ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqimss2 GIF version

Theorem eqimss2 3202
Description: Equality implies the subclass relation. (Contributed by NM, 23-Nov-2003.)
Assertion
Ref Expression
eqimss2 (𝐵 = 𝐴𝐴𝐵)

Proof of Theorem eqimss2
StepHypRef Expression
1 eqimss 3201 . 2 (𝐴 = 𝐵𝐴𝐵)
21eqcoms 2173 1 (𝐵 = 𝐴𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1348  wss 3121
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-11 1499  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-in 3127  df-ss 3134
This theorem is referenced by:  disjeq2  3970  disjeq1  3973  poeq2  4285  seeq1  4324  seeq2  4325  dmcoeq  4883  xp11m  5049  funeq  5218  fconst3m  5715  tposeq  6226  undifdcss  6900  ennnfonelemk  12355  ennnfonelemss  12365  qnnen  12386  topgele  12821  topontopn  12829  txdis  13071
  Copyright terms: Public domain W3C validator