Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > prcom | GIF version |
Description: Commutative law for unordered pairs. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
prcom | ⊢ {𝐴, 𝐵} = {𝐵, 𝐴} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uncom 3266 | . 2 ⊢ ({𝐴} ∪ {𝐵}) = ({𝐵} ∪ {𝐴}) | |
2 | df-pr 3583 | . 2 ⊢ {𝐴, 𝐵} = ({𝐴} ∪ {𝐵}) | |
3 | df-pr 3583 | . 2 ⊢ {𝐵, 𝐴} = ({𝐵} ∪ {𝐴}) | |
4 | 1, 2, 3 | 3eqtr4i 2196 | 1 ⊢ {𝐴, 𝐵} = {𝐵, 𝐴} |
Colors of variables: wff set class |
Syntax hints: = wceq 1343 ∪ cun 3114 {csn 3576 {cpr 3577 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-un 3120 df-pr 3583 |
This theorem is referenced by: preq2 3654 tpcoma 3670 tpidm23 3677 prid2g 3681 prid2 3683 prprc2 3685 difprsn2 3713 preqr2g 3747 preqr2 3749 preq12b 3750 fvpr2 5690 fvpr2g 5692 en2other2 7152 maxcom 11145 mincom 11170 xrmax2sup 11195 xrmaxltsup 11199 xrmaxadd 11202 xrbdtri 11217 qtopbasss 13161 |
Copyright terms: Public domain | W3C validator |