| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > prcom | GIF version | ||
| Description: Commutative law for unordered pairs. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| prcom | ⊢ {𝐴, 𝐵} = {𝐵, 𝐴} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uncom 3348 | . 2 ⊢ ({𝐴} ∪ {𝐵}) = ({𝐵} ∪ {𝐴}) | |
| 2 | df-pr 3673 | . 2 ⊢ {𝐴, 𝐵} = ({𝐴} ∪ {𝐵}) | |
| 3 | df-pr 3673 | . 2 ⊢ {𝐵, 𝐴} = ({𝐵} ∪ {𝐴}) | |
| 4 | 1, 2, 3 | 3eqtr4i 2260 | 1 ⊢ {𝐴, 𝐵} = {𝐵, 𝐴} |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1395 ∪ cun 3195 {csn 3666 {cpr 3667 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-pr 3673 |
| This theorem is referenced by: preq2 3744 tpcoma 3760 tpidm23 3767 prid2g 3771 prid2 3773 prprc2 3775 difprsn2 3807 ssprsseq 3829 preqr2g 3844 preqr2 3846 preq12b 3847 elpr2elpr 3853 fvpr2 5843 fvpr2g 5845 pr2cv2 7365 en2other2 7370 maxcom 11709 mincom 11735 xrmax2sup 11760 xrmaxltsup 11764 xrmaxadd 11767 xrbdtri 11782 lspprid2 14370 qtopbasss 15189 uhgr2edg 15998 usgredg4 16007 usgredg2vlem1 16014 usgredg2vlem2 16015 |
| Copyright terms: Public domain | W3C validator |