Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eqimss | GIF version |
Description: Equality implies the subclass relation. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 21-Jun-2011.) |
Ref | Expression |
---|---|
eqimss | ⊢ (𝐴 = 𝐵 → 𝐴 ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqss 3162 | . 2 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) | |
2 | 1 | simplbi 272 | 1 ⊢ (𝐴 = 𝐵 → 𝐴 ⊆ 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1348 ⊆ wss 3121 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-11 1499 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-in 3127 df-ss 3134 |
This theorem is referenced by: eqimss2 3202 uneqin 3378 sssnr 3740 sssnm 3741 ssprr 3743 sstpr 3744 snsspw 3751 pwpwssunieq 3961 elpwuni 3962 disjeq2 3970 disjeq1 3973 pwne 4146 pwssunim 4269 poeq2 4285 seeq1 4324 seeq2 4325 trsucss 4408 onsucelsucr 4492 xp11m 5049 funeq 5218 fnresdm 5307 fssxp 5365 ffdm 5368 fcoi1 5378 fof 5420 dff1o2 5447 fvmptss2 5571 fvmptssdm 5580 fprg 5679 dff1o6 5755 tposeq 6226 el2oss1o 6422 nntri1 6475 nntri2or2 6477 nnsseleq 6480 infnninf 7100 infnninfOLD 7101 nninfwlpoimlemg 7151 exmidontri2or 7220 frec2uzf1od 10362 hashinfuni 10711 setsresg 12454 setsslid 12466 strle1g 12508 cncnpi 13022 hmeores 13109 limcimolemlt 13427 recnprss 13450 0nninf 14037 nninfall 14042 |
Copyright terms: Public domain | W3C validator |