| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqimss | GIF version | ||
| Description: Equality implies the subclass relation. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 21-Jun-2011.) |
| Ref | Expression |
|---|---|
| eqimss | ⊢ (𝐴 = 𝐵 → 𝐴 ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqss 3212 | . 2 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) | |
| 2 | 1 | simplbi 274 | 1 ⊢ (𝐴 = 𝐵 → 𝐴 ⊆ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ⊆ wss 3170 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-in 3176 df-ss 3183 |
| This theorem is referenced by: eqimss2 3252 uneqin 3428 sssnr 3800 sssnm 3801 ssprr 3803 sstpr 3804 snsspw 3811 pwpwssunieq 4022 elpwuni 4023 disjeq2 4031 disjeq1 4034 pwne 4212 pwssunim 4339 poeq2 4355 seeq1 4394 seeq2 4395 trsucss 4478 onsucelsucr 4564 xp11m 5130 funeq 5300 fnresdm 5394 fssxp 5453 ffdm 5456 fcoi1 5468 fof 5510 dff1o2 5539 fvmptss2 5667 fvmptssdm 5677 fprg 5780 dff1o6 5858 tposeq 6346 el2oss1o 6542 nntri1 6595 nntri2or2 6597 nnsseleq 6600 infnninf 7241 infnninfOLD 7242 nninfwlpoimlemg 7292 exmidontri2or 7374 frec2uzf1od 10573 hashinfuni 10944 setsresg 12945 setsslid 12958 strle1g 13013 cncnpi 14775 hmeores 14862 limcimolemlt 15211 recnprss 15234 plycoeid3 15304 0nninf 16082 nninfall 16087 |
| Copyright terms: Public domain | W3C validator |