ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prcom GIF version

Theorem prcom 3680
Description: Commutative law for unordered pairs. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
prcom {𝐴, 𝐵} = {𝐵, 𝐴}

Proof of Theorem prcom
StepHypRef Expression
1 uncom 3291 . 2 ({𝐴} ∪ {𝐵}) = ({𝐵} ∪ {𝐴})
2 df-pr 3611 . 2 {𝐴, 𝐵} = ({𝐴} ∪ {𝐵})
3 df-pr 3611 . 2 {𝐵, 𝐴} = ({𝐵} ∪ {𝐴})
41, 2, 33eqtr4i 2218 1 {𝐴, 𝐵} = {𝐵, 𝐴}
Colors of variables: wff set class
Syntax hints:   = wceq 1363  cun 3139  {csn 3604  {cpr 3605
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-ext 2169
This theorem depends on definitions:  df-bi 117  df-tru 1366  df-nf 1471  df-sb 1773  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-v 2751  df-un 3145  df-pr 3611
This theorem is referenced by:  preq2  3682  tpcoma  3698  tpidm23  3705  prid2g  3709  prid2  3711  prprc2  3713  difprsn2  3744  preqr2g  3779  preqr2  3781  preq12b  3782  fvpr2  5734  fvpr2g  5736  en2other2  7209  maxcom  11226  mincom  11251  xrmax2sup  11276  xrmaxltsup  11280  xrmaxadd  11283  xrbdtri  11298  lspprid2  13658  qtopbasss  14374
  Copyright terms: Public domain W3C validator