Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > prnzg | GIF version |
Description: A pair containing a set is not empty. (Contributed by FL, 19-Sep-2011.) |
Ref | Expression |
---|---|
prnzg | ⊢ (𝐴 ∈ 𝑉 → {𝐴, 𝐵} ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | preq1 3660 | . . 3 ⊢ (𝑥 = 𝐴 → {𝑥, 𝐵} = {𝐴, 𝐵}) | |
2 | 1 | neeq1d 2358 | . 2 ⊢ (𝑥 = 𝐴 → ({𝑥, 𝐵} ≠ ∅ ↔ {𝐴, 𝐵} ≠ ∅)) |
3 | vex 2733 | . . 3 ⊢ 𝑥 ∈ V | |
4 | 3 | prnz 3705 | . 2 ⊢ {𝑥, 𝐵} ≠ ∅ |
5 | 2, 4 | vtoclg 2790 | 1 ⊢ (𝐴 ∈ 𝑉 → {𝐴, 𝐵} ≠ ∅) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1348 ∈ wcel 2141 ≠ wne 2340 ∅c0 3414 {cpr 3584 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-v 2732 df-dif 3123 df-un 3125 df-nul 3415 df-sn 3589 df-pr 3590 |
This theorem is referenced by: 0nelop 4233 |
Copyright terms: Public domain | W3C validator |