ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prnzg GIF version

Theorem prnzg 3756
Description: A pair containing a set is not empty. It is also inhabited (see prmg 3753). (Contributed by FL, 19-Sep-2011.)
Assertion
Ref Expression
prnzg (𝐴𝑉 → {𝐴, 𝐵} ≠ ∅)

Proof of Theorem prnzg
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 preq1 3709 . . 3 (𝑥 = 𝐴 → {𝑥, 𝐵} = {𝐴, 𝐵})
21neeq1d 2393 . 2 (𝑥 = 𝐴 → ({𝑥, 𝐵} ≠ ∅ ↔ {𝐴, 𝐵} ≠ ∅))
3 vex 2774 . . 3 𝑥 ∈ V
43prnz 3754 . 2 {𝑥, 𝐵} ≠ ∅
52, 4vtoclg 2832 1 (𝐴𝑉 → {𝐴, 𝐵} ≠ ∅)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1372  wcel 2175  wne 2375  c0 3459  {cpr 3633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-v 2773  df-dif 3167  df-un 3169  df-nul 3460  df-sn 3638  df-pr 3639
This theorem is referenced by:  0nelop  4291
  Copyright terms: Public domain W3C validator