![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > prcom | GIF version |
Description: Commutative law for unordered pairs. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
prcom | ⊢ {𝐴, 𝐵} = {𝐵, 𝐴} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uncom 3304 | . 2 ⊢ ({𝐴} ∪ {𝐵}) = ({𝐵} ∪ {𝐴}) | |
2 | df-pr 3626 | . 2 ⊢ {𝐴, 𝐵} = ({𝐴} ∪ {𝐵}) | |
3 | df-pr 3626 | . 2 ⊢ {𝐵, 𝐴} = ({𝐵} ∪ {𝐴}) | |
4 | 1, 2, 3 | 3eqtr4i 2224 | 1 ⊢ {𝐴, 𝐵} = {𝐵, 𝐴} |
Colors of variables: wff set class |
Syntax hints: = wceq 1364 ∪ cun 3152 {csn 3619 {cpr 3620 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-un 3158 df-pr 3626 |
This theorem is referenced by: preq2 3697 tpcoma 3713 tpidm23 3720 prid2g 3724 prid2 3726 prprc2 3728 difprsn2 3759 preqr2g 3794 preqr2 3796 preq12b 3797 fvpr2 5764 fvpr2g 5766 en2other2 7258 maxcom 11350 mincom 11375 xrmax2sup 11400 xrmaxltsup 11404 xrmaxadd 11407 xrbdtri 11422 lspprid2 13911 qtopbasss 14700 |
Copyright terms: Public domain | W3C validator |