ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prcom GIF version

Theorem prcom 3742
Description: Commutative law for unordered pairs. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
prcom {𝐴, 𝐵} = {𝐵, 𝐴}

Proof of Theorem prcom
StepHypRef Expression
1 uncom 3348 . 2 ({𝐴} ∪ {𝐵}) = ({𝐵} ∪ {𝐴})
2 df-pr 3673 . 2 {𝐴, 𝐵} = ({𝐴} ∪ {𝐵})
3 df-pr 3673 . 2 {𝐵, 𝐴} = ({𝐵} ∪ {𝐴})
41, 2, 33eqtr4i 2260 1 {𝐴, 𝐵} = {𝐵, 𝐴}
Colors of variables: wff set class
Syntax hints:   = wceq 1395  cun 3195  {csn 3666  {cpr 3667
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-un 3201  df-pr 3673
This theorem is referenced by:  preq2  3744  tpcoma  3760  tpidm23  3767  prid2g  3771  prid2  3773  prprc2  3775  difprsn2  3807  ssprsseq  3829  preqr2g  3844  preqr2  3846  preq12b  3847  elpr2elpr  3853  fvpr2  5843  fvpr2g  5845  pr2cv2  7365  en2other2  7370  maxcom  11709  mincom  11735  xrmax2sup  11760  xrmaxltsup  11764  xrmaxadd  11767  xrbdtri  11782  lspprid2  14370  qtopbasss  15189  uhgr2edg  15998  usgredg4  16007  usgredg2vlem1  16014  usgredg2vlem2  16015
  Copyright terms: Public domain W3C validator