ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqimss GIF version

Theorem eqimss 3196
Description: Equality implies the subclass relation. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 21-Jun-2011.)
Assertion
Ref Expression
eqimss (𝐴 = 𝐵𝐴𝐵)

Proof of Theorem eqimss
StepHypRef Expression
1 eqss 3157 . 2 (𝐴 = 𝐵 ↔ (𝐴𝐵𝐵𝐴))
21simplbi 272 1 (𝐴 = 𝐵𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1343  wss 3116
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-11 1494  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-in 3122  df-ss 3129
This theorem is referenced by:  eqimss2  3197  uneqin  3373  sssnr  3733  sssnm  3734  ssprr  3736  sstpr  3737  snsspw  3744  pwpwssunieq  3954  elpwuni  3955  disjeq2  3963  disjeq1  3966  pwne  4139  pwssunim  4262  poeq2  4278  seeq1  4317  seeq2  4318  trsucss  4401  onsucelsucr  4485  xp11m  5042  funeq  5208  fnresdm  5297  fssxp  5355  ffdm  5358  fcoi1  5368  fof  5410  dff1o2  5437  fvmptss2  5561  fvmptssdm  5570  fprg  5668  dff1o6  5744  tposeq  6215  el2oss1o  6411  nntri1  6464  nntri2or2  6466  nnsseleq  6469  infnninf  7088  infnninfOLD  7089  exmidontri2or  7199  frec2uzf1od  10341  hashinfuni  10690  setsresg  12432  setsslid  12444  strle1g  12485  cncnpi  12868  hmeores  12955  limcimolemlt  13273  recnprss  13296  0nninf  13884  nninfall  13889
  Copyright terms: Public domain W3C validator