ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prnzg GIF version

Theorem prnzg 3768
Description: A pair containing a set is not empty. It is also inhabited (see prmg 3765). (Contributed by FL, 19-Sep-2011.)
Assertion
Ref Expression
prnzg (𝐴𝑉 → {𝐴, 𝐵} ≠ ∅)

Proof of Theorem prnzg
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 preq1 3720 . . 3 (𝑥 = 𝐴 → {𝑥, 𝐵} = {𝐴, 𝐵})
21neeq1d 2396 . 2 (𝑥 = 𝐴 → ({𝑥, 𝐵} ≠ ∅ ↔ {𝐴, 𝐵} ≠ ∅))
3 vex 2779 . . 3 𝑥 ∈ V
43prnz 3766 . 2 {𝑥, 𝐵} ≠ ∅
52, 4vtoclg 2838 1 (𝐴𝑉 → {𝐴, 𝐵} ≠ ∅)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1373  wcel 2178  wne 2378  c0 3468  {cpr 3644
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-v 2778  df-dif 3176  df-un 3178  df-nul 3469  df-sn 3649  df-pr 3650
This theorem is referenced by:  0nelop  4310
  Copyright terms: Public domain W3C validator