ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1p1times GIF version

Theorem 1p1times 8153
Description: Two times a number. (Contributed by NM, 18-May-1999.) (Revised by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
1p1times (𝐴 ∈ ℂ → ((1 + 1) · 𝐴) = (𝐴 + 𝐴))

Proof of Theorem 1p1times
StepHypRef Expression
1 ax-1cn 7965 . . . 4 1 ∈ ℂ
21a1i 9 . . 3 (𝐴 ∈ ℂ → 1 ∈ ℂ)
3 id 19 . . 3 (𝐴 ∈ ℂ → 𝐴 ∈ ℂ)
42, 2, 3adddird 8045 . 2 (𝐴 ∈ ℂ → ((1 + 1) · 𝐴) = ((1 · 𝐴) + (1 · 𝐴)))
5 mullid 8017 . . 3 (𝐴 ∈ ℂ → (1 · 𝐴) = 𝐴)
65, 5oveq12d 5936 . 2 (𝐴 ∈ ℂ → ((1 · 𝐴) + (1 · 𝐴)) = (𝐴 + 𝐴))
74, 6eqtrd 2226 1 (𝐴 ∈ ℂ → ((1 + 1) · 𝐴) = (𝐴 + 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2164  (class class class)co 5918  cc 7870  1c1 7873   + caddc 7875   · cmul 7877
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175  ax-resscn 7964  ax-1cn 7965  ax-icn 7967  ax-addcl 7968  ax-mulcl 7970  ax-mulcom 7973  ax-mulass 7975  ax-distr 7976  ax-1rid 7979  ax-cnre 7983
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-iota 5215  df-fv 5262  df-ov 5921
This theorem is referenced by:  eqneg  8751  2times  9110
  Copyright terms: Public domain W3C validator