ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prnzg GIF version

Theorem prnzg 3746
Description: A pair containing a set is not empty. It is also inhabited (see prmg 3743). (Contributed by FL, 19-Sep-2011.)
Assertion
Ref Expression
prnzg (𝐴𝑉 → {𝐴, 𝐵} ≠ ∅)

Proof of Theorem prnzg
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 preq1 3699 . . 3 (𝑥 = 𝐴 → {𝑥, 𝐵} = {𝐴, 𝐵})
21neeq1d 2385 . 2 (𝑥 = 𝐴 → ({𝑥, 𝐵} ≠ ∅ ↔ {𝐴, 𝐵} ≠ ∅))
3 vex 2766 . . 3 𝑥 ∈ V
43prnz 3744 . 2 {𝑥, 𝐵} ≠ ∅
52, 4vtoclg 2824 1 (𝐴𝑉 → {𝐴, 𝐵} ≠ ∅)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2167  wne 2367  c0 3450  {cpr 3623
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-v 2765  df-dif 3159  df-un 3161  df-nul 3451  df-sn 3628  df-pr 3629
This theorem is referenced by:  0nelop  4281
  Copyright terms: Public domain W3C validator