ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  faclbnd GIF version

Theorem faclbnd 10675
Description: A lower bound for the factorial function. (Contributed by NM, 17-Dec-2005.)
Assertion
Ref Expression
faclbnd ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀↑(𝑁 + 1)) ≤ ((𝑀𝑀) · (!‘𝑁)))

Proof of Theorem faclbnd
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elnn0 9137 . 2 (𝑀 ∈ ℕ0 ↔ (𝑀 ∈ ℕ ∨ 𝑀 = 0))
2 oveq1 5860 . . . . . . . 8 (𝑗 = 0 → (𝑗 + 1) = (0 + 1))
32oveq2d 5869 . . . . . . 7 (𝑗 = 0 → (𝑀↑(𝑗 + 1)) = (𝑀↑(0 + 1)))
4 fveq2 5496 . . . . . . . 8 (𝑗 = 0 → (!‘𝑗) = (!‘0))
54oveq2d 5869 . . . . . . 7 (𝑗 = 0 → ((𝑀𝑀) · (!‘𝑗)) = ((𝑀𝑀) · (!‘0)))
63, 5breq12d 4002 . . . . . 6 (𝑗 = 0 → ((𝑀↑(𝑗 + 1)) ≤ ((𝑀𝑀) · (!‘𝑗)) ↔ (𝑀↑(0 + 1)) ≤ ((𝑀𝑀) · (!‘0))))
76imbi2d 229 . . . . 5 (𝑗 = 0 → ((𝑀 ∈ ℕ → (𝑀↑(𝑗 + 1)) ≤ ((𝑀𝑀) · (!‘𝑗))) ↔ (𝑀 ∈ ℕ → (𝑀↑(0 + 1)) ≤ ((𝑀𝑀) · (!‘0)))))
8 oveq1 5860 . . . . . . . 8 (𝑗 = 𝑘 → (𝑗 + 1) = (𝑘 + 1))
98oveq2d 5869 . . . . . . 7 (𝑗 = 𝑘 → (𝑀↑(𝑗 + 1)) = (𝑀↑(𝑘 + 1)))
10 fveq2 5496 . . . . . . . 8 (𝑗 = 𝑘 → (!‘𝑗) = (!‘𝑘))
1110oveq2d 5869 . . . . . . 7 (𝑗 = 𝑘 → ((𝑀𝑀) · (!‘𝑗)) = ((𝑀𝑀) · (!‘𝑘)))
129, 11breq12d 4002 . . . . . 6 (𝑗 = 𝑘 → ((𝑀↑(𝑗 + 1)) ≤ ((𝑀𝑀) · (!‘𝑗)) ↔ (𝑀↑(𝑘 + 1)) ≤ ((𝑀𝑀) · (!‘𝑘))))
1312imbi2d 229 . . . . 5 (𝑗 = 𝑘 → ((𝑀 ∈ ℕ → (𝑀↑(𝑗 + 1)) ≤ ((𝑀𝑀) · (!‘𝑗))) ↔ (𝑀 ∈ ℕ → (𝑀↑(𝑘 + 1)) ≤ ((𝑀𝑀) · (!‘𝑘)))))
14 oveq1 5860 . . . . . . . 8 (𝑗 = (𝑘 + 1) → (𝑗 + 1) = ((𝑘 + 1) + 1))
1514oveq2d 5869 . . . . . . 7 (𝑗 = (𝑘 + 1) → (𝑀↑(𝑗 + 1)) = (𝑀↑((𝑘 + 1) + 1)))
16 fveq2 5496 . . . . . . . 8 (𝑗 = (𝑘 + 1) → (!‘𝑗) = (!‘(𝑘 + 1)))
1716oveq2d 5869 . . . . . . 7 (𝑗 = (𝑘 + 1) → ((𝑀𝑀) · (!‘𝑗)) = ((𝑀𝑀) · (!‘(𝑘 + 1))))
1815, 17breq12d 4002 . . . . . 6 (𝑗 = (𝑘 + 1) → ((𝑀↑(𝑗 + 1)) ≤ ((𝑀𝑀) · (!‘𝑗)) ↔ (𝑀↑((𝑘 + 1) + 1)) ≤ ((𝑀𝑀) · (!‘(𝑘 + 1)))))
1918imbi2d 229 . . . . 5 (𝑗 = (𝑘 + 1) → ((𝑀 ∈ ℕ → (𝑀↑(𝑗 + 1)) ≤ ((𝑀𝑀) · (!‘𝑗))) ↔ (𝑀 ∈ ℕ → (𝑀↑((𝑘 + 1) + 1)) ≤ ((𝑀𝑀) · (!‘(𝑘 + 1))))))
20 oveq1 5860 . . . . . . . 8 (𝑗 = 𝑁 → (𝑗 + 1) = (𝑁 + 1))
2120oveq2d 5869 . . . . . . 7 (𝑗 = 𝑁 → (𝑀↑(𝑗 + 1)) = (𝑀↑(𝑁 + 1)))
22 fveq2 5496 . . . . . . . 8 (𝑗 = 𝑁 → (!‘𝑗) = (!‘𝑁))
2322oveq2d 5869 . . . . . . 7 (𝑗 = 𝑁 → ((𝑀𝑀) · (!‘𝑗)) = ((𝑀𝑀) · (!‘𝑁)))
2421, 23breq12d 4002 . . . . . 6 (𝑗 = 𝑁 → ((𝑀↑(𝑗 + 1)) ≤ ((𝑀𝑀) · (!‘𝑗)) ↔ (𝑀↑(𝑁 + 1)) ≤ ((𝑀𝑀) · (!‘𝑁))))
