| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > preqr1 | GIF version | ||
| Description: Reverse equality lemma for unordered pairs. If two unordered pairs have the same second element, the first elements are equal. (Contributed by NM, 18-Oct-1995.) |
| Ref | Expression |
|---|---|
| preqr1.1 | ⊢ 𝐴 ∈ V |
| preqr1.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| preqr1 | ⊢ ({𝐴, 𝐶} = {𝐵, 𝐶} → 𝐴 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | preqr1.1 | . . . . 5 ⊢ 𝐴 ∈ V | |
| 2 | 1 | prid1 3744 | . . . 4 ⊢ 𝐴 ∈ {𝐴, 𝐶} |
| 3 | eleq2 2270 | . . . 4 ⊢ ({𝐴, 𝐶} = {𝐵, 𝐶} → (𝐴 ∈ {𝐴, 𝐶} ↔ 𝐴 ∈ {𝐵, 𝐶})) | |
| 4 | 2, 3 | mpbii 148 | . . 3 ⊢ ({𝐴, 𝐶} = {𝐵, 𝐶} → 𝐴 ∈ {𝐵, 𝐶}) |
| 5 | 1 | elpr 3659 | . . 3 ⊢ (𝐴 ∈ {𝐵, 𝐶} ↔ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶)) |
| 6 | 4, 5 | sylib 122 | . 2 ⊢ ({𝐴, 𝐶} = {𝐵, 𝐶} → (𝐴 = 𝐵 ∨ 𝐴 = 𝐶)) |
| 7 | preqr1.2 | . . . . 5 ⊢ 𝐵 ∈ V | |
| 8 | 7 | prid1 3744 | . . . 4 ⊢ 𝐵 ∈ {𝐵, 𝐶} |
| 9 | eleq2 2270 | . . . 4 ⊢ ({𝐴, 𝐶} = {𝐵, 𝐶} → (𝐵 ∈ {𝐴, 𝐶} ↔ 𝐵 ∈ {𝐵, 𝐶})) | |
| 10 | 8, 9 | mpbiri 168 | . . 3 ⊢ ({𝐴, 𝐶} = {𝐵, 𝐶} → 𝐵 ∈ {𝐴, 𝐶}) |
| 11 | 7 | elpr 3659 | . . 3 ⊢ (𝐵 ∈ {𝐴, 𝐶} ↔ (𝐵 = 𝐴 ∨ 𝐵 = 𝐶)) |
| 12 | 10, 11 | sylib 122 | . 2 ⊢ ({𝐴, 𝐶} = {𝐵, 𝐶} → (𝐵 = 𝐴 ∨ 𝐵 = 𝐶)) |
| 13 | eqcom 2208 | . 2 ⊢ (𝐴 = 𝐵 ↔ 𝐵 = 𝐴) | |
| 14 | eqeq2 2216 | . 2 ⊢ (𝐴 = 𝐶 → (𝐵 = 𝐴 ↔ 𝐵 = 𝐶)) | |
| 15 | 6, 12, 13, 14 | oplem1 978 | 1 ⊢ ({𝐴, 𝐶} = {𝐵, 𝐶} → 𝐴 = 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∨ wo 710 = wceq 1373 ∈ wcel 2177 Vcvv 2773 {cpr 3639 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-un 3174 df-sn 3644 df-pr 3645 |
| This theorem is referenced by: preqr2 3818 |
| Copyright terms: Public domain | W3C validator |