| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqimss2 | GIF version | ||
| Description: Equality implies the subclass relation. (Contributed by NM, 23-Nov-2003.) |
| Ref | Expression |
|---|---|
| eqimss2 | ⊢ (𝐵 = 𝐴 → 𝐴 ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqimss 3246 | . 2 ⊢ (𝐴 = 𝐵 → 𝐴 ⊆ 𝐵) | |
| 2 | 1 | eqcoms 2207 | 1 ⊢ (𝐵 = 𝐴 → 𝐴 ⊆ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1372 ⊆ wss 3165 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-11 1528 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-in 3171 df-ss 3178 |
| This theorem is referenced by: disjeq2 4024 disjeq1 4027 poeq2 4345 seeq1 4384 seeq2 4385 dmcoeq 4948 xp11m 5118 funeq 5288 fconst3m 5793 tposeq 6323 undifdcss 7002 nninfctlemfo 12280 ennnfonelemk 12690 ennnfonelemss 12700 qnnen 12721 imasaddfnlemg 13064 topgele 14419 topontopn 14427 txdis 14667 |
| Copyright terms: Public domain | W3C validator |