Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eqimss | GIF version |
Description: Equality implies the subclass relation. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 21-Jun-2011.) |
Ref | Expression |
---|---|
eqimss | ⊢ (𝐴 = 𝐵 → 𝐴 ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqss 3162 | . 2 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) | |
2 | 1 | simplbi 272 | 1 ⊢ (𝐴 = 𝐵 → 𝐴 ⊆ 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1348 ⊆ wss 3121 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-11 1499 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-in 3127 df-ss 3134 |
This theorem is referenced by: eqimss2 3202 uneqin 3378 sssnr 3738 sssnm 3739 ssprr 3741 sstpr 3742 snsspw 3749 pwpwssunieq 3959 elpwuni 3960 disjeq2 3968 disjeq1 3971 pwne 4144 pwssunim 4267 poeq2 4283 seeq1 4322 seeq2 4323 trsucss 4406 onsucelsucr 4490 xp11m 5047 funeq 5216 fnresdm 5305 fssxp 5363 ffdm 5366 fcoi1 5376 fof 5418 dff1o2 5445 fvmptss2 5569 fvmptssdm 5578 fprg 5677 dff1o6 5753 tposeq 6224 el2oss1o 6420 nntri1 6473 nntri2or2 6475 nnsseleq 6478 infnninf 7098 infnninfOLD 7099 exmidontri2or 7213 frec2uzf1od 10355 hashinfuni 10704 setsresg 12447 setsslid 12459 strle1g 12501 cncnpi 12987 hmeores 13074 limcimolemlt 13392 recnprss 13415 0nninf 14002 nninfall 14007 |
Copyright terms: Public domain | W3C validator |