ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1p1times GIF version

Theorem 1p1times 8040
Description: Two times a number. (Contributed by NM, 18-May-1999.) (Revised by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
1p1times (𝐴 ∈ ℂ → ((1 + 1) · 𝐴) = (𝐴 + 𝐴))

Proof of Theorem 1p1times
StepHypRef Expression
1 ax-1cn 7854 . . . 4 1 ∈ ℂ
21a1i 9 . . 3 (𝐴 ∈ ℂ → 1 ∈ ℂ)
3 id 19 . . 3 (𝐴 ∈ ℂ → 𝐴 ∈ ℂ)
42, 2, 3adddird 7932 . 2 (𝐴 ∈ ℂ → ((1 + 1) · 𝐴) = ((1 · 𝐴) + (1 · 𝐴)))
5 mulid2 7905 . . 3 (𝐴 ∈ ℂ → (1 · 𝐴) = 𝐴)
65, 5oveq12d 5868 . 2 (𝐴 ∈ ℂ → ((1 · 𝐴) + (1 · 𝐴)) = (𝐴 + 𝐴))
74, 6eqtrd 2203 1 (𝐴 ∈ ℂ → ((1 + 1) · 𝐴) = (𝐴 + 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1348  wcel 2141  (class class class)co 5850  cc 7759  1c1 7762   + caddc 7764   · cmul 7766
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152  ax-resscn 7853  ax-1cn 7854  ax-icn 7856  ax-addcl 7857  ax-mulcl 7859  ax-mulcom 7862  ax-mulass 7864  ax-distr 7865  ax-1rid 7868  ax-cnre 7872
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-br 3988  df-iota 5158  df-fv 5204  df-ov 5853
This theorem is referenced by:  eqneg  8636  2times  8993
  Copyright terms: Public domain W3C validator