ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqimss2 GIF version

Theorem eqimss2 3234
Description: Equality implies the subclass relation. (Contributed by NM, 23-Nov-2003.)
Assertion
Ref Expression
eqimss2 (𝐵 = 𝐴𝐴𝐵)

Proof of Theorem eqimss2
StepHypRef Expression
1 eqimss 3233 . 2 (𝐴 = 𝐵𝐴𝐵)
21eqcoms 2196 1 (𝐵 = 𝐴𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wss 3153
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-11 1517  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-in 3159  df-ss 3166
This theorem is referenced by:  disjeq2  4010  disjeq1  4013  poeq2  4331  seeq1  4370  seeq2  4371  dmcoeq  4934  xp11m  5104  funeq  5274  fconst3m  5777  tposeq  6300  undifdcss  6979  nninfctlemfo  12177  ennnfonelemk  12557  ennnfonelemss  12567  qnnen  12588  imasaddfnlemg  12897  topgele  14197  topontopn  14205  txdis  14445
  Copyright terms: Public domain W3C validator