2524imbi2d 229 . . . . 5 (𝑗 = 𝑁 → ((𝑀 ∈ ℕ → (𝑀↑(𝑗 + 1)) ≤ ((𝑀𝑀) · (!‘𝑗))) ↔ (𝑀 ∈ ℕ → (𝑀↑(𝑁 + 1)) ≤ ((𝑀𝑀) · (!‘𝑁)))))
26 nnre 8885 . . . . . . 7 (𝑀 ∈ ℕ → 𝑀 ∈ ℝ)
27 nnge1 8901 . . . . . . 7 (𝑀 ∈ ℕ → 1 ≤ 𝑀)
28 elnnuz 9523 . . . . . . . 8 (𝑀 ∈ ℕ ↔ 𝑀 ∈ (ℤ‘1))
2928biimpi 119 . . . . . . 7 (𝑀 ∈ ℕ → 𝑀 ∈ (ℤ‘1))
3026, 27, 29leexp2ad 10638 . . . . . 6 (𝑀 ∈ ℕ → (𝑀↑1) ≤ (𝑀𝑀))
31 0p1e1 8992 . . . . . . . 8 (0 + 1) = 1
3231oveq2i 5864 . . . . . . 7 (𝑀↑(0 + 1)) = (𝑀↑1)
3332a1i 9 . . . . . 6 (𝑀 ∈ ℕ → (𝑀↑(0 + 1)) = (𝑀↑1))
34 fac0 10662 . . . . . . . 8 (!‘0) = 1
3534oveq2i 5864 . . . . . . 7 ((𝑀𝑀) · (!‘0)) = ((𝑀𝑀) · 1)
36 nnnn0 9142 . . . . . . . . . 10 (𝑀 ∈ ℕ → 𝑀 ∈ ℕ0)
3726, 36reexpcld 10626 . . . . . . . . 9 (𝑀 ∈ ℕ → (𝑀𝑀) ∈ ℝ)
3837recnd 7948 . . . . . . . 8 (𝑀 ∈ ℕ → (𝑀𝑀) ∈ ℂ)
3938mulid1d 7937 . . . . . . 7 (𝑀 ∈ ℕ → ((𝑀𝑀) · 1) = (𝑀𝑀))
4035, 39eqtrid 2215 . . . . . 6 (𝑀 ∈ ℕ → ((𝑀𝑀) · (!‘0)) = (𝑀𝑀))
4130, 33, 403brtr4d 4021 . . . . 5 (𝑀 ∈ ℕ → (𝑀↑(0 + 1)) ≤ ((𝑀𝑀) · (!‘0)))
4226ad3antrrr 489 . . . . . . . . . . . . . 14 ((((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ (𝑀↑(𝑘 + 1)) ≤ ((𝑀𝑀) · (!‘𝑘))) ∧ ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ 𝑀 ≤ (𝑘 + 1))) → 𝑀 ∈ ℝ)
43 simpllr 529 . . . . . . . . . . . . . . 15 ((((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ (𝑀↑(𝑘 + 1)) ≤ ((𝑀𝑀) · (!‘𝑘))) ∧ ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ 𝑀 ≤ (𝑘 + 1))) → 𝑘 ∈ ℕ0)
44 peano2nn0 9175 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℕ0)
4543, 44syl 14 . . . . . . . . . . . . . 14 ((((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ (𝑀↑(𝑘 + 1)) ≤ ((𝑀𝑀) · (!‘𝑘))) ∧ ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ 𝑀 ≤ (𝑘 + 1))) → (𝑘 + 1) ∈ ℕ0)
4642, 45reexpcld 10626 . . . . . . . . . . . . 13 ((((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ (𝑀↑(𝑘 + 1)) ≤ ((𝑀𝑀) · (!‘𝑘))) ∧ ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ 𝑀 ≤ (𝑘 + 1))) → (𝑀↑(𝑘 + 1)) ∈ ℝ)
4736ad3antrrr 489 . . . . . . . . . . . . . . 15 ((((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ (𝑀↑(𝑘 + 1)) ≤ ((𝑀𝑀) · (!‘𝑘))) ∧ ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ 𝑀 ≤ (𝑘 + 1))) → 𝑀 ∈ ℕ0)
