![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > prcom | GIF version |
Description: Commutative law for unordered pairs. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
prcom | ⊢ {𝐴, 𝐵} = {𝐵, 𝐴} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uncom 3291 | . 2 ⊢ ({𝐴} ∪ {𝐵}) = ({𝐵} ∪ {𝐴}) | |
2 | df-pr 3611 | . 2 ⊢ {𝐴, 𝐵} = ({𝐴} ∪ {𝐵}) | |
3 | df-pr 3611 | . 2 ⊢ {𝐵, 𝐴} = ({𝐵} ∪ {𝐴}) | |
4 | 1, 2, 3 | 3eqtr4i 2218 | 1 ⊢ {𝐴, 𝐵} = {𝐵, 𝐴} |
Colors of variables: wff set class |
Syntax hints: = wceq 1363 ∪ cun 3139 {csn 3604 {cpr 3605 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-ext 2169 |
This theorem depends on definitions: df-bi 117 df-tru 1366 df-nf 1471 df-sb 1773 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-v 2751 df-un 3145 df-pr 3611 |
This theorem is referenced by: preq2 3682 tpcoma 3698 tpidm23 3705 prid2g 3709 prid2 3711 prprc2 3713 difprsn2 3744 preqr2g 3779 preqr2 3781 preq12b 3782 fvpr2 5734 fvpr2g 5736 en2other2 7209 maxcom 11226 mincom 11251 xrmax2sup 11276 xrmaxltsup 11280 xrmaxadd 11283 xrbdtri 11298 lspprid2 13658 qtopbasss 14374 |
Copyright terms: Public domain | W3C validator |