ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqimss2 GIF version

Theorem eqimss2 3252
Description: Equality implies the subclass relation. (Contributed by NM, 23-Nov-2003.)
Assertion
Ref Expression
eqimss2 (𝐵 = 𝐴𝐴𝐵)

Proof of Theorem eqimss2
StepHypRef Expression
1 eqimss 3251 . 2 (𝐴 = 𝐵𝐴𝐵)
21eqcoms 2209 1 (𝐵 = 𝐴𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1373  wss 3170
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-11 1530  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-in 3176  df-ss 3183
This theorem is referenced by:  disjeq2  4031  disjeq1  4034  poeq2  4355  seeq1  4394  seeq2  4395  dmcoeq  4960  xp11m  5130  funeq  5300  fconst3m  5816  tposeq  6346  undifdcss  7035  nninfctlemfo  12436  ennnfonelemk  12846  ennnfonelemss  12856  qnnen  12877  imasaddfnlemg  13221  topgele  14576  topontopn  14584  txdis  14824  edgstruct  15735
  Copyright terms: Public domain W3C validator