4842, 47reexpcld 10626 . . . . . . . . . . . . . 14 ((((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ (𝑀↑(𝑘 + 1)) ≤ ((𝑀𝑀) · (!‘𝑘))) ∧ ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ 𝑀 ≤ (𝑘 + 1))) → (𝑀𝑀) ∈ ℝ)
4943faccld 10670 . . . . . . . . . . . . . . 15 ((((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ (𝑀↑(𝑘 + 1)) ≤ ((𝑀𝑀) · (!‘𝑘))) ∧ ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ 𝑀 ≤ (𝑘 + 1))) → (!‘𝑘) ∈ ℕ)
5049nnred 8891 . . . . . . . . . . . . . 14 ((((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ (𝑀↑(𝑘 + 1)) ≤ ((𝑀𝑀) · (!‘𝑘))) ∧ ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ 𝑀 ≤ (𝑘 + 1))) → (!‘𝑘) ∈ ℝ)
5148, 50remulcld 7950 . . . . . . . . . . . . 13 ((((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ (𝑀↑(𝑘 + 1)) ≤ ((𝑀𝑀) · (!‘𝑘))) ∧ ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ 𝑀 ≤ (𝑘 + 1))) → ((𝑀𝑀) · (!‘𝑘)) ∈ ℝ)
52 nn0re 9144 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ0𝑘 ∈ ℝ)
53 peano2re 8055 . . . . . . . . . . . . . 14 (𝑘 ∈ ℝ → (𝑘 + 1) ∈ ℝ)
5443, 52, 533syl 17 . . . . . . . . . . . . 13 ((((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ (𝑀↑(𝑘 + 1)) ≤ ((𝑀𝑀) · (!‘𝑘))) ∧ ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ 𝑀 ≤ (𝑘 + 1))) → (𝑘 + 1) ∈ ℝ)
55 nngt0 8903 . . . . . . . . . . . . . . . 16 (𝑀 ∈ ℕ → 0 < 𝑀)
5655ad3antrrr 489 . . . . . . . . . . . . . . 15 ((((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ (𝑀↑(𝑘 + 1)) ≤ ((𝑀𝑀) · (!‘𝑘))) ∧ ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ 𝑀 ≤ (𝑘 + 1))) → 0 < 𝑀)
57 0re 7920 . . . . . . . . . . . . . . . 16 0 ∈ ℝ
58 ltle 8007 . . . . . . . . . . . . . . . 16 ((0 ∈ ℝ ∧ 𝑀 ∈ ℝ) → (0 < 𝑀 → 0 ≤ 𝑀))
5957, 58mpan 422 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℝ → (0 < 𝑀 → 0 ≤ 𝑀))
6042, 56, 59sylc 62 . . . . . . . . . . . . . 14 ((((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ (𝑀↑(𝑘 + 1)) ≤ ((𝑀𝑀) · (!‘𝑘))) ∧ ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ 𝑀 ≤ (𝑘 + 1))) → 0 ≤ 𝑀)
6142, 45, 60expge0d 10627 . . . . . . . . . . . . 13 ((((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ (𝑀↑(𝑘 + 1)) ≤ ((𝑀𝑀) · (!‘𝑘))) ∧ ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ 𝑀 ≤ (𝑘 + 1))) → 0 ≤ (𝑀↑(𝑘 + 1)))
62 simplr 525 . . . . . . . . . . . . 13 ((((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ (𝑀↑(𝑘 + 1)) ≤ ((𝑀𝑀) · (!‘𝑘))) ∧ ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ 𝑀 ≤ (𝑘 + 1))) → (𝑀↑(𝑘 + 1)) ≤ ((𝑀𝑀) · (!‘𝑘)))
