ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prcom GIF version

Theorem prcom 3708
Description: Commutative law for unordered pairs. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
prcom {𝐴, 𝐵} = {𝐵, 𝐴}

Proof of Theorem prcom
StepHypRef Expression
1 uncom 3316 . 2 ({𝐴} ∪ {𝐵}) = ({𝐵} ∪ {𝐴})
2 df-pr 3639 . 2 {𝐴, 𝐵} = ({𝐴} ∪ {𝐵})
3 df-pr 3639 . 2 {𝐵, 𝐴} = ({𝐵} ∪ {𝐴})
41, 2, 33eqtr4i 2235 1 {𝐴, 𝐵} = {𝐵, 𝐴}
Colors of variables: wff set class
Syntax hints:   = wceq 1372  cun 3163  {csn 3632  {cpr 3633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-v 2773  df-un 3169  df-pr 3639
This theorem is referenced by:  preq2  3710  tpcoma  3726  tpidm23  3733  prid2g  3737  prid2  3739  prprc2  3741  difprsn2  3772  preqr2g  3807  preqr2  3809  preq12b  3810  fvpr2  5779  fvpr2g  5781  en2other2  7286  maxcom  11433  mincom  11459  xrmax2sup  11484  xrmaxltsup  11488  xrmaxadd  11491  xrbdtri  11506  lspprid2  14092  qtopbasss  14911
  Copyright terms: Public domain W3C validator