ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  preqr1 GIF version

Theorem preqr1 3770
Description: Reverse equality lemma for unordered pairs. If two unordered pairs have the same second element, the first elements are equal. (Contributed by NM, 18-Oct-1995.)
Hypotheses
Ref Expression
preqr1.1 𝐴 ∈ V
preqr1.2 𝐵 ∈ V
Assertion
Ref Expression
preqr1 ({𝐴, 𝐶} = {𝐵, 𝐶} → 𝐴 = 𝐵)

Proof of Theorem preqr1
StepHypRef Expression
1 preqr1.1 . . . . 5 𝐴 ∈ V
21prid1 3700 . . . 4 𝐴 ∈ {𝐴, 𝐶}
3 eleq2 2241 . . . 4 ({𝐴, 𝐶} = {𝐵, 𝐶} → (𝐴 ∈ {𝐴, 𝐶} ↔ 𝐴 ∈ {𝐵, 𝐶}))
42, 3mpbii 148 . . 3 ({𝐴, 𝐶} = {𝐵, 𝐶} → 𝐴 ∈ {𝐵, 𝐶})
51elpr 3615 . . 3 (𝐴 ∈ {𝐵, 𝐶} ↔ (𝐴 = 𝐵𝐴 = 𝐶))
64, 5sylib 122 . 2 ({𝐴, 𝐶} = {𝐵, 𝐶} → (𝐴 = 𝐵𝐴 = 𝐶))
7 preqr1.2 . . . . 5 𝐵 ∈ V
87prid1 3700 . . . 4 𝐵 ∈ {𝐵, 𝐶}
9 eleq2 2241 . . . 4 ({𝐴, 𝐶} = {𝐵, 𝐶} → (𝐵 ∈ {𝐴, 𝐶} ↔ 𝐵 ∈ {𝐵, 𝐶}))
108, 9mpbiri 168 . . 3 ({𝐴, 𝐶} = {𝐵, 𝐶} → 𝐵 ∈ {𝐴, 𝐶})
117elpr 3615 . . 3 (𝐵 ∈ {𝐴, 𝐶} ↔ (𝐵 = 𝐴𝐵 = 𝐶))
1210, 11sylib 122 . 2 ({𝐴, 𝐶} = {𝐵, 𝐶} → (𝐵 = 𝐴𝐵 = 𝐶))
13 eqcom 2179 . 2 (𝐴 = 𝐵𝐵 = 𝐴)
14 eqeq2 2187 . 2 (𝐴 = 𝐶 → (𝐵 = 𝐴𝐵 = 𝐶))
156, 12, 13, 14oplem1 975 1 ({𝐴, 𝐶} = {𝐵, 𝐶} → 𝐴 = 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wo 708   = wceq 1353  wcel 2148  Vcvv 2739  {cpr 3595
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2741  df-un 3135  df-sn 3600  df-pr 3601
This theorem is referenced by:  preqr2  3771
  Copyright terms: Public domain W3C validator