ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqimss2 GIF version

Theorem eqimss2 3279
Description: Equality implies the subclass relation. (Contributed by NM, 23-Nov-2003.)
Assertion
Ref Expression
eqimss2 (𝐵 = 𝐴𝐴𝐵)

Proof of Theorem eqimss2
StepHypRef Expression
1 eqimss 3278 . 2 (𝐴 = 𝐵𝐴𝐵)
21eqcoms 2232 1 (𝐵 = 𝐴𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1395  wss 3197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-11 1552  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-in 3203  df-ss 3210
This theorem is referenced by:  disjeq2  4062  disjeq1  4065  poeq2  4390  seeq1  4429  seeq2  4430  dmcoeq  4996  xp11m  5166  funeq  5337  fconst3m  5857  tposeq  6391  undifdcss  7081  nninfctlemfo  12556  ennnfonelemk  12966  ennnfonelemss  12976  qnnen  12997  imasaddfnlemg  13342  topgele  14697  topontopn  14705  txdis  14945  edgstruct  15858
  Copyright terms: Public domain W3C validator