![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 1p1times | GIF version |
Description: Two times a number. (Contributed by NM, 18-May-1999.) (Revised by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
1p1times | ⊢ (𝐴 ∈ ℂ → ((1 + 1) · 𝐴) = (𝐴 + 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1cn 7535 | . . . 4 ⊢ 1 ∈ ℂ | |
2 | 1 | a1i 9 | . . 3 ⊢ (𝐴 ∈ ℂ → 1 ∈ ℂ) |
3 | id 19 | . . 3 ⊢ (𝐴 ∈ ℂ → 𝐴 ∈ ℂ) | |
4 | 2, 2, 3 | adddird 7610 | . 2 ⊢ (𝐴 ∈ ℂ → ((1 + 1) · 𝐴) = ((1 · 𝐴) + (1 · 𝐴))) |
5 | mulid2 7583 | . . 3 ⊢ (𝐴 ∈ ℂ → (1 · 𝐴) = 𝐴) | |
6 | 5, 5 | oveq12d 5708 | . 2 ⊢ (𝐴 ∈ ℂ → ((1 · 𝐴) + (1 · 𝐴)) = (𝐴 + 𝐴)) |
7 | 4, 6 | eqtrd 2127 | 1 ⊢ (𝐴 ∈ ℂ → ((1 + 1) · 𝐴) = (𝐴 + 𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1296 ∈ wcel 1445 (class class class)co 5690 ℂcc 7445 1c1 7448 + caddc 7450 · cmul 7452 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 668 ax-5 1388 ax-7 1389 ax-gen 1390 ax-ie1 1434 ax-ie2 1435 ax-8 1447 ax-10 1448 ax-11 1449 ax-i12 1450 ax-bndl 1451 ax-4 1452 ax-17 1471 ax-i9 1475 ax-ial 1479 ax-i5r 1480 ax-ext 2077 ax-resscn 7534 ax-1cn 7535 ax-icn 7537 ax-addcl 7538 ax-mulcl 7540 ax-mulcom 7543 ax-mulass 7545 ax-distr 7546 ax-1rid 7549 ax-cnre 7553 |
This theorem depends on definitions: df-bi 116 df-3an 929 df-tru 1299 df-nf 1402 df-sb 1700 df-clab 2082 df-cleq 2088 df-clel 2091 df-nfc 2224 df-ral 2375 df-rex 2376 df-v 2635 df-un 3017 df-in 3019 df-ss 3026 df-sn 3472 df-pr 3473 df-op 3475 df-uni 3676 df-br 3868 df-iota 5014 df-fv 5057 df-ov 5693 |
This theorem is referenced by: eqneg 8296 2times 8642 |
Copyright terms: Public domain | W3C validator |