ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqimss2 GIF version

Theorem eqimss2 3235
Description: Equality implies the subclass relation. (Contributed by NM, 23-Nov-2003.)
Assertion
Ref Expression
eqimss2 (𝐵 = 𝐴𝐴𝐵)

Proof of Theorem eqimss2
StepHypRef Expression
1 eqimss 3234 . 2 (𝐴 = 𝐵𝐴𝐵)
21eqcoms 2196 1 (𝐵 = 𝐴𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wss 3154
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-11 1517  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-in 3160  df-ss 3167
This theorem is referenced by:  disjeq2  4011  disjeq1  4014  poeq2  4332  seeq1  4371  seeq2  4372  dmcoeq  4935  xp11m  5105  funeq  5275  fconst3m  5778  tposeq  6302  undifdcss  6981  nninfctlemfo  12180  ennnfonelemk  12560  ennnfonelemss  12570  qnnen  12591  imasaddfnlemg  12900  topgele  14208  topontopn  14216  txdis  14456
  Copyright terms: Public domain W3C validator