63 simprr 527 . . . . . . . . . . . . 13 ((((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ (𝑀↑(𝑘 + 1)) ≤ ((𝑀𝑀) · (!‘𝑘))) ∧ ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ 𝑀 ≤ (𝑘 + 1))) → 𝑀 ≤ (𝑘 + 1))
6446, 51, 42, 54, 61, 60, 62, 63lemul12ad 8858 . . . . . . . . . . . 12 ((((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ (𝑀↑(𝑘 + 1)) ≤ ((𝑀𝑀) · (!‘𝑘))) ∧ ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ 𝑀 ≤ (𝑘 + 1))) → ((𝑀↑(𝑘 + 1)) · 𝑀) ≤ (((𝑀𝑀) · (!‘𝑘)) · (𝑘 + 1)))
6564anandis 587 . . . . . . . . . . 11 (((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ ((𝑀↑(𝑘 + 1)) ≤ ((𝑀𝑀) · (!‘𝑘)) ∧ 𝑀 ≤ (𝑘 + 1))) → ((𝑀↑(𝑘 + 1)) · 𝑀) ≤ (((𝑀𝑀) · (!‘𝑘)) · (𝑘 + 1)))
66 nncn 8886 . . . . . . . . . . . . 13 (𝑀 ∈ ℕ → 𝑀 ∈ ℂ)
67 expp1 10483 . . . . . . . . . . . . 13 ((𝑀 ∈ ℂ ∧ (𝑘 + 1) ∈ ℕ0) → (𝑀↑((𝑘 + 1) + 1)) = ((𝑀↑(𝑘 + 1)) · 𝑀))
6866, 44, 67syl2an 287 . . . . . . . . . . . 12 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑀↑((𝑘 + 1) + 1)) = ((𝑀↑(𝑘 + 1)) · 𝑀))
6968adantr 274 . . . . . . . . . . 11 (((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ ((𝑀↑(𝑘 + 1)) ≤ ((𝑀𝑀) · (!‘𝑘)) ∧ 𝑀 ≤ (𝑘 + 1))) → (𝑀↑((𝑘 + 1) + 1)) = ((𝑀↑(𝑘 + 1)) · 𝑀))
70 facp1 10664 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ0 → (!‘(𝑘 + 1)) = ((!‘𝑘) · (𝑘 + 1)))
7170adantl 275 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (!‘(𝑘 + 1)) = ((!‘𝑘) · (𝑘 + 1)))
7271oveq2d 5869 . . . . . . . . . . . . 13 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → ((𝑀𝑀) · (!‘(𝑘 + 1))) = ((𝑀𝑀) · ((!‘𝑘) · (𝑘 + 1))))
7338adantr 274 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑀𝑀) ∈ ℂ)
74 faccl 10669 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ0 → (!‘𝑘) ∈ ℕ)
7574nncnd 8892 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ0 → (!‘𝑘) ∈ ℂ)
7675adantl 275 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (!‘𝑘) ∈ ℂ)
77 nn0cn 9145 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ0𝑘 ∈ ℂ)
78 peano2cn 8054 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℂ → (𝑘 + 1) ∈ ℂ)
7977, 78syl 14 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℂ)
8079adantl 275 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑘 + 1) ∈ ℂ)
