| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqimss | GIF version | ||
| Description: Equality implies the subclass relation. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 21-Jun-2011.) |
| Ref | Expression |
|---|---|
| eqimss | ⊢ (𝐴 = 𝐵 → 𝐴 ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqss 3199 | . 2 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) | |
| 2 | 1 | simplbi 274 | 1 ⊢ (𝐴 = 𝐵 → 𝐴 ⊆ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ⊆ wss 3157 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-in 3163 df-ss 3170 |
| This theorem is referenced by: eqimss2 3239 uneqin 3415 sssnr 3784 sssnm 3785 ssprr 3787 sstpr 3788 snsspw 3795 pwpwssunieq 4006 elpwuni 4007 disjeq2 4015 disjeq1 4018 pwne 4194 pwssunim 4320 poeq2 4336 seeq1 4375 seeq2 4376 trsucss 4459 onsucelsucr 4545 xp11m 5109 funeq 5279 fnresdm 5370 fssxp 5428 ffdm 5431 fcoi1 5441 fof 5483 dff1o2 5512 fvmptss2 5639 fvmptssdm 5649 fprg 5748 dff1o6 5826 tposeq 6314 el2oss1o 6510 nntri1 6563 nntri2or2 6565 nnsseleq 6568 infnninf 7199 infnninfOLD 7200 nninfwlpoimlemg 7250 exmidontri2or 7326 frec2uzf1od 10515 hashinfuni 10886 setsresg 12741 setsslid 12754 strle1g 12809 cncnpi 14548 hmeores 14635 limcimolemlt 14984 recnprss 15007 plycoeid3 15077 0nninf 15735 nninfall 15740 |
| Copyright terms: Public domain | W3C validator |