| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > prcom | GIF version | ||
| Description: Commutative law for unordered pairs. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| prcom | ⊢ {𝐴, 𝐵} = {𝐵, 𝐴} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uncom 3321 | . 2 ⊢ ({𝐴} ∪ {𝐵}) = ({𝐵} ∪ {𝐴}) | |
| 2 | df-pr 3645 | . 2 ⊢ {𝐴, 𝐵} = ({𝐴} ∪ {𝐵}) | |
| 3 | df-pr 3645 | . 2 ⊢ {𝐵, 𝐴} = ({𝐵} ∪ {𝐴}) | |
| 4 | 1, 2, 3 | 3eqtr4i 2237 | 1 ⊢ {𝐴, 𝐵} = {𝐵, 𝐴} |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 ∪ cun 3168 {csn 3638 {cpr 3639 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-un 3174 df-pr 3645 |
| This theorem is referenced by: preq2 3716 tpcoma 3732 tpidm23 3739 prid2g 3743 prid2 3745 prprc2 3747 difprsn2 3779 preqr2g 3814 preqr2 3816 preq12b 3817 fvpr2 5802 fvpr2g 5804 en2other2 7320 maxcom 11589 mincom 11615 xrmax2sup 11640 xrmaxltsup 11644 xrmaxadd 11647 xrbdtri 11662 lspprid2 14249 qtopbasss 15068 |
| Copyright terms: Public domain | W3C validator |