| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > prnzg | GIF version | ||
| Description: A pair containing a set is not empty. It is also inhabited (see prmg 3765). (Contributed by FL, 19-Sep-2011.) |
| Ref | Expression |
|---|---|
| prnzg | ⊢ (𝐴 ∈ 𝑉 → {𝐴, 𝐵} ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | preq1 3720 | . . 3 ⊢ (𝑥 = 𝐴 → {𝑥, 𝐵} = {𝐴, 𝐵}) | |
| 2 | 1 | neeq1d 2396 | . 2 ⊢ (𝑥 = 𝐴 → ({𝑥, 𝐵} ≠ ∅ ↔ {𝐴, 𝐵} ≠ ∅)) |
| 3 | vex 2779 | . . 3 ⊢ 𝑥 ∈ V | |
| 4 | 3 | prnz 3766 | . 2 ⊢ {𝑥, 𝐵} ≠ ∅ |
| 5 | 2, 4 | vtoclg 2838 | 1 ⊢ (𝐴 ∈ 𝑉 → {𝐴, 𝐵} ≠ ∅) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2178 ≠ wne 2378 ∅c0 3468 {cpr 3644 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-v 2778 df-dif 3176 df-un 3178 df-nul 3469 df-sn 3649 df-pr 3650 |
| This theorem is referenced by: 0nelop 4310 |
| Copyright terms: Public domain | W3C validator |