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ (𝑀↑(𝑘 + 1)) ≤ ((𝑀𝑀) · (!‘𝑘))) ∧ ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ 𝑀 ≤ (𝑘 + 1))) → (!‘𝑘) ∈ ℕ)
5049nnred 8740 . . . . . . . . . . . . . 14 ((((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ (𝑀↑(𝑘 + 1)) ≤ ((𝑀𝑀) · (!‘𝑘))) ∧ ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ 𝑀 ≤ (𝑘 + 1))) → (!‘𝑘) ∈ ℝ)
5148, 50remulcld 7803 . . . . . . . . . . . . 13 ((((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ (𝑀↑(𝑘 + 1)) ≤ ((𝑀𝑀) · (!‘𝑘))) ∧ ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ 𝑀 ≤ (𝑘 + 1))) → ((𝑀𝑀) · (!‘𝑘)) ∈ ℝ)
52 nn0re 8993 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ0𝑘 ∈ ℝ)
53 peano2re 7905 . . . . . . . . . . . . . 14 (𝑘 ∈ ℝ → (𝑘 + 1) ∈ ℝ)
5443, 52, 533syl 17 . . . . . . . . . . . . 13 ((((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ (𝑀↑(𝑘 + 1)) ≤ ((𝑀𝑀) · (!‘𝑘))) ∧ ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ 𝑀 ≤ (𝑘 + 1))) → (𝑘 + 1) ∈ ℝ)
55 nngt0 8752 . . . . . . . . . . . . . . . 16 (𝑀 ∈ ℕ → 0 < 𝑀)
5655ad3antrrr 483 . . . . . . . . . . . . . . 15 ((((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ (𝑀↑(𝑘 + 1)) ≤ ((𝑀𝑀) · (!‘𝑘))) ∧ ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ 𝑀 ≤ (𝑘 + 1))) → 0 < 𝑀)
57 0re 7773 . . . . . . . . . . . . . . . 16 0 ∈ ℝ
58 ltle 7858 . . . . . . . . . . . . . . . 16 ((0 ∈ ℝ ∧ 𝑀 ∈ ℝ) → (0 < 𝑀 → 0 ≤ 𝑀))
5957, 58mpan 420 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℝ → (0 < 𝑀 → 0 ≤ 𝑀))
6042, 56, 59sylc 62 . . . . . . . . . . . . . 14 ((((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ (𝑀↑(𝑘 + 1)) ≤ ((𝑀𝑀) · (!‘𝑘))) ∧ ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ 𝑀 ≤ (𝑘 + 1))) → 0 ≤ 𝑀)
6142, 45, 60expge0d 10449 . . . . . . . . . . . . 13 ((((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ (𝑀↑(𝑘 + 1)) ≤ ((𝑀𝑀) · (!‘𝑘))) ∧ ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ 𝑀 ≤ (𝑘 + 1))) → 0 ≤ (𝑀↑(𝑘 + 1)))
62 simplr 519 . . . . . . . . . . . . 13 ((((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ (𝑀↑(𝑘 + 1)) ≤ ((𝑀𝑀) · (!‘𝑘))) ∧ ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ 𝑀 ≤ (𝑘 + 1))) → (𝑀↑(𝑘 + 1)) ≤ ((𝑀𝑀) · (!‘𝑘)))
63 simprr 521 . . . . . . . . . . . . 13 ((((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ (𝑀↑(𝑘 + 1)) ≤ ((𝑀𝑀) · (!‘𝑘))) ∧ ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ 𝑀 ≤ (𝑘 + 1))) → 𝑀 ≤ (𝑘 + 1))
6446, 51, 42, 54, 61, 60, 62, 63lemul12ad 8707 . . . . . . . . . . . 12 ((((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ (𝑀↑(𝑘 + 1)) ≤ ((𝑀𝑀) · (!‘𝑘))) ∧ ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ 𝑀 ≤ (𝑘 + 1))) → ((𝑀↑(𝑘 + 1)) · 𝑀) ≤ (((𝑀𝑀) · (!‘𝑘)) · (𝑘 + 1)))
6564anandis 581 . . . . . . . . . . 11 (((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ ((𝑀↑(𝑘 + 1)) ≤ ((𝑀𝑀) · (!‘𝑘)) ∧ 𝑀 ≤ (𝑘 + 1))) → ((𝑀↑(𝑘 + 1)) · 𝑀) ≤ (((𝑀𝑀) · (!‘𝑘)) · (𝑘 + 1)))