8173, 76, 80mulassd 7943 . . . . . . . . . . . . 13 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (((𝑀𝑀) · (!‘𝑘)) · (𝑘 + 1)) = ((𝑀𝑀) · ((!‘𝑘) · (𝑘 + 1))))
8272, 81eqtr4d 2206 . . . . . . . . . . . 12 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → ((𝑀𝑀) · (!‘(𝑘 + 1))) = (((𝑀𝑀) · (!‘𝑘)) · (𝑘 + 1)))
8382adantr 274 . . . . . . . . . . 11 (((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ ((𝑀↑(𝑘 + 1)) ≤ ((𝑀𝑀) · (!‘𝑘)) ∧ 𝑀 ≤ (𝑘 + 1))) → ((𝑀𝑀) · (!‘(𝑘 + 1))) = (((𝑀𝑀) · (!‘𝑘)) · (𝑘 + 1)))
8465, 69, 833brtr4d 4021 . . . . . . . . . 10 (((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ ((𝑀↑(𝑘 + 1)) ≤ ((𝑀𝑀) · (!‘𝑘)) ∧ 𝑀 ≤ (𝑘 + 1))) → (𝑀↑((𝑘 + 1) + 1)) ≤ ((𝑀𝑀) · (!‘(𝑘 + 1))))
8584exp32 363 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → ((𝑀↑(𝑘 + 1)) ≤ ((𝑀𝑀) · (!‘𝑘)) → (𝑀 ≤ (𝑘 + 1) → (𝑀↑((𝑘 + 1) + 1)) ≤ ((𝑀𝑀) · (!‘(𝑘 + 1))))))
8685com23 78 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑀 ≤ (𝑘 + 1) → ((𝑀↑(𝑘 + 1)) ≤ ((𝑀𝑀) · (!‘𝑘)) → (𝑀↑((𝑘 + 1) + 1)) ≤ ((𝑀𝑀) · (!‘(𝑘 + 1))))))
87 nn0ltp1le 9274 . . . . . . . . . . 11 (((𝑘 + 1) ∈ ℕ0𝑀 ∈ ℕ0) → ((𝑘 + 1) < 𝑀 ↔ ((𝑘 + 1) + 1) ≤ 𝑀))
8844, 36, 87syl2anr 288 . . . . . . . . . 10 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → ((𝑘 + 1) < 𝑀 ↔ ((𝑘 + 1) + 1) ≤ 𝑀))
89 peano2nn0 9175 . . . . . . . . . . . . . . 15 ((𝑘 + 1) ∈ ℕ0 → ((𝑘 + 1) + 1) ∈ ℕ0)
9044, 89syl 14 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ0 → ((𝑘 + 1) + 1) ∈ ℕ0)
91 reexpcl 10493 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℝ ∧ ((𝑘 + 1) + 1) ∈ ℕ0) → (𝑀↑((𝑘 + 1) + 1)) ∈ ℝ)
9226, 90, 91syl2an 287 . . . . . . . . . . . . 13 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑀↑((𝑘 + 1) + 1)) ∈ ℝ)
9392adantr 274 . . . . . . . . . . . 12 (((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ ((𝑘 + 1) + 1) ≤ 𝑀) → (𝑀↑((𝑘 + 1) + 1)) ∈ ℝ)
9437ad2antrr 485 . . . . . . . . . . . 12 (((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ ((𝑘 + 1) + 1) ≤ 𝑀) → (𝑀𝑀) ∈ ℝ)
9544faccld 10670 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ0 → (!‘(𝑘 + 1)) ∈ ℕ)
9695nnred 8891 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ0 → (!‘(𝑘 + 1)) ∈ ℝ)
97 remulcl 7902 . . . . . . . . . . . . . 14 (((𝑀𝑀) ∈ ℝ ∧ (!‘(𝑘 + 1)) ∈ ℝ) → ((𝑀𝑀) · (!‘(𝑘 + 1))) ∈ ℝ)
