Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eqimss | GIF version |
Description: Equality implies the subclass relation. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 21-Jun-2011.) |
Ref | Expression |
---|---|
eqimss | ⊢ (𝐴 = 𝐵 → 𝐴 ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqss 3157 | . 2 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) | |
2 | 1 | simplbi 272 | 1 ⊢ (𝐴 = 𝐵 → 𝐴 ⊆ 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1343 ⊆ wss 3116 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-11 1494 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-in 3122 df-ss 3129 |
This theorem is referenced by: eqimss2 3197 uneqin 3373 sssnr 3733 sssnm 3734 ssprr 3736 sstpr 3737 snsspw 3744 pwpwssunieq 3954 elpwuni 3955 disjeq2 3963 disjeq1 3966 pwne 4139 pwssunim 4262 poeq2 4278 seeq1 4317 seeq2 4318 trsucss 4401 onsucelsucr 4485 xp11m 5042 funeq 5208 fnresdm 5297 fssxp 5355 ffdm 5358 fcoi1 5368 fof 5410 dff1o2 5437 fvmptss2 5561 fvmptssdm 5570 fprg 5668 dff1o6 5744 tposeq 6215 el2oss1o 6411 nntri1 6464 nntri2or2 6466 nnsseleq 6469 infnninf 7088 infnninfOLD 7089 exmidontri2or 7199 frec2uzf1od 10341 hashinfuni 10690 setsresg 12432 setsslid 12444 strle1g 12485 cncnpi 12868 hmeores 12955 limcimolemlt 13273 recnprss 13296 0nninf 13884 nninfall 13889 |
Copyright terms: Public domain | W3C validator |