66 nncn 8735 . . . . . . . . . . . . 13 (𝑀 ∈ ℕ → 𝑀 ∈ ℂ)
67 expp1 10307 . . . . . . . . . . . . 13 ((𝑀 ∈ ℂ ∧ (𝑘 + 1) ∈ ℕ0) → (𝑀↑((𝑘 + 1) + 1)) = ((𝑀↑(𝑘 + 1)) · 𝑀))
6866, 44, 67syl2an 287 . . . . . . . . . . . 12 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑀↑((𝑘 + 1) + 1)) = ((𝑀↑(𝑘 + 1)) · 𝑀))
6968adantr 274 . . . . . . . . . . 11 (((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ ((𝑀↑(𝑘 + 1)) ≤ ((𝑀𝑀) · (!‘𝑘)) ∧ 𝑀 ≤ (𝑘 + 1))) → (𝑀↑((𝑘 + 1) + 1)) = ((𝑀↑(𝑘 + 1)) · 𝑀))
70 facp1 10483 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ0 → (!‘(𝑘 + 1)) = ((!‘𝑘) · (𝑘 + 1)))
7170adantl 275 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (!‘(𝑘 + 1)) = ((!‘𝑘) · (𝑘 + 1)))
7271oveq2d 5790 . . . . . . . . . . . . 13 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → ((𝑀𝑀) · (!‘(𝑘 + 1))) = ((𝑀𝑀) · ((!‘𝑘) · (𝑘 + 1))))
7338adantr 274 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑀𝑀) ∈ ℂ)
74 faccl 10488 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ0 → (!‘𝑘) ∈ ℕ)
7574nncnd 8741 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ0 → (!‘𝑘) ∈ ℂ)
7675adantl 275 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (!‘𝑘) ∈ ℂ)
77 nn0cn 8994 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ0𝑘 ∈ ℂ)
78 peano2cn 7904 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℂ → (𝑘 + 1) ∈ ℂ)
7977, 78syl 14 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℂ)
8079adantl 275 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑘 + 1) ∈ ℂ)
8173, 76, 80mulassd 7796 . . . . . . . . . . . . 13 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (((𝑀𝑀) · (!‘𝑘)) · (𝑘 + 1)) = ((𝑀𝑀) · ((!‘𝑘) · (𝑘 + 1))))
8272, 81eqtr4d 2175 . . . . . . . . . . . 12 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → ((𝑀𝑀) · (!‘(𝑘 + 1))) = (((𝑀𝑀) · (!‘𝑘)) · (𝑘 + 1)))
8382adantr 274 . . . . . . . . . . 11 (((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ ((𝑀↑(𝑘 + 1)) ≤ ((𝑀𝑀) · (!‘𝑘)) ∧ 𝑀 ≤ (𝑘 + 1))) → ((𝑀𝑀) · (!‘(𝑘 + 1))) = (((𝑀𝑀) · (!‘𝑘)) · (𝑘 + 1)))
8465, 69, 833brtr4d 3960 . . . . . . . . . 10 (((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ ((𝑀↑(𝑘 + 1)) ≤ ((𝑀𝑀) · (!‘𝑘)) ∧ 𝑀 ≤ (𝑘 + 1))) → (𝑀↑((𝑘 + 1) + 1)) ≤ ((𝑀𝑀) · (!‘(𝑘 + 1))))
8584exp32 362 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → ((𝑀↑(𝑘 + 1)) ≤ ((𝑀𝑀) · (!‘𝑘)) → (𝑀 ≤ (𝑘 + 1) → (𝑀↑((𝑘 + 1) + 1)) ≤ ((𝑀𝑀) · (!‘(𝑘 + 1))))))
8685com23 78 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑀 ≤ (𝑘 + 1) → ((𝑀↑(𝑘 + 1)) ≤ ((𝑀𝑀) · (!‘𝑘)) → (𝑀↑((𝑘 + 1) + 1)) ≤ ((𝑀𝑀) · (!‘(𝑘 + 1))))))
87 nn0ltp1le 9123 . . . . . . . . . . 11 (((𝑘 + 1) ∈ ℕ0𝑀 ∈ ℕ0) → ((𝑘 + 1) < 𝑀 ↔ ((𝑘 + 1) + 1) ≤ 𝑀))
8844, 36, 87syl2anr 288 . . . . . . . . . 10 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → ((𝑘 + 1) < 𝑀 ↔ ((𝑘 + 1) + 1) ≤ 𝑀))
