| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqimss2 | GIF version | ||
| Description: Equality implies the subclass relation. (Contributed by NM, 23-Nov-2003.) |
| Ref | Expression |
|---|---|
| eqimss2 | ⊢ (𝐵 = 𝐴 → 𝐴 ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqimss 3251 | . 2 ⊢ (𝐴 = 𝐵 → 𝐴 ⊆ 𝐵) | |
| 2 | 1 | eqcoms 2209 | 1 ⊢ (𝐵 = 𝐴 → 𝐴 ⊆ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ⊆ wss 3170 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-in 3176 df-ss 3183 |
| This theorem is referenced by: disjeq2 4031 disjeq1 4034 poeq2 4355 seeq1 4394 seeq2 4395 dmcoeq 4960 xp11m 5130 funeq 5300 fconst3m 5816 tposeq 6346 undifdcss 7035 nninfctlemfo 12436 ennnfonelemk 12846 ennnfonelemss 12856 qnnen 12877 imasaddfnlemg 13221 topgele 14576 topontopn 14584 txdis 14824 edgstruct 15735 |
| Copyright terms: Public domain | W3C validator |