| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > prcom | GIF version | ||
| Description: Commutative law for unordered pairs. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| prcom | ⊢ {𝐴, 𝐵} = {𝐵, 𝐴} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uncom 3316 | . 2 ⊢ ({𝐴} ∪ {𝐵}) = ({𝐵} ∪ {𝐴}) | |
| 2 | df-pr 3639 | . 2 ⊢ {𝐴, 𝐵} = ({𝐴} ∪ {𝐵}) | |
| 3 | df-pr 3639 | . 2 ⊢ {𝐵, 𝐴} = ({𝐵} ∪ {𝐴}) | |
| 4 | 1, 2, 3 | 3eqtr4i 2235 | 1 ⊢ {𝐴, 𝐵} = {𝐵, 𝐴} |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1372 ∪ cun 3163 {csn 3632 {cpr 3633 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-v 2773 df-un 3169 df-pr 3639 |
| This theorem is referenced by: preq2 3710 tpcoma 3726 tpidm23 3733 prid2g 3737 prid2 3739 prprc2 3741 difprsn2 3772 preqr2g 3807 preqr2 3809 preq12b 3810 fvpr2 5779 fvpr2g 5781 en2other2 7286 maxcom 11433 mincom 11459 xrmax2sup 11484 xrmaxltsup 11488 xrmaxadd 11491 xrbdtri 11506 lspprid2 14092 qtopbasss 14911 |
| Copyright terms: Public domain | W3C validator |