![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > prnzg | GIF version |
Description: A pair containing a set is not empty. It is also inhabited (see prmg 3739). (Contributed by FL, 19-Sep-2011.) |
Ref | Expression |
---|---|
prnzg | ⊢ (𝐴 ∈ 𝑉 → {𝐴, 𝐵} ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | preq1 3695 | . . 3 ⊢ (𝑥 = 𝐴 → {𝑥, 𝐵} = {𝐴, 𝐵}) | |
2 | 1 | neeq1d 2382 | . 2 ⊢ (𝑥 = 𝐴 → ({𝑥, 𝐵} ≠ ∅ ↔ {𝐴, 𝐵} ≠ ∅)) |
3 | vex 2763 | . . 3 ⊢ 𝑥 ∈ V | |
4 | 3 | prnz 3740 | . 2 ⊢ {𝑥, 𝐵} ≠ ∅ |
5 | 2, 4 | vtoclg 2820 | 1 ⊢ (𝐴 ∈ 𝑉 → {𝐴, 𝐵} ≠ ∅) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2164 ≠ wne 2364 ∅c0 3446 {cpr 3619 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-v 2762 df-dif 3155 df-un 3157 df-nul 3447 df-sn 3624 df-pr 3625 |
This theorem is referenced by: 0nelop 4277 |
Copyright terms: Public domain | W3C validator |