| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqimss | GIF version | ||
| Description: Equality implies the subclass relation. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 21-Jun-2011.) |
| Ref | Expression |
|---|---|
| eqimss | ⊢ (𝐴 = 𝐵 → 𝐴 ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqss 3207 | . 2 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) | |
| 2 | 1 | simplbi 274 | 1 ⊢ (𝐴 = 𝐵 → 𝐴 ⊆ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1372 ⊆ wss 3165 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-11 1528 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-in 3171 df-ss 3178 |
| This theorem is referenced by: eqimss2 3247 uneqin 3423 sssnr 3793 sssnm 3794 ssprr 3796 sstpr 3797 snsspw 3804 pwpwssunieq 4015 elpwuni 4016 disjeq2 4024 disjeq1 4027 pwne 4203 pwssunim 4329 poeq2 4345 seeq1 4384 seeq2 4385 trsucss 4468 onsucelsucr 4554 xp11m 5118 funeq 5288 fnresdm 5379 fssxp 5437 ffdm 5440 fcoi1 5450 fof 5492 dff1o2 5521 fvmptss2 5648 fvmptssdm 5658 fprg 5757 dff1o6 5835 tposeq 6323 el2oss1o 6519 nntri1 6572 nntri2or2 6574 nnsseleq 6577 infnninf 7208 infnninfOLD 7209 nninfwlpoimlemg 7259 exmidontri2or 7337 frec2uzf1od 10532 hashinfuni 10903 setsresg 12789 setsslid 12802 strle1g 12857 cncnpi 14618 hmeores 14705 limcimolemlt 15054 recnprss 15077 plycoeid3 15147 0nninf 15805 nninfall 15810 |
| Copyright terms: Public domain | W3C validator |