89 peano2nn0 9024 . . . . . . . . . . . . . . 15 ((𝑘 + 1) ∈ ℕ0 → ((𝑘 + 1) + 1) ∈ ℕ0)
9044, 89syl 14 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ0 → ((𝑘 + 1) + 1) ∈ ℕ0)
91 reexpcl 10317 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℝ ∧ ((𝑘 + 1) + 1) ∈ ℕ0) → (𝑀↑((𝑘 + 1) + 1)) ∈ ℝ)
9226, 90, 91syl2an 287 . . . . . . . . . . . . 13 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑀↑((𝑘 + 1) + 1)) ∈ ℝ)
9392adantr 274 . . . . . . . . . . . 12 (((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ ((𝑘 + 1) + 1) ≤ 𝑀) → (𝑀↑((𝑘 + 1) + 1)) ∈ ℝ)
9437ad2antrr 479 . . . . . . . . . . . 12 (((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ ((𝑘 + 1) + 1) ≤ 𝑀) → (𝑀𝑀) ∈ ℝ)
9544faccld 10489 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ0 → (!‘(𝑘 + 1)) ∈ ℕ)
9695nnred 8740 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ0 → (!‘(𝑘 + 1)) ∈ ℝ)
97 remulcl 7755 . . . . . . . . . . . . . 14 (((𝑀𝑀) ∈ ℝ ∧ (!‘(𝑘 + 1)) ∈ ℝ) → ((𝑀𝑀) · (!‘(𝑘 + 1))) ∈ ℝ)
9837, 96, 97syl2an 287 . . . . . . . . . . . . 13 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → ((𝑀𝑀) · (!‘(𝑘 + 1))) ∈ ℝ)
9998adantr 274 . . . . . . . . . . . 12 (((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ ((𝑘 + 1) + 1) ≤ 𝑀) → ((𝑀𝑀) · (!‘(𝑘 + 1))) ∈ ℝ)
10026ad2antrr 479 . . . . . . . . . . . . 13 (((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ ((𝑘 + 1) + 1) ≤ 𝑀) → 𝑀 ∈ ℝ)
10127ad2antrr 479 . . . . . . . . . . . . 13 (((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ ((𝑘 + 1) + 1) ≤ 𝑀) → 1 ≤ 𝑀)
102 simpr 109 . . . . . . . . . . . . . 14 (((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ ((𝑘 + 1) + 1) ≤ 𝑀) → ((𝑘 + 1) + 1) ≤ 𝑀)
10390ad2antlr 480 . . . . . . . . . . . . . . . 16 (((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ ((𝑘 + 1) + 1) ≤ 𝑀) → ((𝑘 + 1) + 1) ∈ ℕ0)
104103nn0zd 9178 . . . . . . . . . . . . . . 15 (((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ ((𝑘 + 1) + 1) ≤ 𝑀) → ((𝑘 + 1) + 1) ∈ ℤ)
105 nnz 9080 . . . . . . . . . . . . . . . 16 (𝑀 ∈ ℕ → 𝑀 ∈ ℤ)
106105ad2antrr 479 . . . . . . . . . . . . . . 15 (((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ ((𝑘 + 1) + 1) ≤ 𝑀) → 𝑀 ∈ ℤ)
107 eluz 9346 . . . . . . . . . . . . . . 15 ((((𝑘 + 1) + 1) ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑀 ∈ (ℤ‘((𝑘 + 1) + 1)) ↔ ((𝑘 + 1) + 1) ≤ 𝑀))
108104, 106, 107syl2anc 408 . . . . . . . . . . . . . 14 (((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ ((𝑘 + 1) + 1) ≤ 𝑀) → (𝑀 ∈ (ℤ‘((𝑘 + 1) + 1)) ↔ ((𝑘 + 1) + 1) ≤ 𝑀))
109102, 108mpbird 166 . . . . . . . . . . . . 13 (((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ ((𝑘 + 1) + 1) ≤ 𝑀) → 𝑀 ∈ (ℤ‘((𝑘 + 1) + 1)))
110100, 101, 109leexp2ad 10460 . . . . . . . . . . . 12 (((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ ((𝑘 + 1) + 1) ≤ 𝑀) → (𝑀↑((𝑘 + 1) + 1)) ≤ (𝑀𝑀))