9837, 96, 97syl2an 287 . . . . . . . . . . . . 13 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → ((𝑀𝑀) · (!‘(𝑘 + 1))) ∈ ℝ)
9998adantr 274 . . . . . . . . . . . 12 (((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ ((𝑘 + 1) + 1) ≤ 𝑀) → ((𝑀𝑀) · (!‘(𝑘 + 1))) ∈ ℝ)
10026ad2antrr 485 . . . . . . . . . . . . 13 (((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ ((𝑘 + 1) + 1) ≤ 𝑀) → 𝑀 ∈ ℝ)
10127ad2antrr 485 . . . . . . . . . . . . 13 (((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ ((𝑘 + 1) + 1) ≤ 𝑀) → 1 ≤ 𝑀)
102 simpr 109 . . . . . . . . . . . . . 14 (((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ ((𝑘 + 1) + 1) ≤ 𝑀) → ((𝑘 + 1) + 1) ≤ 𝑀)
10390ad2antlr 486 . . . . . . . . . . . . . . . 16 (((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ ((𝑘 + 1) + 1) ≤ 𝑀) → ((𝑘 + 1) + 1) ∈ ℕ0)
104103nn0zd 9332 . . . . . . . . . . . . . . 15 (((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ ((𝑘 + 1) + 1) ≤ 𝑀) → ((𝑘 + 1) + 1) ∈ ℤ)
105 nnz 9231 . . . . . . . . . . . . . . . 16 (𝑀 ∈ ℕ → 𝑀 ∈ ℤ)
106105ad2antrr 485 . . . . . . . . . . . . . . 15 (((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ ((𝑘 + 1) + 1) ≤ 𝑀) → 𝑀 ∈ ℤ)
107 eluz 9500 . . . . . . . . . . . . . . 15 ((((𝑘 + 1) + 1) ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑀 ∈ (ℤ‘((𝑘 + 1) + 1)) ↔ ((𝑘 + 1) + 1) ≤ 𝑀))
108104, 106, 107syl2anc 409 . . . . . . . . . . . . . 14 (((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ ((𝑘 + 1) + 1) ≤ 𝑀) → (𝑀 ∈ (ℤ‘((𝑘 + 1) + 1)) ↔ ((𝑘 + 1) + 1) ≤ 𝑀))
109102, 108mpbird 166 . . . . . . . . . . . . 13 (((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ ((𝑘 + 1) + 1) ≤ 𝑀) → 𝑀 ∈ (ℤ‘((𝑘 + 1) + 1)))
110100, 101, 109leexp2ad 10638 . . . . . . . . . . . 12 (((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ ((𝑘 + 1) + 1) ≤ 𝑀) → (𝑀↑((𝑘 + 1) + 1)) ≤ (𝑀𝑀))
11137, 96anim12i 336 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → ((𝑀𝑀) ∈ ℝ ∧ (!‘(𝑘 + 1)) ∈ ℝ))
112 nn0re 9144 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ ℕ0𝑀 ∈ ℝ)
113 id 19 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ ℕ0𝑀 ∈ ℕ0)
114 nn0ge0 9160 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ ℕ0 → 0 ≤ 𝑀)
115112, 113, 114expge0d 10627 . . . . . . . . . . . . . . . 16 (𝑀 ∈ ℕ0 → 0 ≤ (𝑀𝑀))
11636, 115syl 14 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℕ → 0 ≤ (𝑀𝑀))
