Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > prcom | GIF version |
Description: Commutative law for unordered pairs. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
prcom | ⊢ {𝐴, 𝐵} = {𝐵, 𝐴} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uncom 3271 | . 2 ⊢ ({𝐴} ∪ {𝐵}) = ({𝐵} ∪ {𝐴}) | |
2 | df-pr 3590 | . 2 ⊢ {𝐴, 𝐵} = ({𝐴} ∪ {𝐵}) | |
3 | df-pr 3590 | . 2 ⊢ {𝐵, 𝐴} = ({𝐵} ∪ {𝐴}) | |
4 | 1, 2, 3 | 3eqtr4i 2201 | 1 ⊢ {𝐴, 𝐵} = {𝐵, 𝐴} |
Colors of variables: wff set class |
Syntax hints: = wceq 1348 ∪ cun 3119 {csn 3583 {cpr 3584 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-un 3125 df-pr 3590 |
This theorem is referenced by: preq2 3661 tpcoma 3677 tpidm23 3684 prid2g 3688 prid2 3690 prprc2 3692 difprsn2 3720 preqr2g 3754 preqr2 3756 preq12b 3757 fvpr2 5701 fvpr2g 5703 en2other2 7173 maxcom 11167 mincom 11192 xrmax2sup 11217 xrmaxltsup 11221 xrmaxadd 11224 xrbdtri 11239 qtopbasss 13315 |
Copyright terms: Public domain | W3C validator |