11137, 96anim12i 336 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → ((𝑀𝑀) ∈ ℝ ∧ (!‘(𝑘 + 1)) ∈ ℝ))
112 nn0re 8993 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ ℕ0𝑀 ∈ ℝ)
113 id 19 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ ℕ0𝑀 ∈ ℕ0)
114 nn0ge0 9009 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ ℕ0 → 0 ≤ 𝑀)
115112, 113, 114expge0d 10449 . . . . . . . . . . . . . . . 16 (𝑀 ∈ ℕ0 → 0 ≤ (𝑀𝑀))
11636, 115syl 14 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℕ → 0 ≤ (𝑀𝑀))
11795nnge1d 8770 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ0 → 1 ≤ (!‘(𝑘 + 1)))
118116, 117anim12i 336 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (0 ≤ (𝑀𝑀) ∧ 1 ≤ (!‘(𝑘 + 1))))
119 lemulge11 8631 . . . . . . . . . . . . . 14 ((((𝑀𝑀) ∈ ℝ ∧ (!‘(𝑘 + 1)) ∈ ℝ) ∧ (0 ≤ (𝑀𝑀) ∧ 1 ≤ (!‘(𝑘 + 1)))) → (𝑀𝑀) ≤ ((𝑀𝑀) · (!‘(𝑘 + 1))))
120111, 118, 119syl2anc 408 . . . . . . . . . . . . 13 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑀𝑀) ≤ ((𝑀𝑀) · (!‘(𝑘 + 1))))
121120adantr 274 . . . . . . . . . . . 12 (((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ ((𝑘 + 1) + 1) ≤ 𝑀) → (𝑀𝑀) ≤ ((𝑀𝑀) · (!‘(𝑘 + 1))))
12293, 94, 99, 110, 121letrd 7893 . . . . . . . . . . 11 (((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ ((𝑘 + 1) + 1) ≤ 𝑀) → (𝑀↑((𝑘 + 1) + 1)) ≤ ((𝑀𝑀) · (!‘(𝑘 + 1))))
123122ex 114 . . . . . . . . . 10 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (((𝑘 + 1) + 1) ≤ 𝑀 → (𝑀↑((𝑘 + 1) + 1)) ≤ ((𝑀𝑀) · (!‘(𝑘 + 1)))))
12488, 123sylbid 149 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → ((𝑘 + 1) < 𝑀 → (𝑀↑((𝑘 + 1) + 1)) ≤ ((𝑀𝑀) · (!‘(𝑘 + 1)))))
125124a1dd 48 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → ((𝑘 + 1) < 𝑀 → ((𝑀↑(𝑘 + 1)) ≤ ((𝑀𝑀) · (!‘𝑘)) → (𝑀↑((𝑘 + 1) + 1)) ≤ ((𝑀𝑀) · (!‘(𝑘 + 1))))))
126105adantr 274 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → 𝑀 ∈ ℤ)
12744adantl 275 . . . . . . . . . 10 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑘 + 1) ∈ ℕ0)
128127nn0zd 9178 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑘 + 1) ∈ ℤ)
129 zlelttric 9106 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ (𝑘 + 1) ∈ ℤ) → (𝑀 ≤ (𝑘 + 1) ∨ (𝑘 + 1) < 𝑀))
130126, 128, 129syl2anc 408 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑀 ≤ (𝑘 + 1) ∨ (𝑘 + 1) < 𝑀))
13186, 125, 130mpjaod 707 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → ((𝑀↑(𝑘 + 1)) ≤ ((𝑀𝑀) · (!‘𝑘)) → (𝑀↑((𝑘 + 1) + 1)) ≤ ((𝑀𝑀) · (!‘(𝑘 + 1)))))
132131expcom 115 . . . . . 6 (𝑘 ∈ ℕ0 → (𝑀 ∈ ℕ → ((𝑀↑(𝑘 + 1)) ≤ ((𝑀𝑀) · (!‘𝑘)) → (𝑀↑((𝑘 + 1) + 1)) ≤ ((𝑀𝑀) · (!‘(𝑘 + 1))))))
133132a2d 26 . . . . 5 (𝑘 ∈ ℕ0 → ((𝑀 ∈ ℕ → (𝑀↑(𝑘 + 1)) ≤ ((𝑀𝑀) · (!‘𝑘))) → (𝑀 ∈ ℕ → (𝑀↑((𝑘 + 1) + 1)) ≤ ((𝑀𝑀) · (!‘(𝑘 + 1))))))
1347, 13, 19, 25, 41, 133nn0ind 9172 . . . 4 (𝑁 ∈ ℕ0 → (𝑀 ∈ ℕ → (𝑀↑(𝑁 + 1)) ≤ ((𝑀𝑀) · (!‘𝑁))))
