| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqimss | GIF version | ||
| Description: Equality implies the subclass relation. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 21-Jun-2011.) |
| Ref | Expression |
|---|---|
| eqimss | ⊢ (𝐴 = 𝐵 → 𝐴 ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqss 3239 | . 2 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) | |
| 2 | 1 | simplbi 274 | 1 ⊢ (𝐴 = 𝐵 → 𝐴 ⊆ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ⊆ wss 3197 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-in 3203 df-ss 3210 |
| This theorem is referenced by: eqimss2 3279 uneqin 3455 ssprsseq 3829 sssnr 3830 sssnm 3831 ssprr 3833 sstpr 3834 snsspw 3841 pwpwssunieq 4053 elpwuni 4054 disjeq2 4062 disjeq1 4065 pwne 4243 pwssunim 4374 poeq2 4390 seeq1 4429 seeq2 4430 trsucss 4513 onsucelsucr 4599 xp11m 5166 funeq 5337 fnresdm 5431 fssxp 5490 ffdm 5493 fcoi1 5505 fof 5547 dff1o2 5576 fvmptss2 5708 fvmptssdm 5718 fprg 5821 dff1o6 5899 tposeq 6391 el2oss1o 6587 nntri1 6640 nntri2or2 6642 nnsseleq 6645 infnninf 7287 infnninfOLD 7288 nninfwlpoimlemg 7338 exmidontri2or 7424 frec2uzf1od 10623 hashinfuni 10994 setsresg 13065 setsslid 13078 strle1g 13134 cncnpi 14896 hmeores 14983 limcimolemlt 15332 recnprss 15355 plycoeid3 15425 0nninf 16329 nninfall 16334 |
| Copyright terms: Public domain | W3C validator |