![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eqimss2 | GIF version |
Description: Equality implies the subclass relation. (Contributed by NM, 23-Nov-2003.) |
Ref | Expression |
---|---|
eqimss2 | ⊢ (𝐵 = 𝐴 → 𝐴 ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqimss 3233 | . 2 ⊢ (𝐴 = 𝐵 → 𝐴 ⊆ 𝐵) | |
2 | 1 | eqcoms 2196 | 1 ⊢ (𝐵 = 𝐴 → 𝐴 ⊆ 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ⊆ wss 3153 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-11 1517 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-in 3159 df-ss 3166 |
This theorem is referenced by: disjeq2 4010 disjeq1 4013 poeq2 4331 seeq1 4370 seeq2 4371 dmcoeq 4934 xp11m 5104 funeq 5274 fconst3m 5777 tposeq 6300 undifdcss 6979 nninfctlemfo 12177 ennnfonelemk 12557 ennnfonelemss 12567 qnnen 12588 imasaddfnlemg 12897 topgele 14197 topontopn 14205 txdis 14445 |
Copyright terms: Public domain | W3C validator |