11795nnge1d 8921 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ0 → 1 ≤ (!‘(𝑘 + 1)))
118116, 117anim12i 336 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (0 ≤ (𝑀𝑀) ∧ 1 ≤ (!‘(𝑘 + 1))))
119 lemulge11 8782 . . . . . . . . . . . . . 14 ((((𝑀𝑀) ∈ ℝ ∧ (!‘(𝑘 + 1)) ∈ ℝ) ∧ (0 ≤ (𝑀𝑀) ∧ 1 ≤ (!‘(𝑘 + 1)))) → (𝑀𝑀) ≤ ((𝑀𝑀) · (!‘(𝑘 + 1))))
120111, 118, 119syl2anc 409 . . . . . . . . . . . . 13 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑀𝑀) ≤ ((𝑀𝑀) · (!‘(𝑘 + 1))))
121120adantr 274 . . . . . . . . . . . 12 (((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ ((𝑘 + 1) + 1) ≤ 𝑀) → (𝑀𝑀) ≤ ((𝑀𝑀) · (!‘(𝑘 + 1))))
12293, 94, 99, 110, 121letrd 8043 . . . . . . . . . . 11 (((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ ((𝑘 + 1) + 1) ≤ 𝑀) → (𝑀↑((𝑘 + 1) + 1)) ≤ ((𝑀𝑀) · (!‘(𝑘 + 1))))
123122ex 114 . . . . . . . . . 10 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (((𝑘 + 1) + 1) ≤ 𝑀 → (𝑀↑((𝑘 + 1) + 1)) ≤ ((𝑀𝑀) · (!‘(𝑘 + 1)))))
12488, 123sylbid 149 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → ((𝑘 + 1) < 𝑀 → (𝑀↑((𝑘 + 1) + 1)) ≤ ((𝑀𝑀) · (!‘(𝑘 + 1)))))
125124a1dd 48 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → ((𝑘 + 1) < 𝑀 → ((𝑀↑(𝑘 + 1)) ≤ ((𝑀𝑀) · (!‘𝑘)) → (𝑀↑((𝑘 + 1) + 1)) ≤ ((𝑀𝑀) · (!‘(𝑘 + 1))))))
126105adantr 274 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → 𝑀 ∈ ℤ)
12744adantl 275 . . . . . . . . . 10 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑘 + 1) ∈ ℕ0)
128127nn0zd 9332 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑘 + 1) ∈ ℤ)
129 zlelttric 9257 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ (𝑘 + 1) ∈ ℤ) → (𝑀 ≤ (𝑘 + 1) ∨ (𝑘 + 1) < 𝑀))
130126, 128, 129syl2anc 409 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑀 ≤ (𝑘 + 1) ∨ (𝑘 + 1) < 𝑀))
13186, 125, 130mpjaod 713 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → ((𝑀↑(𝑘 + 1)) ≤ ((𝑀𝑀) · (!‘𝑘)) → (𝑀↑((𝑘 + 1) + 1)) ≤ ((𝑀𝑀) · (!‘(𝑘 + 1)))))
132131expcom 115 . . . . . 6 (𝑘 ∈ ℕ0 → (𝑀 ∈ ℕ → ((𝑀↑(𝑘 + 1)) ≤ ((𝑀𝑀) · (!‘𝑘)) → (𝑀↑((𝑘 + 1) + 1)) ≤ ((𝑀𝑀) · (!‘(𝑘 + 1))))))
133132a2d 26 . . . . 5 (𝑘 ∈ ℕ0 → ((𝑀 ∈ ℕ → (𝑀↑(𝑘 + 1)) ≤ ((𝑀𝑀) · (!‘𝑘))) → (𝑀 ∈ ℕ → (𝑀↑((𝑘 + 1) + 1)) ≤ ((𝑀𝑀) · (!‘(𝑘 + 1))))))
1347, 13, 19, 25, 41, 133nn0ind 9326 . . . 4 (𝑁 ∈ ℕ0 → (𝑀 ∈ ℕ → (𝑀↑(𝑁 + 1)) ≤ ((𝑀𝑀) · (!‘𝑁))))
