ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqimss GIF version

Theorem eqimss 3238
Description: Equality implies the subclass relation. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 21-Jun-2011.)
Assertion
Ref Expression
eqimss (𝐴 = 𝐵𝐴𝐵)

Proof of Theorem eqimss
StepHypRef Expression
1 eqss 3199 . 2 (𝐴 = 𝐵 ↔ (𝐴𝐵𝐵𝐴))
21simplbi 274 1 (𝐴 = 𝐵𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wss 3157
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-11 1520  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-in 3163  df-ss 3170
This theorem is referenced by:  eqimss2  3239  uneqin  3415  sssnr  3784  sssnm  3785  ssprr  3787  sstpr  3788  snsspw  3795  pwpwssunieq  4006  elpwuni  4007  disjeq2  4015  disjeq1  4018  pwne  4194  pwssunim  4320  poeq2  4336  seeq1  4375  seeq2  4376  trsucss  4459  onsucelsucr  4545  xp11m  5109  funeq  5279  fnresdm  5370  fssxp  5428  ffdm  5431  fcoi1  5441  fof  5483  dff1o2  5512  fvmptss2  5639  fvmptssdm  5649  fprg  5748  dff1o6  5826  tposeq  6314  el2oss1o  6510  nntri1  6563  nntri2or2  6565  nnsseleq  6568  infnninf  7199  infnninfOLD  7200  nninfwlpoimlemg  7250  exmidontri2or  7326  frec2uzf1od  10515  hashinfuni  10886  setsresg  12741  setsslid  12754  strle1g  12809  cncnpi  14548  hmeores  14635  limcimolemlt  14984  recnprss  15007  plycoeid3  15077  0nninf  15735  nninfall  15740
  Copyright terms: Public domain W3C validator