ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqimss2 GIF version

Theorem eqimss2 3247
Description: Equality implies the subclass relation. (Contributed by NM, 23-Nov-2003.)
Assertion
Ref Expression
eqimss2 (𝐵 = 𝐴𝐴𝐵)

Proof of Theorem eqimss2
StepHypRef Expression
1 eqimss 3246 . 2 (𝐴 = 𝐵𝐴𝐵)
21eqcoms 2207 1 (𝐵 = 𝐴𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1372  wss 3165
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-11 1528  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-in 3171  df-ss 3178
This theorem is referenced by:  disjeq2  4024  disjeq1  4027  poeq2  4345  seeq1  4384  seeq2  4385  dmcoeq  4948  xp11m  5118  funeq  5288  fconst3m  5793  tposeq  6323  undifdcss  7002  nninfctlemfo  12280  ennnfonelemk  12690  ennnfonelemss  12700  qnnen  12721  imasaddfnlemg  13064  topgele  14419  topontopn  14427  txdis  14667
  Copyright terms: Public domain W3C validator