Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eqimss2 | GIF version |
Description: Equality implies the subclass relation. (Contributed by NM, 23-Nov-2003.) |
Ref | Expression |
---|---|
eqimss2 | ⊢ (𝐵 = 𝐴 → 𝐴 ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqimss 3196 | . 2 ⊢ (𝐴 = 𝐵 → 𝐴 ⊆ 𝐵) | |
2 | 1 | eqcoms 2168 | 1 ⊢ (𝐵 = 𝐴 → 𝐴 ⊆ 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1343 ⊆ wss 3116 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-11 1494 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-in 3122 df-ss 3129 |
This theorem is referenced by: disjeq2 3963 disjeq1 3966 poeq2 4278 seeq1 4317 seeq2 4318 dmcoeq 4876 xp11m 5042 funeq 5208 fconst3m 5704 tposeq 6215 undifdcss 6888 ennnfonelemk 12333 ennnfonelemss 12343 qnnen 12364 topgele 12667 topontopn 12675 txdis 12917 |
Copyright terms: Public domain | W3C validator |