| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > eqimss | GIF version | ||
| Description: Equality implies the subclass relation. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 21-Jun-2011.) | 
| Ref | Expression | 
|---|---|
| eqimss | ⊢ (𝐴 = 𝐵 → 𝐴 ⊆ 𝐵) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eqss 3198 | . 2 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) | |
| 2 | 1 | simplbi 274 | 1 ⊢ (𝐴 = 𝐵 → 𝐴 ⊆ 𝐵) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 = wceq 1364 ⊆ wss 3157 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-in 3163 df-ss 3170 | 
| This theorem is referenced by: eqimss2 3238 uneqin 3414 sssnr 3783 sssnm 3784 ssprr 3786 sstpr 3787 snsspw 3794 pwpwssunieq 4005 elpwuni 4006 disjeq2 4014 disjeq1 4017 pwne 4193 pwssunim 4319 poeq2 4335 seeq1 4374 seeq2 4375 trsucss 4458 onsucelsucr 4544 xp11m 5108 funeq 5278 fnresdm 5367 fssxp 5425 ffdm 5428 fcoi1 5438 fof 5480 dff1o2 5509 fvmptss2 5636 fvmptssdm 5646 fprg 5745 dff1o6 5823 tposeq 6305 el2oss1o 6501 nntri1 6554 nntri2or2 6556 nnsseleq 6559 infnninf 7190 infnninfOLD 7191 nninfwlpoimlemg 7241 exmidontri2or 7310 frec2uzf1od 10498 hashinfuni 10869 setsresg 12716 setsslid 12729 strle1g 12784 cncnpi 14464 hmeores 14551 limcimolemlt 14900 recnprss 14923 plycoeid3 14993 0nninf 15648 nninfall 15653 | 
| Copyright terms: Public domain | W3C validator |