135134impcom 124 . . 3 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝑀↑(𝑁 + 1)) ≤ ((𝑀𝑀) · (!‘𝑁)))
136 faccl 10669 . . . . . . . 8 (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℕ)
137136nnnn0d 9188 . . . . . . 7 (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℕ0)
138137nn0ge0d 9191 . . . . . 6 (𝑁 ∈ ℕ0 → 0 ≤ (!‘𝑁))
139 nn0p1nn 9174 . . . . . . 7 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ)
1401390expd 10625 . . . . . 6 (𝑁 ∈ ℕ0 → (0↑(𝑁 + 1)) = 0)
141 0exp0e1 10481 . . . . . . . 8 (0↑0) = 1
142141oveq1i 5863 . . . . . . 7 ((0↑0) · (!‘𝑁)) = (1 · (!‘𝑁))
143136nncnd 8892 . . . . . . . 8 (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℂ)
144143mulid2d 7938 . . . . . . 7 (𝑁 ∈ ℕ0 → (1 · (!‘𝑁)) = (!‘𝑁))
145142, 144eqtrid 2215 . . . . . 6 (𝑁 ∈ ℕ0 → ((0↑0) · (!‘𝑁)) = (!‘𝑁))
146138, 140, 1453brtr4d 4021 . . . . 5 (𝑁 ∈ ℕ0 → (0↑(𝑁 + 1)) ≤ ((0↑0) · (!‘𝑁)))
147 oveq1 5860 . . . . . 6 (𝑀 = 0 → (𝑀↑(𝑁 + 1)) = (0↑(𝑁 + 1)))
148 oveq12 5862 . . . . . . . 8 ((𝑀 = 0 ∧ 𝑀 = 0) → (𝑀𝑀) = (0↑0))
149148anidms 395 . . . . . . 7 (𝑀 = 0 → (𝑀𝑀) = (0↑0))
150149oveq1d 5868 . . . . . 6 (𝑀 = 0 → ((𝑀𝑀) · (!‘𝑁)) = ((0↑0) · (!‘𝑁)))
151147, 150breq12d 4002 . . . . 5 (𝑀 = 0 → ((𝑀↑(𝑁 + 1)) ≤ ((𝑀𝑀) · (!‘𝑁)) ↔ (0↑(𝑁 + 1)) ≤ ((0↑0) · (!‘𝑁))))
152146, 151syl5ibr 155 . . . 4 (𝑀 = 0 → (𝑁 ∈ ℕ0 → (𝑀↑(𝑁 + 1)) ≤ ((𝑀𝑀) · (!‘𝑁))))
153152imp 123 . . 3 ((𝑀 = 0 ∧ 𝑁 ∈ ℕ0) → (𝑀↑(𝑁 + 1)) ≤ ((𝑀𝑀) · (!‘𝑁)))
154135, 153jaoian 790 . 2 (((𝑀 ∈ ℕ ∨ 𝑀 = 0) ∧ 𝑁 ∈ ℕ0) → (𝑀↑(𝑁 + 1)) ≤ ((𝑀𝑀) · (!‘𝑁)))
1551, 154sylanb 282 1 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀↑(𝑁 + 1)) ≤ ((𝑀𝑀) · (!‘𝑁)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wo 703   = wceq 1348  wcel 2141   class class class wbr 3989  cfv 5198  (class class class)co 5853  cc 7772  cr 7773  0cc0 7774  1c1 7775   + caddc 7777   · cmul 7779   < clt 7954  cle 7955  cn 8878  0cn0 9135  cz 9212  cuz 9487  cexp 10475  !cfa 10659
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-frec 6370  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-n0 9136  df-z 9213  df-uz 9488  df-rp 9611  df-seqfrec 10402  df-exp 10476  df-fac 10660
This theorem is referenced by:  faclbnd2  10676  faclbnd3  10677
  Copyright terms: Public domain W3C validator