ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prcom GIF version

Theorem prcom 3714
Description: Commutative law for unordered pairs. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
prcom {𝐴, 𝐵} = {𝐵, 𝐴}

Proof of Theorem prcom
StepHypRef Expression
1 uncom 3321 . 2 ({𝐴} ∪ {𝐵}) = ({𝐵} ∪ {𝐴})
2 df-pr 3645 . 2 {𝐴, 𝐵} = ({𝐴} ∪ {𝐵})
3 df-pr 3645 . 2 {𝐵, 𝐴} = ({𝐵} ∪ {𝐴})
41, 2, 33eqtr4i 2237 1 {𝐴, 𝐵} = {𝐵, 𝐴}
Colors of variables: wff set class
Syntax hints:   = wceq 1373  cun 3168  {csn 3638  {cpr 3639
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-v 2775  df-un 3174  df-pr 3645
This theorem is referenced by:  preq2  3716  tpcoma  3732  tpidm23  3739  prid2g  3743  prid2  3745  prprc2  3747  difprsn2  3779  preqr2g  3814  preqr2  3816  preq12b  3817  fvpr2  5802  fvpr2g  5804  en2other2  7320  maxcom  11589  mincom  11615  xrmax2sup  11640  xrmaxltsup  11644  xrmaxadd  11647  xrbdtri  11662  lspprid2  14249  qtopbasss  15068
  Copyright terms: Public domain W3C validator