| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > prcom | GIF version | ||
| Description: Commutative law for unordered pairs. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| prcom | ⊢ {𝐴, 𝐵} = {𝐵, 𝐴} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uncom 3308 | . 2 ⊢ ({𝐴} ∪ {𝐵}) = ({𝐵} ∪ {𝐴}) | |
| 2 | df-pr 3630 | . 2 ⊢ {𝐴, 𝐵} = ({𝐴} ∪ {𝐵}) | |
| 3 | df-pr 3630 | . 2 ⊢ {𝐵, 𝐴} = ({𝐵} ∪ {𝐴}) | |
| 4 | 1, 2, 3 | 3eqtr4i 2227 | 1 ⊢ {𝐴, 𝐵} = {𝐵, 𝐴} |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1364 ∪ cun 3155 {csn 3623 {cpr 3624 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-pr 3630 |
| This theorem is referenced by: preq2 3701 tpcoma 3717 tpidm23 3724 prid2g 3728 prid2 3730 prprc2 3732 difprsn2 3763 preqr2g 3798 preqr2 3800 preq12b 3801 fvpr2 5770 fvpr2g 5772 en2other2 7277 maxcom 11387 mincom 11413 xrmax2sup 11438 xrmaxltsup 11442 xrmaxadd 11445 xrbdtri 11460 lspprid2 14046 qtopbasss 14865 |
| Copyright terms: Public domain | W3C validator |