135134impcom 124 . . 3 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝑀↑(𝑁 + 1)) ≤ ((𝑀𝑀) · (!‘𝑁)))
136 faccl 10488 . . . . . . . 8 (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℕ)
137136nnnn0d 9037 . . . . . . 7 (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℕ0)
138137nn0ge0d 9040 . . . . . 6 (𝑁 ∈ ℕ0 → 0 ≤ (!‘𝑁))
139 nn0p1nn 9023 . . . . . . 7 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ)
1401390expd 10447 . . . . . 6 (𝑁 ∈ ℕ0 → (0↑(𝑁 + 1)) = 0)
141 0exp0e1 10305 . . . . . . . 8 (0↑0) = 1
142141oveq1i 5784 . . . . . . 7 ((0↑0) · (!‘𝑁)) = (1 · (!‘𝑁))
143136nncnd 8741 . . . . . . . 8 (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℂ)
144143mulid2d 7791 . . . . . . 7 (𝑁 ∈ ℕ0 → (1 · (!‘𝑁)) = (!‘𝑁))
145142, 144syl5eq 2184 . . . . . 6 (𝑁 ∈ ℕ0 → ((0↑0) · (!‘𝑁)) = (!‘𝑁))
146138, 140, 1453brtr4d 3960 . . . . 5 (𝑁 ∈ ℕ0 → (0↑(𝑁 + 1)) ≤ ((0↑0) · (!‘𝑁)))
147 oveq1 5781 . . . . . 6 (𝑀 = 0 → (𝑀↑(𝑁 + 1)) = (0↑(𝑁 + 1)))
148 oveq12 5783 . . . . . . . 8 ((𝑀 = 0 ∧ 𝑀 = 0) → (𝑀𝑀) = (0↑0))
149148anidms 394 . . . . . . 7 (𝑀 = 0 → (𝑀𝑀) = (0↑0))
150149oveq1d 5789 . . . . . 6 (𝑀 = 0 → ((𝑀𝑀) · (!‘𝑁)) = ((0↑0) · (!‘𝑁)))
151147, 150breq12d 3942 . . . . 5 (𝑀 = 0 → ((𝑀↑(𝑁 + 1)) ≤ ((𝑀𝑀) · (!‘𝑁)) ↔ (0↑(𝑁 + 1)) ≤ ((0↑0) · (!‘𝑁))))
152146, 151syl5ibr 155 . . . 4 (𝑀 = 0 → (𝑁 ∈ ℕ0 → (𝑀↑(𝑁 + 1)) ≤ ((𝑀𝑀) · (!‘𝑁))))
153152imp 123 . . 3 ((𝑀 = 0 ∧ 𝑁 ∈ ℕ0) → (𝑀↑(𝑁 + 1)) ≤ ((𝑀𝑀) · (!‘𝑁)))
154135, 153jaoian 784 . 2 (((𝑀 ∈ ℕ ∨ 𝑀 = 0) ∧ 𝑁 ∈ ℕ0) → (𝑀↑(𝑁 + 1)) ≤ ((𝑀𝑀) · (!‘𝑁)))
1551, 154sylanb 282 1 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀↑(𝑁 + 1)) ≤ ((𝑀𝑀) · (!‘𝑁)))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103   ↔ wb 104   ∨ wo 697   = wceq 1331   ∈ wcel 1480   class class class wbr 3929  ‘cfv 5123  (class class class)co 5774  ℂcc 7625  ℝcr 7626  0cc0 7627  1c1 7628   + caddc 7630   · cmul 7632   < clt 7807   ≤ cle 7808  ℕcn 8727  ℕ0cn0 8984  ℤcz 9061  ℤ≥cuz 9333  ↑cexp 10299  !cfa 10478 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7718  ax-resscn 7719  ax-1cn 7720  ax-1re 7721  ax-icn 7722  ax-addcl 7723  ax-addrcl 7724  ax-mulcl 7725  ax-mulrcl 7726  ax-addcom 7727  ax-mulcom 7728  ax-addass 7729  ax-mulass 7730  ax-distr 7731  ax-i2m1 7732  ax-0lt1 7733  ax-1rid 7734  ax-0id 7735  ax-rnegex 7736  ax-precex 7737  ax-cnre 7738  ax-pre-ltirr 7739  ax-pre-ltwlin 7740  ax-pre-lttrn 7741  ax-pre-apti 7742  ax-pre-ltadd 7743  ax-pre-mulgt0 7744  ax-pre-mulext 7745 This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-pnf 7809  df-mnf 7810  df-xr 7811  df-ltxr 7812  df-le 7813  df-sub 7942  df-neg 7943  df-reap 8344  df-ap 8351  df-div 8440  df-inn 8728  df-n0 8985  df-z 9062  df-uz 9334  df-rp 9449  df-seqfrec 10226  df-exp 10300  df-fac 10479 This theorem is referenced by:  faclbnd2  10495  faclbnd3  10496
 Copyright terms: Public domain W3C validator