| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > prnzg | GIF version | ||
| Description: A pair containing a set is not empty. It is also inhabited (see prmg 3743). (Contributed by FL, 19-Sep-2011.) |
| Ref | Expression |
|---|---|
| prnzg | ⊢ (𝐴 ∈ 𝑉 → {𝐴, 𝐵} ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | preq1 3699 | . . 3 ⊢ (𝑥 = 𝐴 → {𝑥, 𝐵} = {𝐴, 𝐵}) | |
| 2 | 1 | neeq1d 2385 | . 2 ⊢ (𝑥 = 𝐴 → ({𝑥, 𝐵} ≠ ∅ ↔ {𝐴, 𝐵} ≠ ∅)) |
| 3 | vex 2766 | . . 3 ⊢ 𝑥 ∈ V | |
| 4 | 3 | prnz 3744 | . 2 ⊢ {𝑥, 𝐵} ≠ ∅ |
| 5 | 2, 4 | vtoclg 2824 | 1 ⊢ (𝐴 ∈ 𝑉 → {𝐴, 𝐵} ≠ ∅) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2167 ≠ wne 2367 ∅c0 3450 {cpr 3623 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-v 2765 df-dif 3159 df-un 3161 df-nul 3451 df-sn 3628 df-pr 3629 |
| This theorem is referenced by: 0nelop 4281 |
| Copyright terms: Public domain | W3C validator |