ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqimss2 GIF version

Theorem eqimss2 3239
Description: Equality implies the subclass relation. (Contributed by NM, 23-Nov-2003.)
Assertion
Ref Expression
eqimss2 (𝐵 = 𝐴𝐴𝐵)

Proof of Theorem eqimss2
StepHypRef Expression
1 eqimss 3238 . 2 (𝐴 = 𝐵𝐴𝐵)
21eqcoms 2199 1 (𝐵 = 𝐴𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wss 3157
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-11 1520  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-in 3163  df-ss 3170
This theorem is referenced by:  disjeq2  4015  disjeq1  4018  poeq2  4336  seeq1  4375  seeq2  4376  dmcoeq  4939  xp11m  5109  funeq  5279  fconst3m  5784  tposeq  6314  undifdcss  6993  nninfctlemfo  12232  ennnfonelemk  12642  ennnfonelemss  12652  qnnen  12673  imasaddfnlemg  13016  topgele  14349  topontopn  14357  txdis  14597
  Copyright terms: Public domain W3C validator