ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqimss GIF version

Theorem eqimss 3201
Description: Equality implies the subclass relation. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 21-Jun-2011.)
Assertion
Ref Expression
eqimss (𝐴 = 𝐵𝐴𝐵)

Proof of Theorem eqimss
StepHypRef Expression
1 eqss 3162 . 2 (𝐴 = 𝐵 ↔ (𝐴𝐵𝐵𝐴))
21simplbi 272 1 (𝐴 = 𝐵𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1348  wss 3121
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-11 1499  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-in 3127  df-ss 3134
This theorem is referenced by:  eqimss2  3202  uneqin  3378  sssnr  3738  sssnm  3739  ssprr  3741  sstpr  3742  snsspw  3749  pwpwssunieq  3959  elpwuni  3960  disjeq2  3968  disjeq1  3971  pwne  4144  pwssunim  4267  poeq2  4283  seeq1  4322  seeq2  4323  trsucss  4406  onsucelsucr  4490  xp11m  5047  funeq  5216  fnresdm  5305  fssxp  5363  ffdm  5366  fcoi1  5376  fof  5418  dff1o2  5445  fvmptss2  5569  fvmptssdm  5578  fprg  5677  dff1o6  5753  tposeq  6224  el2oss1o  6420  nntri1  6473  nntri2or2  6475  nnsseleq  6478  infnninf  7098  infnninfOLD  7099  exmidontri2or  7213  frec2uzf1od  10355  hashinfuni  10704  setsresg  12447  setsslid  12459  strle1g  12501  cncnpi  12987  hmeores  13074  limcimolemlt  13392  recnprss  13415  0nninf  14002  nninfall  14007
  Copyright terms: Public domain W3C validator