ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1p1times GIF version

Theorem 1p1times 7908
Description: Two times a number. (Contributed by NM, 18-May-1999.) (Revised by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
1p1times (𝐴 ∈ ℂ → ((1 + 1) · 𝐴) = (𝐴 + 𝐴))

Proof of Theorem 1p1times
StepHypRef Expression
1 ax-1cn 7725 . . . 4 1 ∈ ℂ
21a1i 9 . . 3 (𝐴 ∈ ℂ → 1 ∈ ℂ)
3 id 19 . . 3 (𝐴 ∈ ℂ → 𝐴 ∈ ℂ)
42, 2, 3adddird 7803 . 2 (𝐴 ∈ ℂ → ((1 + 1) · 𝐴) = ((1 · 𝐴) + (1 · 𝐴)))
5 mulid2 7776 . . 3 (𝐴 ∈ ℂ → (1 · 𝐴) = 𝐴)
65, 5oveq12d 5792 . 2 (𝐴 ∈ ℂ → ((1 · 𝐴) + (1 · 𝐴)) = (𝐴 + 𝐴))
74, 6eqtrd 2172 1 (𝐴 ∈ ℂ → ((1 + 1) · 𝐴) = (𝐴 + 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1331  wcel 1480  (class class class)co 5774  cc 7630  1c1 7633   + caddc 7635   · cmul 7637
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-resscn 7724  ax-1cn 7725  ax-icn 7727  ax-addcl 7728  ax-mulcl 7730  ax-mulcom 7733  ax-mulass 7735  ax-distr 7736  ax-1rid 7739  ax-cnre 7743
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-v 2688  df-un 3075  df-in 3077  df-ss 3084  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-iota 5088  df-fv 5131  df-ov 5777
This theorem is referenced by:  eqneg  8504  2times  8860
  Copyright terms: Public domain W3C validator